
HAL Id: hal-01787388
https://hal.science/hal-01787388

Submitted on 7 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Crowdsensing Mobile Content and Context Data:
Lessons Learned in the Wild

Katia Jaffrès-Runser, Gentian Jakllari, Tao Peng, Vlad-Tiberiu Nitu

To cite this version:
Katia Jaffrès-Runser, Gentian Jakllari, Tao Peng, Vlad-Tiberiu Nitu. Crowdsensing Mobile Con-
tent and Context Data: Lessons Learned in the Wild. IEEE International Conference on Pervasive
Computing and Communications Workshops: Workshop on Data Analytics for Mobile Networking
(PerCom Workshops 2017), Mar 2017, Kona, Hawai, United States. pp. 1-4. �hal-01787388�

https://hal.science/hal-01787388
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18977

The contribution was presented at PerCom Workshops 2017 :
http://www.percom.org/

To link to this article URL :
http://dx.doi.org/10.1109/PERCOMW.2017.7917579

To cite this version : Jaffres-Runser, Katia and Jakllari, Gentian and Peng,
Tao and Nitu, Vlad Crowdsensing Mobile Content and Context Data:
Lessons Learned in the Wild. (2017) In: IEEE International Conference on
Pervasive Computing and Communications Workshops: Workshop on Data
Analytics for Mobile Networking (PerCom Workshops 2017), 17 March
2017 - 17 March 2017 (Kona, Hawai, United States).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Crowdsensing Mobile Content and Context Data:

Lessons Learned in the Wild
(Invited Paper)

Katia Jaffrès-Runser, Gentian Jakllari, Tao Peng, Vlad Nitu

Institut de Recherche en Informatique de Toulouse

Université de Toulouse, INPT-ENSEEIHT, Toulouse, France

Email: {kjr, gentian.jakllari, tao.peng, vlad.nitu}@enseeiht.fr

Abstract—This paper discusses the design and development
efforts made to collect data using an opportunistic crowdsensing
mobile application. Relevant issues are underlined, and solu-
tions proposed within the CHIST-ERA Macaco project for the
specifics of collecting fine-grained content and context data are
highlighted. Global statistics on the data gathered for over a
year of collection show its quality: Macaco data provides a long-
term and fine-grained sampling of the user behavior and network
usage that is relevant to model and analyse for future content
and context-aware networking developments.

I. INTRODUCTION

This paper underlines the main takeaways and design

choices made for the deployment of a crowdsensing appli-

cation in the context of the CHIST-ERA Macaco project. The

goal of this project is to leverage networking content and con-

text to design novel post-4G mobile offloading mechanisms.

The project aims at providing seamless and cost-efficient con-

nectivity to mobile users by adapting data transport decisions

to the near future, and thus leveraging past context changes

and data requests. Such adaptive learning mechanisms rely on

the quality of a set of continuously collected data samples.

In the Macaco project, several reasons led to the deployment

of an opportunistic mobile crowdsensing app1 that periodically

samples the so-called networking context and content. The

first reason is the need for collecting knowledge on users

networking habits at the early stage of the project. From such

collected data, user behavior can be analyzed, understood and

modeled by deriving different user behavior profiles. Another

fundamental reason is that the final learning mechanisms will

rely on sensing functions that store content and context history

either on users mobile phones or on a remote server. As

such, final Macaco algorithms can benefit from the sensing

capabilities developed for the initial crowdsensing app.

This paper introduces the issues related to sensing context

and content data on a mobile platform in Section II. The

hardware and software architecture of the Macaco sensing app

is presented in Section III. This part highlights the lessons

learned from the Macaco app design and deployment stages,

mainly dealing with energy-efficiency. Global statistics on the

data collected in the project are underlined in Section IV and

finally, Section V concludes the paper.

1http://macaco.inria.fr/macacoapp/

TABLE I
CONTENT AND CONTEXT SAMPLES SENSED IN MACACO APP.

Context
WiFi scan 3G scan Bluetooth scan IP address
Location Acceleration Memory Battery level

Content URL App name App upload App download

II. CROWDSENSING CONTEXT AND CONTENT

Networking context defines in our case the environment

the mobile user is experiencing. Context can be described by

various pieces of information such as user location, user mo-

tion or specifics on the currently available wireless networks.

It is obtained by triggering system calls to various sensors

(e.g. GPS, accelerometer, gyroscope, battery level, etc.) or

to network interfaces (e.g. WiFi, Bluetooth, Cellular, etc.).

Context data is usually easy to retrieve, but, unfortunately,

related system calls are often energy consuming. As such, the

periodic collection of context data has to be engineered in an

energy-saving manner. The energy-efficient sensing strategies

developed for Macaco are discussed in Section III-B.

Networking content relates to the nature of the data that is

either pushed or pulled from or to the Internet by the mobile

user. Content can be described by more or less precise pieces

of information, going from the accurate description of the data

(e.g. the file transfered contains episode 1 of Star Wars) to the

raw information where you only know that content is an audio

file, for instance. Crowdsensing content on mobile devices is

not an easy task as it depends on the privacy rules enforced

by the mobile platform operating system. Best case scenario is

to have access to the full content exchanged by a mobile user

with Internet. Unfortunately, complete access is unrealistic for

several reasons. Most of the content is manipulated inside

mobile applications that can’t be accessed by third party

applications without their explicit authorization. The operating

system may have access to raw data inside the networking

stack (provided that the data exchanged isn’t ciphered) but

on-the-fly content analysis is computationally expensive and

requires superuser privileges. As such, networking content is

described with less precise but still informative meta-data.

Meaningful and relatively easy to access meta-data is given

by the URLs (Uniform Resource Locator) or URIs (Unified

Resource Identifiers) of contents being requested by users.

Another interesting but less precise piece of information is

Fig. 1. Overall Macaco crowdsensing architecture (left) and Macaco app architecture (right)

given by simply tracking the name of the mobile app that

has generated traffic in a given time interval. Exact content

of the retrieved data isn’t known, but it is possible to provide

a coarse classification of content based on such information.

For example, a video streaming application that triggers a large

amount of data download obviously calls for a video download

operation. Exact video name isn’t known, but the fact that a

video was downloaded can be leveraged to understand user

networking habits. Macaco sensing app is retrieving both types

of content meta-data. URLs are extracted from the default

browser history changes. We collect as well the name of the

apps that have pushed or received bytes to/from the Internet

since last sensing operation. Table I enlists the different

content and context samples sensed in our app.

III. DESIGN OF A CROWDSENSING MOBILE APP

At design stage, one should bear in mind that the quality

and quantity of data collected is strongly conditioned by the

motivation of the sensing participants [1]. The key conditions

for having a sensing app adopted for a long time by partici-

pants are the following ones:

• the sensing app shouldn’t disturb regular device’s run,

• it shouldn’t put too much stress on the overall energy

consumption,

• upload data to the collection server at no financial cost,

• data collected should guaranty privacy to participants.

Moreover, if the collection requires the data to be collected

from the largest group of participants possible, a good incen-

tive mechanism has to be created. Trading participating efforts

for money can not easily scale to large groups. The most

successful collection is obtained if the app offers an added

service that becomes the main reason for users to participate.

Finding the service that motivates users is difficult, and from

our experience, should be seen as one of the key issues to be

addressed at early design stages.

A. The Macaco architecture

The overall architecture of the Macaco crowdsensing app is

represented in Fig. 1-(left). All Macaco sensing apps push col-

lected data to front-end servers. The one located in Toulouse

collects the periodic samples of all data enlisted in Table I. The

server in Switzerland collects the answers of a personality test

that participants take once based on the state-of-the-art Big

Five psychology test [6]. Data is stored in a MySql database

on the front end server. The data collected each day is sent

over night to two storage servers located in Toulouse and

Paris. All data sent from the mobile phones to the front-

end servers are only done once connected to WiFi to avoid

costs. The Macaco app sends the data using an energy efficient

serialization library provided by Android.

To warrant the best privacy practices to our participants,

we have followed the privacy enforcement rules of CNIL

(Commission Nationale de l’Informatique et des Libertés), the

French privacy regulation body. Thus, all samples sent by a

mobile phone are identified on our server with a SHA-256 hash

of the mobile IMEI (International Mobile Equipment Identity).

Communications between servers use secure communications

and access to stored data is only possible for identified Macaco

project members. Moreover, data will only be stored for a

limited duration in a non-anonymized state.

Long-time adoption of a crowdsensing application by par-

ticipants necessitates a careful mobile app software design.

In our implementation, we focus on Android mobile phones

with minimum Android API 16 (i.e. Android 4.1-Jelly Bean).

This choice was made to target the most widely used Android

version in 2014. The app was designed such as to provide a

periodic measurement of the data of Table I. The mobile app

architecture is given in Fig. 1-(right) and runs as a foreground

Android service. Two periodic alarms are implemented, one

for triggering the data collection and the other one for pushing

data to the front-end servers. Data collection period is set to

5 minutes. Data upload period is set to one hour, but it is

conditioned on the mobile phone being connected to Internet

over WiFi. Collected data is temporarily stored in a SQLlite

database. This data is analyzed on the phone to show simple

statistics on the sampled data to the participant on demand.

B. Energy efficiency

The most challenging part in a crowdsensing app design is

to minimize energy consumption. It is possible to measure the

app’s energy profile using specific monitoring hardware and

software [2]. Using their energy profiling platform, authors

of [2] have observed for the Macaco app that the highest

energy consumer tasks are GPS localisation [∼6Wh], followed

Adapted sensing

Adapter − no Bluetooth

Basic sensing

Fig. 2. Impact of energy-related optimization on context data retrieval

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" $!!" %!!" &!!" '!!" (!!")!!"

!
"
#
"
$%
&
'
(
)*
+%
,&
-
.
)-
/)
0
1
-
.
(
2)

3"#4(+)-/)5(%2"+(#(.6)7%82)

Fig. 3. Number of days Macaco collected measurements.

by Bluetooth, accelerometer, and Wi-Fi scanning [∼0.4Wh

each]. Following, we present the main solutions implemented

to reduce energy consumption of network scanning operations

and of location retrieval.

Network sensing: WiFi and Bluetooth sensing tasks are

energy hungry tasks because the physical layer has to scan all

channels for beacons and retrieve all information on available

networks. At each sampling stage, you can ask for a new scan,

but it is more energy efficient to simply poll the Android API

to get the lasted scan results that are populated periodically

by the networking interface of Android.

Location sensing: The most precise location sensing is

obtained with a GPS service call. However, GPS may fail if not

enough satellites are visible (this is often the case indoor). As

such, the naive sampling method that calls GPS updates every

five minutes is energy hungry and not reliable. Android offers

an alternative localisation service in its API that obtains user’s

location from an in-house localization protocol that requires

Internet access to query a remote server. Moreover, Android

stores the last known location of the user and offers it to

any app requesting it. This last know location is populated

by any location request made (either using GPS or network

request) by any app running on the phone. To take advantage of

both features, we call the API for network location update by

sampling the last known location global variable of Android.

Then, to enforce a precise location in this last known location

variable, we check whether user has changed its location or

not. If the user has moved, we call the GPS to get a precise

location. Deciding whether the user has moved follows a

simple heuristic: if the strongest three access points returned

by WiFi scan have changed, we trigger GPS localization. If

not, we assume the user hasn’t moved.

Energy consumption of a single stationary device (MotoG

1st generation) has been tracked in Fig. 2. The battery de-

pletion is compared when (i) location sensing is made every

5 minutes (basic), (ii) location sensing is made only when

user motion is detected (adapted sensing) and when (iii)
adapted sensing is made without Bluetooth scan. Battery life

is extended by 100% if location is more carefully sampled.

Moreover, stopping Bluetooth improves again lifetime for

more than a day.

IV. RESULTS

In this section we present some preliminary results from

the deployment of Macaco by 21 mobile users selected

among students and workers. Part of them were incentivized

financially by reimbursing their data plan fee. The data is

organized in three groups. First, we present high-level data

on the deployment of Macaco. Second, we present statistics

on the volume of mobile data. Finally, we provide detailed

statistics on how users interact with the applications installed

on their phones.

A. Statistics on participation

Fig. 3 shows the number of days for which Macaco reported

measurements from 21 participants in the experiments. The

data shows a high variability in the number of days Macaco

has been running user’ phones, explained by the fact that

volunteers are added all the time. However, it is interesting

to note that for about half the users Macaco has collected data

for periods between 100 and 500 days.

B. 3G/WiFi usage

In this section we present Macaco measurements regarding

the data traffic on the mobile phones. In particular, we are

interested in knowing the amount of traffic transmitted over

the cellular network and WiFi, respectively. This kind of data

could, for example, help cellular providers customize their data

plans and from the user’s perspective, quantify the potential

for off-loading. The data in Fig. 4 leads to some interesting

observations. First, user traffic is highly variable, with some

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" (!" $!!" $(!" %!!" %(!" &!!" &(!"

!
"
#
#
"
$%
&
'
(
)*
+%
,&
-
.
)-
/)
0
1
-
.
(
2)

3+%4,)5"+6.7)89:(+6#(.;)<=>?;(2):(+)5%?@)

-.//0/12" 3454"

Fig. 4. Traffic observed during the measurement period.

Fig. 5. Pie chart of traffic volume generated in upload (Send) and download (Receive) between July 2014 and March 2015. Total volume in upload is
10551MBytes and in download is 3798MBytes.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" %!" '!")!" +!" $!!"

!
"
#
#
"
$%
&
'
(
)*
+%
,&
-
.
)-
/)
0
1
-
.
(
2)

3"#4(+)-/)5662)7.28%$$(9)

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" %" '")" +" $!" $%"

!
"
#
#
"
$%
&
'
(
)*
+%
,&
-
.
)-
/)
0
1
-
.
(
2)

3'(+%4()5"#6(+)-/)3772)8&$9:(;)

Fig. 6. Number of Apps installed on Macaco users’ phones (left) and average number of Apps generating traffic during the measurement periods (right).

users generating no traffic at all while others generating several

dozens Mbytes per day. Second, WiFi traffic is significantly

higher than the cellular traffic. While the median user gen-

erates around 10 Mbytes per day on the cellular network,

it generates around 50 Mbytes per day on WiFi, a 5-fold

increase. This could be due to the ubiquitous presence of WiFi

access points, or the judicious usage of the data plans of the

users running Macaco, or both. Finally, the data shows the

presence of the well-known power users [5]: around 5-10%

of users generate a very high amount of traffic both on the

cellular network, between 40-60 Mbytes per day, and WiFi,

between 150-290 Mbytes per day.

C. Mobile apps statistics

In this section, we turn our attention to content and present

Macaco measurements regarding the application usage of

the participants in the study. First, we were interested in

knowing the volume of applications installed and actually

generating traffic. Fig. 6-(left) shows that users in this study

install a large number of applications, with the median users

installing about 55 applications. However, looking into how

many applications actually generate traffic, the numbers look

very different. Fig. 6-(right) shows that only a small fraction

of the applications installed are actually used. The median

participant uses only about 5-6 applications.

Finally, we were interested in identifying the most important

applications, that is the applications that generate the most

traffic. This information can be very useful to pre-fetching

solutions [4], among others. Fig. 6 shows the amount of data

traffic generated by every application across all the Macaco

participants. The data is divided into upload (send) traffic on

the left and download (receive) traffic on the right. The first

thing the data shows is that upload and download traffic do

not follow the same pattern. Google+ dominates the upload

traffic while the download traffic pie is cut more uniformly.

E-mail, Chrome and WhatsApp dominate the download traffic.

Furthermore, the data shows that over 20 applications con-

tribute significantly to the traffic users generate. Considering

that, as per the data of Fig. 6-(right), participants use around

5-6 applications, on average, this means the most popular

applications vary from user to user. Therefore, careful con-

sideration must be paid by solutions targeted at pre-fetching

popular applications.
V. CONCLUSION

This paper has presented the main take-aways from a

crowdsensing experiment where mobile content and context

data was collected. New open frameworks exist for crowd-

sensing mobile phones [3] that should be compared to in-house

solutions. Moreover, recent Android releases (starting Android

5.0) provide an energy-efficient tasks scheduler that could

be leveraged for our crowdsensing app. The data collected

through Macaco experiment is really valuable as it has suc-

ceeded in capturing the long-term and fine-grained networking

usage of mobile users.

ACKNOWLEDGMENT

This work was supported by CHIST-ERA Macaco project,

ANR-13-CHR2-0002-06

REFERENCES

[1] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-
Yazti. Crowdsourcing with smartphones. IEEE Internet Computing,
16(5):36–44, Sept 2012.

[2] A. Ferrari, D. Gallucci, D. Puccinelli, and S. Giordano. Detecting
energy leaks in android app with poem. In 2015 IEEE International

Conference on Pervasive Computing and Communication Workshops

(PerCom Workshops), pages 421–426, March 2015.
[3] Nicolas Haderer, Romain Rouvoy, and Lionel Seinturier. Dynamic

Deployment of Sensing Experiments in the Wild Using Smartphones. In
François Taı̈ani and Jim Dowling, editors, 13th International IFIP Con-

ference on Distributed Applications and Interoperable Systems (DAIS),
volume 7891, pages 43–56, Firenze, Italy, June 2013. Springer.

[4] Brett D. Higgins, Jason Flinn, T. J. Giuli, Brian Noble, Christopher
Peplin, and David Watson. Informed mobile prefetching. In Proceedings

of the 10th International Conference on Mobile Systems, Applications,

and Services, MobiSys ’12, pages 155–168, New York, NY, USA, 2012.
ACM.

[5] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das. Under-
standing traffic dynamics in cellular data networks. In 2011 Proceedings

IEEE INFOCOM, pages 882–890, April 2011.
[6] L. Pervin. Handbook of Personality: Theory and Research. Guilford

Press, 1990.

