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Abstract—The paper investigates the use of analogical rea-
soning for recommendation purposes. More particularly, we
address the problem of predicting missing ratings on the basis
of known ones. After discussing the differences with another
recently experimented approach based on analogical proportions,
a new analogical approach is proposed. It relies on the intuition
that “the rating of user u for item i is to the rating of user v for
item i as the rating of user u for item j is to the rating of user v for
item j”. This leads to algorithms yielding results close to the ones
of state-of-the art approaches, when the ratings are regarded as
numerical quantities. This is due to the fact that these latter
approaches embed an estimation process that is implicitly close
to analogy, as discussed in this paper. An analogical approach is
also outlined and briefly discussed when the ratings are supposed
to have an ordinal meaning only.

I. INTRODUCTION

Recommendation may refer to a variety of problems de-

pending on the information available. One may try to propose

items or products on the basis of their descriptions to users

whose preferences profiles are known. One may also take

advantage of the behavior of other users that are similar to

the recommendee. One may also try to predict missing ratings

on the basis of known ratings. Exploiting preferences may

call for fuzzy set methods; see, e.g. [1], for an early example.

Similarity is also a graded notion that underlies case-based

reasoning, which can be embedded in a fuzzy rule-based

approach and be related to k-nearest neighbor approaches [2],

[3], [4].

The recommendation problem considered in this paper is the

prediction of missing ratings on the basis of known ratings.

We more particularly explore the idea of applying analogical

reasoning to this problem. Analogy is used here in terms

of analogical proportions, i.e., statements of the form “a is

to b as c is to d”. In case-based reasoning, situations with

known conclusions are put in parallel one by one, with a

new pair (situation 0, conclusion 0) where ‘conclusion 0’

is unknown. Then case-based reasoning can be viewed as

a particular instance of analogical reasoning since one can

say that “conclusion 0 should be to conclusion i as situation

0 is to situation i”. However there is a more sophisticated

way to apply analogy here, namely to state that “(situation 0,

conclusion 0) is to (situation 3, conclusion 3) as (situation 2,

conclusion 2) is to (situation 1, conclusion 1)”, which requires

to put the situation on which one wants to conclude in parallel

with three other situations where the corresponding conclusion

is known [5]. Then using a formal model of an analogical

proportion [6], [7], and observing that analogical proportions

hold on various features describing the four situations, one

conclude that “conclusion 1 is to conclusion 2 as conclusion

3 is to conclusion 0” should hold as well, which leads to

compute ‘conclusion 0’ from this latter relation.

The idea of applying analogy to recommendation is not

entirely new. Thus, Sakaguchi et al. [8] use four-terms analogy

in a case-based reasoning style for proposing dishes to users,

while three of the authors of the present paper have more

recently proposed a 4-(situation, conclusion)-based analogical

mechanism for predicting missing ratings on the basis of

known ratings [9]. This latter work yielded reasonably good

results, but was extremely heavy computationally speaking.

In this paper, we investigate a more tractable way of using

analogical proportions for solving the same problem. Namely,

letting rui be the rating for item i by user u, we assume that

“rui is to rvi as ruj is to rvj , where rvj is unknown, while

the three other ratings are available. We shall first consider

the ratings as numbers, which leads to an estimation process

quite close to the one used in Takagi-Sugeno fuzzy rule-based

controllers [10] where similarity-based weighted averages are

performed. We then more briefly discuss the case where the

ratings are only considered as having an ordinal meaning.

The paper is structured as follows. The next section provides

the necessary background on the modelling of analogical pro-

portions when features are Boolean and when they are numer-

ical. Section 3 first recalls the previously proposed analogical

approach to the prediction of missing ratings which uses the

sophisticated mechanism involving four parallel vectors of

the (situation, conclusion)-type. Then Section 3 introduces

the way analogy is applied in this paper. Section 4 presents

the algorithm that exploits this view and reports results of

experiments on the Movielens benchmark when the ratings are

regarded as numerical quantities. These results are quite close

to the ones obtained by state-of-the art approaches. This is due

to the fact that the proposed analogical approach appear to be

formally very close to the state-of-the art approaches, although

the latter do not refer to analogy at all, as revealed by the

discussion ending the section. Section 5 outlines an ordinal

counterpart to the proposed analogical approach, since it is

arguable that ratings have often mainly an ordinal meaning.



II. ANALOGICAL REASONING WITH PROPORTIONS

The following section provides the necessary background on

analogical reasoning that will be used throughout this paper.

A. Formal definitions

An analogical proportion “a is to b as c is to d” states

analogical relations between the pairs (a, b) and (c, d), as well

as between the pairs (a, c) and (b, d). There are numerous

examples of such statements, with which everybody will more

or less agree, such as “calf is to cow as foal is to mare”, or

“brush is to painter as chalk is to teacher”. However, it is only

rather recently that formal definitions have been proposed for

analogical proportions, in different settings [11], [12], [13].

For more details, see [7], [14], [15].

It has been agreed since Aristotle time, taking lesson from

geometrical proportions, that an analogical proportion T , as a

quaternary relation, satisfies the three following characteristic

properties:

1) T (a, b, a, b) (reflexivity)

2) T (a, b, c, d) =⇒ T (c, d, a, b) (symmetry)

3) T (a, b, c, d) =⇒ T (a, c, b, d) (central permutation)

There are various models of analogical proportions, depending

on the target domain. When the underlying domain is fixed,

T (a, b, c, d) is simply denoted a : b :: c : d. Standard examples

are:

• Domain R: a : b :: c : d iff a−b = c−d iff a+d = b+c
(arithmetic proportion)

• Domain R
n: #a : #b :: #c : #d iff #a −#b = #c − #d. This is just

the extension of arithmetic proportion to real vectors. In

that case, the 4 vectors #a,#b,#c, #d build up a parallelogram.

• Boolean domain B = {0, 1}:

a : b :: c : d iff (a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c)

In the following, we will be mostly interested in the

arithmetic proportions in R or in R
n, and will work with

analogies between ratings.

B. Using analogical proportion for inference

To understand how one can infer new information on the

basis of analogical proportions, we need to define the equation

solving process. The equation solving problem amounts to

finding a fourth element x to make the incompletely stated

proportion a : b :: c : x to hold. As expected, the solution of

this problem depends on the target model. For instance, in the

case of extended arithmetic proportions, the solution always

exists and is unique: x = b − a + c. In terms of geometry,

this simply tells us that given 3 points, we can always find a

fourth one (aligned with, or in the same plan as a, b, c) to

build a parallelogram.

The analogical inference principle is, logically speaking, an

unsound inference principle, but providing plausible conclu-

sions [16]. It postulates that, given 4 vectors #a,#b,#c, #d such

that the proportion holds on some components, then it should

also hold on the remaining ones. This can be stated as (where

#a = (a1, a2, · · · an), and J ⊂ [1, n]):

∀j ∈ J, aj : bj :: cj : dj
∀i ∈ [1, n] \ J, ai : bi :: ci : di

(analogical inference)

This principle leads to a prediction rule in the following

context:

• 4 vectors #a,#b,#c, #d are given where #d is partially known:

only the components of #d with indexes in J are known.

• Using analogical inference, we can predict the missing

components of #d by solving (w.r.t. di) the set of equations

(in the case they are solvable):

∀i ∈ [1, n] \ J, ai : bi :: ci : di.

In the case where the items are such that their last component

is a label, applying this principle to a new element #d whose

label is unknown leads to predict a candidate label for #d.

This prediction technique has been successfully applied to

classification problems in both Boolean [17] and numerical

settings [18], thus suggesting promising results in the recom-

mendation task.

III. ANALOGY AND THE RECOMMENDATION PROBLEM

This section provides some necessary background on the

recommendation task, and explores various ideas that can

be developed to build an analogical reasoning-based recom-

mender system.

A. Recommendation as prediction of missing ratings

Let us formalize the problem of recommendation. Let U
be a set of users and I a set of items. For some pairs

(u, i) ∈ U × I , a rating rui is supposed to have been given

by u to express if he/she likes or not the item i. R denotes

the set of all known ratings. Let Ui be the set of users that

have rated item i, and Iu is the set of items that user u has

rated. Iuv defines the set of items rated by both users u and

v. The ultimate goal of a recommender system is to provide

relevant and personalized recommendations of items to users,

and this is usually done by trying to predict users’ ratings for

any item in the the system. Note that users and items can play

symmetrical roles: indeed, one can see the recommendation

problem as recommending items to users or as recommending

users to items. In the following, we chose the first view which

we find more intuitive for the reader.

The two main families of recommender systems are content-

based methods where some meta data describing users and

items are used, and collaborative filtering methods, much

more popular, where predictions are computed by taking into

account the social environment of users which is usually

modeled by the ratings they gave. Collaborative techniques

are the one we are interested in here, as they have shown to

outperform the content-based ones.

It is quite common that ratings belong to [0, 1] or to [1, 5],
while 1 is the worst rating and 5 meaning a strong preference.

It is not always clear whether this rating scale should be

interpreted as purely numerical, or more like an ordinal scale

when it comes to develop prediction algorithms. This is a

question that we will address throughout this paper.

When ratings are treated as numerical quantities, the two

most used performance evaluation metrics are MAE (Mean



Absolute Error) and RMSE (Root Mean Squared Error), and

are usually computed using cross validation:

MAE =
1

|R|
·
∑

rui

|r̂ui − rui| (1)

RMSE =

√

1

|R|
·
∑

rui

(r̂ui − rui)2 (2)

They both evaluate how close predictions are from their true

values, RMSE being much more penalizing over big errors.

B. Analogical proportions between users

Using analogical reasoning for recommendation as been

studied in [9]. Authors strictly follow the analogical inference

principle described in section II-B for making predictions,

using analogical proportions between users.

The main idea is that if an analogical proportion stands

between four users a, b, c, d, meaning that for each item j that

they have commonly rated, the analogical proportion raj :
rbj :: rcj : rdj holds, then it should also hold for an item i
that a, b, c have rated but d has not (i.e. rdi is the missing

component). This leads us to estimate rdi as the solution x =
r̂di of the following analogical equation:

rai : rbi :: rci : x.

Given a pair (u, i) such that rui /∈ R (i.e. there is no available

rating from user u for item i), the main procedure is as follows:

1) find the set of 3-tuples of users a, b, c such that an

analogical proportion stands between a, b, c, and u and

such that the equation rai : rbi :: rci : x is solvable.

2) solve the equation rai : rbi :: rci : x and consider the

solution x as a candidate rating for rui.
3) set r̂ui as an aggregate of all candidate ratings.

This technique has shown to be not too far from basic

collaborative filtering approaches [9], but suffers of its inherent

cubic complexity which makes it impossible to look for every

possible 3-tuples of users, thus compromising the prediction

accuracy.

C. Pairwise analogy between clones

Considering analogy between four users has shown to

be computationally intensive, thus not really suitable for

recommendation purposes, where time is a highly critical

dimension. Yet, other forms of analogy can be addressed in

the recommendation task, based on the observation that some

users may be more inclined to give good (or bad) ratings

than others. Indeed, ratings are in no way absolute and greatly

depend on the subjective appreciation each user has about the

rating scale. In the [1, 5] scale for example, two users u and v
might semantically agree on an item i describing it as bad, but

there is a chance that this agreement is not perfectly reflected

in the ratings: u might have rated i with rui = 1 and v with

rvi = 3, simply because from v’ point of view 3 is a bad

rating, while for u a rating of 3 would simply mean decent

or good enough. In the following, we refer such users that

semantically agree on their common items (but not necessarily

numerically) as clones, as illustrated in Figure 1. Please note

that the word clone is not used here to mean strictly identical,

but more in the sense that two clones are two users following

parallel paths.

Fig. 1. Bob is a perfect clone of Alice.

It is obvious that in collaborative filtering, clones are of

great interest when it comes to predict a user’s ratings, and yet

the information they provide is often discarded. The principle

underlying the analogical clone-based view is the following:

for predicting a missing rating for u we not only look at its

nearest neighbors, but also to those v whose rating are such

that rui = rvi + tvu where tvu is a more or less constant

correction term that can be either positive or negative.

In the next two sections, we investigate this idea of a clone-

based prediction, first when ratings are viewed as numerical

quantities in section IV, and then when they have an ordinal

meaning only in section V.

IV. RATINGS AS NUMERICAL QUANTITIES

In the following, we define Ci(u) as the set of users that

are clones of u and that have rated item i. From the previous

definitions, one can easily derive a very general collaborative

filtering framework for predicting a user’s rating by taking into

account its clones:

r̂ui = aggregation(rvi + tvu), ∀v ∈ Ci(u),

where tvu is a correction term that we need to add to v’s

ratings so that they correspond to those of u. We clearly have

a generalization of the k-NN approach, which we could write

as:

r̂ui = aggregation(rvi + tvu), ∀v ∈ {v ∈ Ci(u)|tvu = 0}.

Following this general framework, one can construct a great

variety of algorithms with various level of complexity. In the

next subsections, we propose a very straightforward algorithm,

and a more efficient one.

A. A straightforward prediction algorithm

In its most simple form, a user v can be considered to be

a t-clone of u if the ratings of v differ from those of u from

a constant t:

v ∈ t-C(u) ⇐⇒ ∀i ∈ Iuv, rui = rvi + t. (3)

From then on, computing r̂ui amounts to finding all the users v
that satisfy this criteria, and computing an aggregation of their

rating for i, which can simply be a mean. We implemented



this basic algorithm described by algorithm 1, and referred to

as Bruteforce.

Algorithm 1 Bruteforce

Input: A set of known ratings R, a user u, an item i such

that rui /∈ R.

Output: r̂ui, an estimation of rui
Init:

C = ∅ // list of candidate ratings

for all users v ∈ Ui do

for all t do

if v ∈ t-Clones(u) then

C ← C ∪ {rvi + t} // add x as a candidate rating

end if

end for

end for

r̂ui = aggr
x∈C

x

Of course, one may want to relax the definition of a t-
clone, as the current one is too strict and only very few users

will satisfy this criteria. In our implementation, we chose the

following condition:

v ∈ t-C(u) ⇐⇒
∑

i∈Iuv

|(rui − rvi)− t| ≤ |Iuv|.

This amounts to accept v as a t-clone of u if on average,

rui − rvi is equal to t with a margin of 1.

The values of t clearly depend on the rating scale. The

dataset on which we tested our algorithms use the [1, 5]
interval, so possible values for t that were considered are

integer values between [−4, 4].
This is obviously a very rough algorithm, to which one

could point out numerous flaws, but its purpose is to show

that even such a basic clone-based approach can lead to better

results than a basic neighborhood method.

B. Modeling clones with the similarity measure

Another option to consider clones is to use the well known

neighborhood-based formula, and capture their effect inside

an appropriate similarity measure. The general neighborhood

formula is as follows [19]:

r̂ui =

∑

v∈Nk

i
(u) rvi · sim(u, v)

∑

v∈Nk

i
(u) sim(u, v)

,

where Nk
i (u) is the set of the k nearest neighbors of u that

have rated i. So, we move from a crisp view of the set of

clones to a fuzzy one. In fact, the above formula looks very

similar to the interpolation principle underlying Takagi-Sugeno

fuzzy controller where similarity degree is viewed as a fuzzy

membership grade [10].

The above formula is commonly used with classical simi-

larity metrics such as Pearson or cosine similarity, or inverse

of MSD (Mean Squared Difference, which is a distance).

However, these similarities are not plainly satisfactory when

it comes to clones. Indeed with these metrics, two users are

considered to be close if their common ratings are often

the same, but two perfect clones u and v with a significant

correction term tvu would be considered as far from each

other, thus involving a loss of information.

A simple choice to measure how two users relate as clones

can be the following:

Clone dist(u, v) =
1

|Iuv|
·
∑

i∈Iuv

((rui − rvi)− µuv)
2

where µvu is the mean difference between ratings of u and v:

µuv =
1

|Iuv|

∑

i∈Iuv

(rui − rvi).

One can understand this distance in two ways:

• it can be regarded as the variance of the difference of

ratings between u and v,

• or it can be regarded as a simple MSD measure

(MSD(u, v) = 1
|Iuv|

·
∑

i∈Iuv

(rui−rvi)
2) to which the mean

difference of ratings between u and v has been subtracted.

As our measure Clone dist is a distance, it is necessary

to transform it into a similarity measure. Common choice

is to take its inverse (while accounting for zero division):

Clone sim(u, v) = 1
Clone dist(u,v)+1 .

Once we know how to find the clones of a user, it is a simple

matter to output a prediction using the classical neighborhood

approach:

r̂ui =

∑

v∈Nk

i
(u)(rvi + µuv) · sim clone(u, v)

∑

v∈Nk

i
(u) sim clone(u, v)

.

This algorithm will be referred to as CloneA. For the sake

of completeness, we also tried the same formula but with a

more basic similarity metric that does not care about clones:

MSD. This algorithm is referred to as CloneB.

C. Current practices in neighborhood-based methods

A simple and efficient formula using neighborhood tech-

nique, popularized by [20] is the following:

r̂ui = bui +

∑

v∈Nk

i
(u)(rvi − bvi) · sim(u, v)

∑

v∈Nk

i
(u) sim(u, v)

.

It is based on a simple k-NN approach, where are added the bui
terms, called baselines: bui = µ+bu+bi. µ is the global mean

of all ratings in R. The bu term is intended to capture users

propensity to give ratings higher or lower than the global mean

µ, and the same goes for items with bi: some items tend to be

rated higher than others. Baselines are computed by solving a

least squares problem:

min
bu,bi

∑

rui∈R

(rui − (µ+ bu + bi))
2,

which can be achieved efficiently by stochastic gradient de-

scent, or alternating least squares.



Among recommended similarity metrics, this one is of

particular interest:

sim(u, v) =

∑

i∈Iuv

(rui − bui) · (rvi − bvi)

√

∑

i∈Iuv

(rui − bui)2 ·
√

∑

i∈Iuv

(rvi − bvi)2
.

It is simply a Pearson correlation coefficient, except that

instead of centering ratings by their means, they are centered

with the baseline predictors. An intuitive and illuminating

way to look at this algorithm as a whole is to see that it

conceptually follows these steps:

1) Compute R′, the set of all ratings normalized by the

corresponding baseline: r′ui = rui − bui. R′ can be

regarded as the set where all ratings are given from the

same frame of reference, thus discarding any bias. In

R′, ratings can then be considered as absolute.

2) Using R′, compute similarities between users using the

cosine similarity (the cosine similarity is the same as the

Pearson correlation coefficient, except that quantities are

not centered).

3) Output a prediction using the basic k-NN formula. As

this prediction belongs to the same space of R′ where

ratings have no bias, it needs to be transposed back to

the space of R (for performance evaluation purposes).

In what follows, this algorithm is referred to as k-NNbsl.

It is very clear that the use of the baseline predictors is

motivated by the same reasons one would want to consider

clones in a rating prediction algorithms. This means that k-

NNbsl implicitly takes the idea of clones into account, and thus

a form of analogical reasoning. Differences and resemblances

of these two approaches are discussed in the next section.

D. Experiments and discussion

We evaluated the performance of the aforementioned al-

gorithms in terms of MAE and RMSE on two datasets,

the movielens-100K and movielens-1M datasets1, containing

100, 000 and 1M ratings respectively. Results are shown in

tables I and II and where calculated using 5-folds cross-

validation. For each of these algorithms, the number of neigh-

bors or clones used to output a prediction is k = 40, except

for the bruteforce algorithm where the number of clones can

not be controlled.

TABLE I
PERFORMANCE OF ALGORITHMS ON THE MOVIELENS-100K DATASET

k-NN Bruteforce Clone A Clone B k-NNbsl

RMSE .9763 .9461 .9353 .9311 .9338
MAE .7705 .8576 .7327 .7321 .7337

It is very clear that even a very straightforward approach

of the clone-based recommendation principle significantly

outperforms the most basic k-NN algorithm. It is however a

lot heavier to compute, thus not very suitable for real world

1http://grouplens.org/datasets/movielens

TABLE II
PERFORMANCE OF ALGORITHMS ON THE MOVIELENS-1M DATASET

k-NN Bruteforce Clone A Clone B k-NNbsl

RMSE .9216 . .8996 .8969 .8879
MAE .7252 . .7057 .7050 .7005

recommendation purposes (its performances on the Movielens-

1M dataset simply could not be computed). The two other

clone-based algorithms however, have the exact same com-

plexity of any k-NN-based algorithm which is a significant

improvement from the algorithm described in section III-B.

Surprisingly enough, out of the two Clone algorithms, it is

the one that does not care about clones in its similarity measure

that achieves the best results. This might be due to the fact that

in the neighborhood based on MSD, µuv is necessarily small

and thus easier to estimate in a statistical significant way.

Performances of the Clone algorithms are close to those of

the state of the art k-NNbsl algorithm. It is however important

to understand that these algorithms differ on the following

points:

• The Clone algorithms do not address item bias, which

is a significant drawback. It may not be unreasonable

to believe that incorporating item bias in the prediction

would lead to better results.

• There is a subtle yet meaningful difference of interpreta-

tion between the biases induced by both algorithms. In the

clone algorithm, biases are all pairwise, meaning that they

involve two users, and they are computed on items that

both users have rated. As for the k-NNbsl algorithm, there

is no such thing as a pairwise bias. Bias for a given user

is computed using only its own ratings, and is a result of

a global optimization problem involving the global mean

of all ratings, which means that every single rating in R
has an impact on the bias.

• On the biggest dataset (Movielens-1M), the k-NNbsl

algorithm appears to achieve better accuracy than the

other algorithms, while this is not the case for the small

dataset. A possible explanation is that as baselines are

computed on the whole training set, they tend to capture

most of the noise when the training set gets bigger, thus

improving accuracy compared to more heuristic-based

approach.

It should also be noted that in fact, it is recommended to

perform a shrinkage on the similarity measure of algorithm k-

NNbsl, in order to take into account the number of common

items between two users: the more items they share, the more

confident we are when computing their similarity [20]. Such

an approach can improve significantly both RMSE and MAE

of the algorithm. Similarly, in the clone-based approach, it

might be of interest to discount clones that rely on a too small

number of common items.

V. TOWARDS AN ORDINAL VIEW OF RATINGS

We may wonder if one can devise a counterpart of the

numerical clone-based approach, which would be compatible



with an ordinal view of the ratings. Indeed, an extreme way for

unbiasing and comparing two sets of ratings is to forget about

their numerical values, and only consider their rankings. The

idea of viewing ratings in a ordinal manner has been advocated

in [21]. In this section, we discuss an ordinal counterpart

of the analogical approach previously presented. Analogical

reasoning with ordinal data has first been proposed in [22],

yet with a different concern.

A. An algorithm for rank prediction

Indeed the idea that “the rating of user u for item i is to

the rating of user v for item i as the rating of user u for item

j is to the rating of user v for item j may be understood as

well in an ordinal manner. This leads to state that “the relative

ranking of item i among the ratings given by user u is to the

relative ranking of item i among the ratings given by user v
as the relative ranking of item j among the ratings given by

user u is to the relative ranking of item j among the ratings

given by user v.

This means that we need to compare the rankings given by

two users u and v on their common items. In the following,

ρui denotes the relative ranking of item i out of all the items

rated by u. Our goal is to estimate all values of ρui, for any

user and any item. The main steps of a possible algorithm is

as follows:

1) Compute similarities between users, based on their rank-

ings. A very popular similarity ranking measure is the

Spearman’s rank correlation coefficient, or Spearman’s

rho.

2) Compute an estimated rank ρ̂ui as an aggregation of all

the rankings ρvi extracted from the k nearest neighbors

(using Spearman’s rho as similarity):

ρ̂ui =

∑

v∈Nk

i
(u) ρvi · sim(u, v)

∑

v∈Nk

i
(u) sim(u, v)

.

This is obviously very similar to the neighborhood approach

described in section IV-B, but instead of predicting a rating, we

output a predicted rank. This approach is denoted as RankAnlg.

B. Experiments

We evaluated the performance of our algorithm and com-

pared it to other previously described approaches, using

the exact same evaluation protocol as in section IV-D. The

Movielens-1m dataset was not benchmarked, as our algorithm

is too computationally intensive.

RMSE and MAE are good measure for evaluation rating

prediction accuracy, but are not suitable when it comes to

evaluate rankings. A better measure is the Fraction of Concor-

dant Pair, which evaluates the probability that given any two

items i and j rated by any user u, the system has correctly

estimated whether u prefers i over j or the inverse. To compute

the FCP, we need to intermediate measures. cu defines the

number of concordant pairs for user u, and du its number of

discordant pairs. The FCP is then computed over all users as

the proportion of concordant pairs.

cu = {(i, j) ∈ I2 s.t. r̂ui > r̂uj and rui > ruj}

du = {(i, j) ∈ I2 s.t. r̂ui ≥ r̂uj and rui < ruj}

FCP =

∑

u∈U

cu
∑

u∈U

cu +
∑

u∈U

du

Note that r̂ui here may represent either a rating prediction or

a ranking prediction ρ̂ui.
Results are reported in table III.

TABLE III
PERFORMANCE OF ALGORITHMS ON THE MOVIELENS-100K DATASET

(RANKING EVALUATION)

RankAnlg k-NN k-NNbsl

FCP .7063 .7096 .7163

Unfortunately, even a basic algorithm that was not designed

for ranking prediction performs better in terms of FCP. To

explain this difference, one may look at the distribution of

average support over all the predictions, as shown on figure

2. Between two users u and v, the support is defined as the

number of common items (|Iuv|), which was used to compute

the similarity between u and v. For a given prediction r̂ui, the

average support is the average of all the supports |Iuv| over

all users v ∈ Nk
i (u).

Fig. 2. Distribution of average support.

The use Spearman’s rho tends to provide with neighbors

that have smaller support, thus leading to a less significant

and less accurate estimation of the neighborhood, which may

explain the differences in performance.

VI. CONCLUSION

This paper has provided a discussion on different ways

for applying analogical reasoning to the prediction of ratings.

After reporting a recent attempt where analogical proportions

were built from 4-tuples of users, a computationally simpler

approach is presented in this paper based on the idea that “the

rating of user u for item i is to the rating of user v for item i
as the rating of user u for item j is to the rating of user v for

item j. This agrees with the transitive nature of the underlying

analogical modeling. We have shown that this may apply to



a quantitative view of ratings as well as to an ordinal view.

Results obtained in the case of the quantitative view remain

close to the ones of state-of-the art approaches, which can be

retrospectively reinterpreted in an analogical way.

The idea behind the use of analogies is to go beyond

the classical neighborhood to extract relevant information.

However, this approach has a cost as it is more difficult

to statistically validate the analogical link between users (or

items). This is especially true in the ordinal case. Indeed,

ordinal analogies tend to select users with a small common

support, because it is easy to have the same ranking despite

the fact this is not statistically relevant.

In the specific case of MovieLens dataset, a large majority

of users seem to have a lot of close neighbors (in the classical

sense) from which useful information can be extracted. In

that case, examples for which analogical links bring more

information than simple neighbors are quite rare. It should not

come as a surprise that the pure analogical approach does not

bring better results than standard approaches in this dataset.

The analogical approach might be advantageous in the case

of low density dataset (i.e. when the set of close neighbors is

small). In the same way, we might also think of combining

the analogical approach with the classical one provided we

are able to detect, for every prediction, which method is

statistically the most relevant.

Formalizing analogical reasoning provides tools for extrap-

olation. This can be done in different ways as shown in this

paper, depending on what basis we try to extrapolate. Another

issue is to wonder about what we try to extrapolate. Thus,

regarding recommendation, one might think of also using

analogical reasoning to create configurations describing new

items that may plausibly please users.
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francophone sur l’apprentissage artificiel (CAP), Hammamet, Tunisia,
2009.




