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1. INTRODUCTION AND RELATED WORKS 

Faced to uncertainty, supply chains have implemented 

processes to mitigate risks. Planners plan their production 

using uncertain data as procurement plan (from customer to 

suppliers), lead times (from suppliers to customer).  

An important factor of uncertainty is the difference between 

suppliers planned lead times (information flow) and suppliers 

real lead times (material flow). Indeed, this lead time is often 

uncertain and variable and it depends on several constraints: 

transportation time, prices, machine breakdowns, capacity 

constraints. 

Several works in the literature (Tang and Musa, 2011, Koh et 

al., 2002, Guide and Srivasta, 2000) review identify risks in 

supply chain and proposed several techniques to establish a 

s risk management process. 

Logistics, demand volatility, supply product-monitoring, 

supplier selection, quality and price are identified and 

classified by Tand and Musa (2011) as potential risks in a 

supply chain. Another classification is done by Wazed et al. 

(2009) which consider demand, capacity and lead time 

uncertainties as the largest factors of risks in a manufacturing 

environment.  

appear to be insufficiently studied favouring identifying risks 

issues as demand volatility, quality, excess inventory (Tand 

and Musa, 2011). Safety stocks, safety lead times and other 

measures are used by planners to control uncertainties in 

supply and demand (Van Kampen Tim et al., 2010).  

In the field of MRP (Material Requirement Planning), Dolgui 

et al., (2013), Damand et al. (2011) and Dolgui and Prodhon 

(2007) had studied the MRP parameterization under risks and 

classified the important techniques to reduce it. Several 

works made clear that safety lead times are a main parameter 

to cope the variability of suppliers lead time. Dolgui et al. 

(2008) are considered two-level assembly systems with 

random component procurement times. They concluded that 

in the literature, the demand variability seems to be more 

studied than the lead time uncertainties. 

Recently, Ben Ammar et al. (2013a, 2013b, 2014) have study 

the case under stochastic lead times. Nevertheless, in some 

cases, it seems be difficult to access to the probability 

distribution of the lead time.  

The possibility distribution is often used to model uncertainty 

in the domain of supply chain management (Peidro et al., 

2009, Díaz-Madroñero et al., 2014). In this paper we propose 

to model the uncertainty of the lead time using possibility 

distribution (Dubois and Prade, 2006) since this model 

requires less information than probability distribution (only 

the mode, the maximal and minimal value of the lead time).  

To deal with the possibility distribution we can distinguish 

several different approaches. The first one consists in using a 

function aiming at ranking fuzzy numbers in order to allow 

the decision maker to defuzzify imprecise values. Peidro et 

al. (2009), Liang (2008) and Liang and Cheng (2009) apply 

this approach for uncertainty on demand quantity. After the 

defuzzification process, the result is a classical linear 

optimization system. 
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A second approach, based on the fact that a possibility 

distribution can be seen as a set of probability distributions, 

consists in choosing one of those probability distributions, 

according to the attitude of the decision maker (e.g. 

pessimistic using necessities, optimistic through possibilities, 

etc.). Gao-Ji and Yan-Kui (2008) apply this approach on 

demand uncertainty. Once this choice has been made, it is 

possible to use a stochastic optimization model. So, the 

decision maker chooses for which probability distribution his 

solution will be optimal.  

A third approach is possibilistic optimization, which tries to 

find the solution which minimizes the cost and maximizes the 

possibility level of a considered scenario.  In other terms, this 

approach finds a "possibly optimal" solution; the level of 

possibility that the considered scenario will happen is 

therefore maximal. Mula et al. (2007) apply this approach for 

fuzzy constraints and demand quantity.  

The fourth approach is 

The 

objective is to minimize the necessity level that a cost 

function is greater than a given level. This approach has been 

applied to the case of periodic demand uncertainty 

(Guillaume et al. 2012) and cumulative demand uncertainty 

(Guillaume et al.2013). But under our knowledge, this 

approach does not have been applied to the lead-time 

uncertainty.  

Another one is to propose a decision support approach which 

consists in showing all possible solutions due to the 

uncertainty. In other worlds, it propagates the uncertainty 

thought the MRP and computes all possible released 

quantities. This approach has been developed firstly for MRP 

under uncertainty on quantity of demand (Grabot et al. 2005). 

Then it has been generalized to take into account the 

uncertainty on the date of the demand (Guillaume et al. 

2011a) on quantity and finally has been applied for uncertain 

lead time (Guillaume et al. 2011b).  

In this paper, the main target is to help the decision maker to 

choose a solution under uncertainty and not to compute one. 

The question is how to determine the planned lead time 

parameter in function of uncertainties and of the variability of 

the real lead time. 

To apply the fourth approach aforementioned, the first step 

involves computing the possibility distributions of cost under 

uncertainty on lead-time. The case of a single product and 

regular launches of the assembly are considered. The final 

product is assembled using several types of components. 

Each type of components is delivered by a given supplier. 

by the supplier and the customer and varies in a fuzzy 

interval. 

The rest of paper is organized into five sections. In section 2, 

the problem is described and the background is presented. 

Section 3 shows how the maximal-minimal fuzzy costs are 

estimated. The introduced method is illustrated with a 

numerical example in section 4. At the conclusion of the 

study (section 5), some future perspectives are detailed. 

 

2. PRESENTATION OF THE PROBLEM AND 

BACKGROUND 

In this section, the considered problem and the related 

background on MRP and uncertainty models are presented. 

2.1 Description of the considered problem 

In this paper, we suppose that the customer orders 

components from suppliers. The MRP perform depends on 

the parametrization of the suppliers planned lead times which 

determines the level of inventory or the level of 

backordering. However, the lead times of some components 

depend on suppliers and its uncertainty could increase 

instability in the supply chain.  

In addition, we suppose that it seems to be difficult for the 

supplier to know the real lead time with precision. 

Nevertheless, the supplier has knowledge of the lead time 

uncertainty which can be shared with the customer.  

In this context, the main idea is to help the customer planners 

to choose the appropriate planned lead times of the MRP 

which minimize the risks of both backordering of the final 

product and inventory of components. In this study the 

demand of the final product is supposed constant and known. 

So, in this paper a method is proposed to help planners to 

parametrize the lead times of suppliers under some 

hypothesis. More precisely, we suppose that:  

- A given component is only used for a final product and 

does not appear at several levels of the bill of materials 

- The demand is constant and known over the horizon 

- The component inventory is always preferred to the 

product inventory (added value in the assembly process) 

 

 

Fig. 1. The bill of materials where the final product and the 

components 1 are produced by the customer and the 

components 2, 3 and 4 by different suppliers. 

2.2 Material Requirement Planning (MRP) 

In supply chains, each actor uses the MRP process to 

compute both production and procurement plans. In this 

section, we present a linear model of MRP. Nevertheless, a 

set of other possible formulations of this problem exists. For 

example it depends on the planning rules, set up cost or 

capacity constraints. The presented model uses an unlimited 

capacity and a Lot-for Lot policy.  
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  the set of final products and  the set of 

components (produced or supplied). Backordering cost for 

the final products (  and inventory holding costs for 

components ( ) are considered. Only the external 

demand for the final product is introduced. 

 

Let the following parameters: 

: the demand of final product , for the 

period  

: the planned lead time of product   

: the quantity of component  required to 

produce one product  

: cost of handing the component  

: cost of backordering the final product  

 

Let the following variables:  

Decision variables: 

: the production (or supply) quantity of 

product , for the period  

Dependent variables: 

: inventory of component , at the end of 

the period  

: backordering of final product , at the 

end of the period  

 

In this context the objective function is to minimize the cost 

which is the sum of the inventory holding costs for 

components and the backlogging costs for the final products 

under constraint: 

 (1) 

 

With: 

Production constraints 

 

    (2) 

 

Material flow constraints for the final products 

 

  (3) 

 

Backordering constraints for the final products 

 

  (4) 

 

Material flow constraints for the components 

 

 (5) 

  

 

Inventory constraints for components (the 

demand is the requirement at the period  of the 

next product  of the bill of material): 

 

  (6) 

 

2.3 Model of uncertainty 

In this paper we suppose that the lead time shared by the 

supplier to the customer is known with uncertainty (since it 

depends on the capacity and demand of supplier). We 

propose here that the supplier sends a fuzzy lead time to the 

customer.  

So this lead time is modelled by fuzzy 

intervals:  (see Fig.2), 

where is the lower value of the lead time for the 

possibility  of component  and  the uncertainty of the 

lead time for the possibility . If possibility of a value is 1, it 

means that it is the most possible value of lead time. 

Otherwise, if the possibility of this value is 0, it means that it 

is an impossible value of lead time. A trapezoidal possibility 

distribution can be built by decision maker by giving the 

smallest interval in which he/she thinks the value of lead time 

will be. 

 

Fig. 2. Representation of a trapezoidal fuzzy interval.  

3. ESTIMATION OF MAXIMAL FUZZY COST OF A 

LEAD TIME PARAMETRIZATION 

In this section, we present the formulation of the problem to 

estimate the maximal and the minimal possible impacts of 

lead time uncertainty on different costs. First we solve the 

problem for a given value of , so this problem is a 

problem under classical intervals . 

Then, it is possible to obtain both maximal and minimal 

possible costs for a possibility degree . Hence, to build the 

possibility distribution of cost for a given lead time, we need 

to solve the interval problem for a set of  

with  the estimation step. 

3.1 Formulation of problems 

 the real lead time of product  released at 

period . More over a product   is assembled 

from components , themselves are produced 

or are ordered from suppliers

 In the same way,  is the final product or the 

component which needs the component c. 

Possibility 

Lead-time 
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 ) 

 (4) 

  

 (6) 

 

The maximal and minimal cost over all possible scenarios of 

lead time can be formulated as an optimization problem with 

respectively the objective (7) and (8): 

 

 (7) 

 

 (8) 

This modification affects the constraints of the MRP model 

(the first 6 equations) by taking into account the difference 

between the planned lead time  and the real lead time 

. 

 

Let the following variables: 

 
Dependent variables: 

: quantity of product  which can 

be assembled at period  

 : quantity of product  which 

arrives at period  and which has been 

released at period  

: quantity of component  which arrives 

at period  

: quantity of product  which is 

really assembled at period  

 

Decision variables: 

: planned production of component  

at the period  

 

The constraints become: 

 (9) 

  

  

  (10) 

   

  
(11) 

 

  

  

 (12) 

  

  

  (13) 

   

 (14) 

  

  

 
(15) 

 

  

  (16) 

   

  (17) 

 

This formulation is not computable since decision variables 

are indexed. In the next section, we propose a mixed integer 

formulation of both maximization and minimization of cost 

problems under uncertain lead time. 

 

3.2   Evaluation of maximal and minimal cost under 

uncertain lead time 

Firstly we will show that under the hypothesis of known and 

constant demand, we can consider only the single period 

problem. Since, the best and the worst case for each demand 

of the horizon is the same.  

For the best case it is trivial, since the less costly lead time 

cannot be inflated by the previous or the next period. For the 

worst case we have two cases, if the worst case is to be late 

for a given period, this worst case will be the same for all 

periods; and if all components are late there are no 

compensation between previous and next periods. Otherwise, 

if the worst case is to be early for the demand it is the same 

reasoning.   

 

To take off the lead time in the index of constraints (4) and 

(5), three decisions variables are introduced: 

: variable which indicates where we are in 

the interval of lead time (0 means lower bound and 1 

upper bound) of component  

: the date of availability of component 

  

: the real date of assembly of product   

 

We add two parameters: 

: the number of component  required to 

satisfy the demand  

: the planned date to order the component  

  

 

Now, the objective function does not depend on planning 

horizon. It can be expressed as: 

 

Or       (18) 

 

 

The constraints are: 

Precedence constraints: 

 

 (19) 
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Ready dates constraints: a product  , cannot 

be assembled before its planned date: 

 

  (20) 

   

  (21) 

 

Inventory constraints for components: 

 
  (22) 

 (23) 

  

 

Backordering constraint for the final products: 

 

  (24) 

 

Backordering constraint of final product  for the 

horizon: 

 

  (25) 

 

In the case of minimization, the function max of constraints 

(19) and (20) can be easy linearized using  relation: 

 

 (26) 

  

   

  (27) 

   

  (28) 

 

Unfortunately for the maximization problem, we need to 

add binary decision variables to linearize the constraints (19) 

and (20). 

 

So the constraints (19) can be reformulated using 3 

constraints (29), (30) and (31). Let  a big value and  a 

binary variable thus that  if the maximum is reached 

for the component  zero otherwise: 

 

 (29) 

  

   

 (30) 

  

   

  (31) 

 

In the same way the constraints (20) can be reformulated 

using 3 constraints (32, 33 and 34) and two binaries variables 

 and : 

 

 (32) 

  

   

 (33) 

  

   

  (34) 

  

  

4. NUMERICAL EXAMPLE  

In this example, we consider the bill of material presented in 

figure 2.  

The demand of final product  is equal to 100 for the date 12. 

The lead time of components 2, 3 and 4 are uncertain: 
 

For component 2, it is triangular fuzzy interval: 

 
 

For component 3, it is trapezoidal fuzzy interval: 

 
 

For component 4, it is triangular fuzzy interval: 

 
 

The lead times of the final product and the component 4 are 

the crisp value 1.  

The backlogging cost  for the final product is equal to 50. 

The inventory costs for components are: , , 

. 

The Decision Maker wants to evaluate the impact of 

uncertainty of two possible parametrizations of lead times: 

,   and  or . So, 

,  for the first parametrization and 

 for the second one. The possible 

distributions of possible cost are represented in Fig.3. The 

second one seems to be best for the most possible values. 

Nevertheless, for  the first parametrization is better 

than the second one for the upper bound. Both 

parameterizations are equivalent for the lower bound for 

.  

 
In conclusion, the first parametrization is most robust and 

less subject to uncertainty than the second one.   
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 20) 

 

 21) 

 22) 

) 

  

 24) 

 ) 

) 

  

 27) 

 28) 

) 

  

   

) 

  

   

32) 

  

33) 

  

 34) 

 

 

 

Fig. 3. Representation of possibility distribution of cost for 

two possible parametrization.  

5. CONCLUSION AND PERSPECTIVES  

In this paper, we are interested in a supply chain where 

the customer orders components from suppliers. However, 

the lead times of some components depend on suppliers and 

could increase instability in the supply chain. In other words, 

in the case of lead time uncertainty the MRP performance of 

suppliers planned lead times to parameterize the level of 

inventory or the level of backordering. 

In addition, we supposed that it seems to be difficult for 

the supplier to know the real lead time with precision. 

Nevertheless, the supplier has knowledge of the lead time 

uncertainty which is shared with the customer.  

In this context, the main idea is to help the customer planners 

to choose the appropriate planned lead times of the MRP 

which minimize the risks of both backordering of the final 

product and inventory of components. In this study the 

demand of the final product is supposed constant and known. 

 

Our future work will focus on the parameterization of 

the MRP system under uncertain lead times, limited capacity 

and variable demand.  

The main objective will be to parameterize MRP system 

under several uncertainties as lead times, demand and 

capacity. 
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