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Abstract

Continuous time Feynman-Kac measures on path spaces are central in applied probability,
partial differential equation theory, as well as in quantum physics. This article presents a new
duality formula between normalized Feynman-Kac distribution and their mean field particle
interpretations. Among others, this formula allows us to design a reversible particle Gibbs-
Glauber sampler for continuous time Feynman-Kac integration on path spaces. We also provide
new propagation of chaos estimates for continuous time genealogical tree based particle models
with respect to the time horizon and the size of the systems. Our approach is based on a novel
stochastic perturbation analysis based on backward semigroup techniques. These techniques
allow to obtain sharp quantitative estimates of the convergence rate to equilibrium of particle
Gibbs-Glauber samplers. To the best of our knowledge these results are the first of this kind
for continuous time Feynman-Kac measures.

Keywords : Feynman-Kac formulae, interacting particle systems, genealogical trees, Gibb-
Glauber dynamics, propagation of chaos properties.

Mathematics Subject Classification : 60K35, 60H35, 37L05, 47D08.

1 Introduction

Feynman-Kac measures on path spaces are central in applied probability as well as in biology and
quantum physics. They also arise in a variety of application domains such as in estimation and
control theory, as well as a rare event analysis. For a detailed review on Feynman-Kac measures
and their application domains we refer to the books [21, 22, 33, 36], see also the more recent
articles [19, 50] on branching processes and neutron transport equations and the references therein.

Their mean field type particle interpretations is defined as a system of particles jumping a given
rate uniformly onto the population. From the pure numerical viewpoint, this interacting jump
transition can be interpreted as an acceptance-rejection scheme with a recycling. Feynman-Kac
interacting particle models encapsulate a variety of algorithms such as the diffusion Monte Carlo
used to solve Schrödinger ground states, see for instance the series of articles [11, 13, 35, 67, 53, 54]
and the references therein.

∗P. Del Moral was supported in part by the Chair Stress Test, RISK Management and Financial Steering, led by
the French Ecole Polytechnique and its Foundation and sponsored by BNP Paribas.
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Their discrete time versions are encapsulate a variety of well known algorithms such as particle
filters [23] (a.k.a. sequential Monte Carlo methods in Bayesian literature [14, 21, 22, 33, 40]), the
go-with the winner [1], as well as the self-avoidind random walk pruned-enrichment algorithm by
Rosenbluth and Rosenbluth [69], and many others. This list is not exhaustive (see also the references
therein). The research monographs [21, 22] provide a detailed discussion on these subjects with
precise reference pointers.

The seminal article [2] by Andrieu, Doucet and Holenstein introduced a new way to combine
Markov chain Monte Carlo methods with discrete generation particle methods. A variant of the
method, where ancestors are resampled in a forward pass, was developed by Lindsten, Schön and
Jordan in [55], and Lindsten and Schön [56]. In all of these studies, the validity of the particle
conditional sampler is assessed by interpreting the model as a traditional Markov chain Monte
Carlo sampler on an extended state space. The central idea is first to design a detailed encoding of
the ancestors at each level in terms of random maps on integers, and then to extend the "target"
measure on a sophisticated state space incapsulating these iterated random sequences.

In a more recent article [31], the authors provide an alternative and we believe more natural
interpretation of these particle Markov chain Monte Carlo methods in terms of a duality formula
extending the well known unbiasedness properties of Feynman-Kac particle measures on many-body
particle measures. This article also provides sharp quantitative estimates of the convergence rate to
equilibrium of the models with respect to the time horizon and the size of the systems. The analysis
of these models, including backward particle Markov chain Monte Carlo samplers has been further
developed in [27, 28].

The main objective of the present article is to extend these methodologies to continuous time
Feynman-Kac measures on path spaces.

The first difficulty comes from the fact that the discrete time analysis [27, 28, 31] only applies
to simple genetic type particle models, or equivalently to branching models with pure multinomial
selection schemes. Thus, these results don’t apply to discrete time approximation of continuous
time models based on geometric type jumps, and any density type argument cannot be applied.

In contrast with their discrete time version, continuous time Feynman-Kac particle models
are not described by conditionally independent local transitions, but in terms of interacting jump
processes. This class of processes can be interpreted as Moran type interacting particle systems [62,
63]. They can also be seen as Nanbu type interpretation of a particular spatially homogeneous
generalized Boltzmann equation [32, 61].

The analysis of continuous time genetic type particle models is not so developed as their dis-
crete time versions. For instance, uniform convergence estimates are available for continuous time
Feynman-Kac models with stable processes [33, 34, 35, 67]. Nevertheless, to the best of our knowl-
edge, sharp estimates for path space models and genealogical tree based particle samplers in con-
tinuous time have never been discussed in the literature. These questions are central in the study
the convergence to equilibrium of particle Gibbs-Glauber sampler on path spaces.

In the present article we provide a duality formula for continuous time Feynman-Kac measures
on path-spaces (cf. theorem 1.1). This formula on generalogical tree based particle models that
can be seen as an extension of well known unbiasedness properties of Feynman-Kac models to their
many body version (defined in section 4). The second main result of the article is to design and to
analyze the stability properties of a particle Gibbs-Glauber sampler of path space (cf. theorem 1.2).
Our approach combines a perturbation analysis of nonlinear stochastic semigroups with propagation
of chaos techniques (cf. section 3). Incidentally these techniques also provide with little efforts new
uniform propagation of chaos estimates w.r.t. the time horizon (cf. corollary 3.13).
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1.1 Statement of the main results

Let pXt, Vtq be a continuous time Markov process and a bounded non negative function on some
metric space pS, dSq. We let Pt be the distribution of pXsqsďt on the set DtpSq of of càdlàg paths
from r0, ts to S. As a rule in the further development of the article pXt :“ pXsqsďt P pS :“ Ytě0 DtpSq
stands for the historical process of some process Xt. In this notation, we extend Vt to DtpSq by
setting pVtp pXtq “ VtpXtq.

The Feynman-Kac probability measures Qt associated with pXt, Vtq are defined by the formula

dQt :“
1

Zt
exp

„

´

ż t

0
VspXsqds



dPt (1.1)

where Zt stands for some normalizing constant. These measures can be computed in terms the
occupation measures of the ancestral lines of an interacting jump process [32, 33, 35, 36]. Consider
a system of N particles evolving independently as Xt with jump rate VtpXtq. At each jump time
the particle jumps onto a particle uniformly chosen in the pool.

Equivalently, the N ancestral lines ξt “ pξitq1ďiďN of length t can also be seen as a system of N
path-valued particles evolving independently as the historical process pXt, with jump rate pVt on pS .

The occupation measure of the genealogical tree is given by the empirical measures

mpξtq :“
1

N

ÿ

1ďiďN

δξit and we denote by Xt a random sample from mpξtq

The dual process ζt “ pζitq1ďiďN is also defined in terms of N the ancestral lines of length t of
an interacting jump process. The main difference is that the first line at any time t is frozen and
given by ζ1

t :“ pXt. The remaining pN ´ 1q path-valued particles ζ´t :“ pζitq2ďiďN are defined as
above with a rescaled jump rate p1 ´ 1{NqpVt, with an additional jump rate 2pVt{N at which the
path-particle jump onto the first frozen ancestral line.

A realization of the genealogical tree associated with N “ 3 particles with 2 interacting jumps
and the first frozen ancestral line is illustrated below:

˝ ˝ ˝

��
˝ ˝

��

˝
ζ3t

˝
ζ2t

˝ ˝

˝ ˝
ζ1t

˝

oo time axis r0, ts //

Figure 1: A genealogical tree associated with N “ 3 particles with 2 interacting jumps. The couple
of arrows stands for the interacting jumps, the dotted line represents the frozen ancestral line.

For any N ě 1, we let SN :“ SN{SN be the N symmetric product of S, where SN stands for the
symmetric group of order N . The first main result of the article is the following duality formula.

Theorem 1.1 (Duality formula). For any time horizon t ě 0, any N ě 2 and any bounded
measurable function F on pS ˆDtppS ˆ pSN´1q we have

E
ˆ

F pXt, pξtq exp

„

´

ż t

0
mpξsqppVsqds

 ˙

“ E
ˆ

F p pXt, pζtq exp

„

´

ż t

0

pVsp pXsqds

˙
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The proof of the above theorem is provided in section 4.2.
We consider the following regularity condition

pH0q Dh ą 0 s.t. @t ě 0 @x P S ρphq µt,hpdyq ď Pt,t`hpx, dyq ď ρphq´1 µt,hpdyq (1.2)

for some probability µt,h on S and some constant ρphq ą 0 whose value doesn’t depend on the
parameters px, yq. For instance, condition (1.2) is satisfied for jump-type elliptic diffusions on
compact manifolds S with a bounded jump rate.

The second main result of the article can be stated basically as follows.

Theorem 1.2 (Particle Gibbs-Glauber dynamics). For any time horizon t ě 0 the measure Qt is
reversible w.r.t. the Markov transition Kt on DtpSq defined for any bounded measurable function f
on DtpSq and any path x P DtpSq by the formula

Ktpfqpxq :“ E
´

mpζtqpfq | pXt “ x
¯

In addition, when pH0q is satisfied, for any probability measure µ on DtpSq we have

N oscpKtpfqq ď c pt_ 1q oscpfq and @n ě 1 }µKn
t ´Qt}tv ď pc pt_ 1q{Nqn

for some finite constant c whose value doesn’t depend on the parameters pf, t, n,Nq.

The proof of the above theorem is provided in section 4.3.
For any given time horizon t ě 0, the integral operator Kt is the probability transition of a

discrete generation Markov chain pX
pnq
t taking values in the path space DtpSq and indexed by the

integer parameter n P N. For any given x P DtpSq and z “ pzsqsďt P DtppS ˆ pSN´1q, we summarize
the transition of the particle Gibbs sampler graphically as follows:

#

pX
pnq
t “ x
pζ
pnq
t “ z

+

Ñ

#

pX
pn`1q
t “ x „ m pztq
pζ
pnq
t “ z

+

Ñ

#

pX
pn`1q
t “ x

pζ
pn`1q
t “ z „

´

pζt | pXt “ x
¯

+

.

A realization of the transition pX
pnq
t  pX

pn`1q
t for a genealogical tree with N “ 3 ancestral lines is

illustrated by the following schematic diagram:

˝ ˝

ww

˝

pX
pn`1q
too

˝ ˝

ww

˝

˝ ˝
pX
pnq
t

˝

oo time axis r0, ts //

Figure 2: A realization of the transition pX
pnq
t  pX

pn`1q
t of a particle Gibbs sampler on an genealog-

ical tree with N “ 3 ancestral lines. The dotted and plain lines account together for the three
paths in pζ

pn`1q
t , the dotted line represents pX

pnq
t , and the sequence of arrows stands for the selected

ancestral line pX
pn`1q
t .
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1.2 Illustrations and comments

This section gives some comments on the impact of the above results on some application domain ar-
eas. We also provide a detailed discussion on some numerical aspects of the particle Gibbs-Glauber
dynamics introduced above as well as some comparisons with existing literature on interacting par-
ticle systems.
‚ As mentioned in the introduction, the Feynman-Kac measures (1.1) and their mean field par-

ticle interpretations appear in wide variety of applications including in biology, physics, as well as
in signal processing and mathematical finance.

Continuous time models arise when the process Xt is derived from physical or natural evolu-
tion principles, such as continuous time signals in target tracking filtering problems [71], stochas-
tic population dynamics describing species competition and populations growths [51], Langevin
gradient-type diffusions including their overdampted versions describing the evolution of a particle
in a fluid [52], as well as Brownian fluctuations of atomic structures in molecular chemistry [49],
and many others.

The potential function Vt depends on the problem at hand. In nonlinear filtering, it represents
the log-likelihood of the robust optimal filter. In population dynamics, Vt can be interpreted as
a killing rate of a branching process. In statistical physics and quantum mechanics, it represents
the ground state energy (a.k.a. local energy) of a physical system, including molecular and atomic
systems. It is clearly out of the scope of the present article to enter into the details of all of
these models. For a more thorough discussion on these application domain areas, we refer to the
books [21, 22, 33, 36] and the reference therein.

In most cases we are mainly interested in computing the final-time marginal of the Feynman-
Kac measures (1.1). For instance, in nonlinear filtering these measures represent the robust optimal
filter, while the path space measures represents the full conditional distributions of the random tra-
jectories of the signal w.r.t. the observation process. Thus, they also solve the smoothing problem
by estimating the signal states at any given time using observations from larger time intervals. In
signal processing literature, the interacting particle system ξt discussed above is also known as a
particle filter on path space. In this situation, the Particle Gibbs-Glauber dynamics presented in
theorem 1.2 allows to improve the precision of these filtering/smoothing approximations by sam-
pling sequentially a series of particle filters on path space with frozen trajectories.

Apart from few notable exceptions such as for linear-Gaussian models in Kalman-Bucy filtering
theory and for the harmonic oscillator in the spectral theory of Schrödinger operators, the flow of
final-time marginal measures has no finite recursion and cannot be solved analytically. To illustrate
our results, we have chosen to describe another rather simple Feynman-Kac model arising in molec-
ular dynamics, and more precisely in the calculation of free energy computations:

Let πβ be some collection of Boltzmann-Gibbs probability measures

πβpdxq “
1

Zβ
e´βHpxq λpdxq with the normalizing constant Zβ :“

ż

e´βHpxq λpdxq.

In the above display, β stands for non negative parameter and H some non negative function on
some differentiable manifold S equipped with some volume measure λpdxq. We also let Y β

t be some
stochastic process with some generator Lβ s.t. πβLβ “ 0. In other words, πβ is an invariant measure
of the process Y β

t .
Observe that for any sufficiently regular function f and any smooth increasing function t ÞÑ βt

we have the evolution equation

Btπβtpfq “ Btβt rπβtpfqπβtpHq ´ πβtpfHqs

“ πβtpLβtpfqq ` πβtpfqπβtpVtq ´ πβtpfVtq with Vtpxq :“ Btβt Hpxq
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The above equation shows that πβt “ ηt coincides with the terminal time marginal ηt of the
Feynman-Kac measure (1.1) as soon as Xt :“ Y βt

t and X0 „ η0 “ πβ0 (cf. for instance (2.4)).
In addition, we easily check the free energy formula

Zβt{Zβ0 “ Zt “ E
ˆ

exp

„

´

ż t

0
VspXsqds

˙

“ exp

„

´

ż t

0
ηspVsqds



In physics literature the above formula is often referred as the Jarzynski formula [46, 47], see
also [53, 54, 68]. For a detailed proof of the above assertion we refer to section 2.6.2 in [22], section
23.5 and chapter 27 in [36]. In Quantum Monte Carlo literature, the particle system ξt discussed
above is also known as the population Monte Carlo algorithm and the particles ξit are often referred
as walkers or replica. The quantity

ż t

0
VspXsqds “

ż t

0
Bsβs HpXsqds

represents the out-of-equilibrium virtual work of the system on the time horizon t. In this inter-
pretation, the Feynman-Kac measure on path space (1.1) represents the distribution of the out-
of-equilibrium random trajectories of the system. In this situation, the Particle Gibbs-Glauber
dynamics presented in theorem 1.2 allows to improve these Boltzmann-Gibbs approximations by
sampling sequentially a series of population Monte Carlo algorithms on path space with frozen tra-
jectories.
‚ In some particular instances, the random paths of the processXt can be sampled exactly on any

time discretization mesh. This class of models includes linear-Gaussian and geometric-type Brow-
nian models, as well as some piecewise deterministic processes and some classes of one-dimensional
jump-diffusion processes [7, 8, 9, 10, 12]. Discretization-free simulation procedures for general dif-
fusion processes based on sequential importance sampling techniques have also been developed
in [43]. In this context, the interacting jump particle systems discussed in this article, including
the particle Gibbs-Glauber dynamics can be sampled perfectly using conventional Poisson thinning
techniques (a.k.a. Gillespie’s algorithm [44]). The resulting particle sampler provides an estimate of
the marginal of the Feynman-Kac measures (1.1) on the random paths w.r.t. any time discretization
mesh.
‚ More generally, the simulation of the random trajectories of Xt requires to discretize the time

parameter. For a more thorough discussion on the time discretization of stochastic processes we
refer to the seminal book by Kloeden and Platen [48].

This additional level of approximation may also corrupt some statistical properties of the contin-
uous time process. For instance, the reversible properties of overdampted Langevin diffusions are lost
for any Euler-Maryuama discretization of the underlying diffusion. In this context, a Metropolis-
Hastings type adjustment (a.k.a. MALA) is required to recover the reversibility property w.r.t.
some prescribed target invariant measure [66]. From the physical viewpoint, the random paths sim-
ulated by MALA algorithms are based on auxiliary non physical rejection-type transitions so that
they loose their initial physical interpretation. Therefore, in physics and statistics, the unajusted
Langevin algorithm (a.k.a. ULA) is often preferred to describe the "true" random trajectories of the
system. Under appropriate global Lipschitz conditions on the gradient of the confinement potential
function several bias-type estimates can be found in [20, 42].

In the same vein, the sampling of the particle Gibbs-Glauber dynamics described in theorem 1.2
requires some Euler-type discretization as soon as the underlying process Xt cannot be directly
sampled. In this situation, one natural strategy is to consider the discrete time version of the
Feynman-Kac measures Qt defined as in (1.1) by replacing Xt by some discrete time approximation
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(see for instance chapter 5 in [22] and the references therein). In this context, several discrete time
approximations of the particle Gibbs-Glauber dynamics discussed above can be designed using the
discrete time particle Gibbs samplers discussed in [2, 31]. In contrast with MALA algorithms the
reversible-type properties of the resulting Gibbs samplers in discrete time are preserved w.r.t. to
the discrete-time version of the target Feynman-Kac measures. In addition, these discrete time
approximations are not based on any type of auxiliary Metropolis-Hasting rejection so that they
preserve their physical interpretations.

Several bias-type estimates between continuous and discrete time Feynman-Kac measures can
be found in [22, 29, 30]. Most of these estimates are concerned with the time discretization of
the terminal-time marginal of the Feynman-Kac measures (1.1), including uniform estimates w.r.t.
the time horizon. The extension of these results to path space models remains an important open
research question.
‚ The interacting particle systems discussed in the present article differ from nonlinear and in-

teracting diffusion processes arising in fluid mechanics and granular flows [4, 5, 59, 60, 72, 73]. In
this context, the interaction mechanism is encapsulated in the drift of diffusion-type particles. One
common feature of these interacting processes is the nonlinearity of the distribution flow associated
with these stochastic processes.

One natural idea is to interpret the mean field particle systems associated with these processes
as a stochastic perturbation of a nonlinear process. This interpretation allows to enter the stability
properties of the nonlinear process into the convergence analysis of these particle algorithms. This
technique has been developed in [25, 26, 33] for discrete time Feynman-Kac models and further
extended in [67] to continuous time models. Theorem 3.7 in the present article also provides a novel
backward stochastic perturbation formula which simplifies the stability analysis of these models and
provides sharp propagation of chaos estimates.

We underline that the stochastic perturbation techniques discussed above and in the present arti-
cle differs from the log-Sobolev functional techniques [57, 58], entropy dissipation approaches [15, 17],
as well as gradient flows in Wasserstein metric spaces, optimal transportation inequalities [6, 15, 16,
64, 65] and the more recent variational approach [3] currently used in the analysis of gradient type
flow interacting diffusions.

In this connection, we mention that the backward perturbation analysis developed in the present
article relies on weak Taylor expansions of the evolution semigroup of Feynman-Kac measures. We
project to extend these expansions to nonlinear diffusions in a forthcoming article.

The duality formula and the particle Gibbs-Glauber dynamics introduced in this article open
up a whole new avenue of research questions.

Recall that the Feynman-Kac measures (1.1) can be interpreted as the distribution of the ran-
dom paths of a non absorbed particle evolving as Xt and killed at rate Vt. This class of models are
often referred as particle models in absorbing medium with soft obstacles [24, 33, 35]. A natural
research project is to extend this framework to absorbing medium with hard obstacles [38, 39, 74].

Another important question is to extend the Taylor expansions of the Gibbs sampler developed
in [31] to continuous time models. One possible route is to combine the weak Taylor expansions
developed in [37] for particle approximating measures with the backward analysis developed in the
present article.

We mention that the perturbation analysis developed in [31] allows to destimate the Lp-decays
rates to equilibrium in terms of the norm of integral operators. In this connection, one important
question is to quantify with more precision the exponential convergence rates to equilibrium of the
Particle Gibbs-Glauber dynamics stated in theorem 1.2.
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1.3 Basic notation and preliminary results

Let BpSq be the Banach space of bounded functions f on S equipped with the uniform norm
}f} :“ supxPS |fpxq|. Also let OscpSq Ă BpSq be the subset of functions f with unit oscillations;
that is s.t. oscpfq :“ supx,y |fpxq ´ fpyq| ď 1.

We also letMpSq the set of finite signed measures on S,M`pSq ĂMpSq the subset of positive
measures and PpSq ĂM`pSq the subset of probability measures. Given a random measure µ on S
we write Epµq the first moment measure given by

Epµq : f P BpSq ÞÑ Epµqpfq “ Epµpfqq with µpfq “

ż

µpdxq fpxq

The total variation norm on the setMpSq is defined by

}µ}tv :“ sup t|µpfq| : f P OscpSqu (1.3)

1.3.1 Integral operators

For any bounded positive integral operator Qpx, dyq and any pµ, f, xq P pMpSq ˆ BpSq ˆ Sq we
define by µQ PMpSq and Qpfq P BpSq by the formulae

pµQqpdyq :“

ż

µpdxqQpx, dyq and Qpfqpxq :“

ż

Qpx, dyq fpyq

By Fubini theorem we have µQf :“ µpQpfqq “ pµQqpfq. We also write Qn the n iterate of Q
defined by the recursion Qnpfq “ QpQn´1pfqq “ Qn´1pQpfqq.

When Qp1q ą 0 we let Q be the Markov operator

Q : f P BpSq ÞÑ Qpfq :“ Qpfq{Qp1q P BpSq

We also let φ be the mapping from PpSq into itself defined by

φpηq “ ηQη with Qη :“
Q

ηQp1q
ùñ ηQηp1q “ 1 and φpδxqpfq “ Qpfqpxq (1.4)

Notice that
Qηp1q “ µQηp1q Qµp1q ùñ pµQηp1qq´1 “ ηQµp1q

1.3.2 Taylor expansions

Observe that for any η, ν P PpSq we have the decomposition

φpνq ´ φpηq “ ηQνp1q ˆ pν ´ ηqBηφ

with the first order operator

Bηφ : f P BpSq ÞÑ Bηφpfq “ Qη rf ´ φpηqpfqs P BpSq ùñ ηBηφ “ 0 “ Bηφp1q (1.5)

Also observe that

Bηφpfqpxq “ Qηp1qpxq

ż

ηpdyq Qηp1qpyq
`

Qpfqpxq ´Qpfqpyq
˘

ùñ }Bηφ} ď }Q
ηp1q} oscpQpfqq and }φpνq ´ φpηq}tv ď r}Q

νp1q} ^ }Qηp1q}s oscpQpfqq

(1.6)
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More generally, using the identity

1

x
“

ÿ

0ďkăn

p1´ xqk `
p1´ xqn

x
(1.7)

which is valid for any x ą 0 and n ě 1, we check the Taylor with remainder expansion

φpνq “ φpηq `
ÿ

1ďkďn

1

k!
pν ´ ηqbk Bkηφ`

1

pn` 1q!
pν ´ ηqbpn`1q B

n`1
ν,η φ (1.8)

In the above display, Bkηφ stand for the collection of integral operators

Bkηφpfq :“ p´1qk´1 k!
”

Qηp1qbpk´1q b Bηφpfq
ı

and B
n`1
ν,η φ :“ ηQνp1q Bn`1

η φ

For any µ, η P PpSq we have the decomposition

Bηφpfq “ Qηrf ´ φpηqf s “ µQηp1q pBµφpfq `Q
µp1q rφpµq ´ φpηqspfqq

1.3.3 Carré du champ operators

The carré du champ operator associated with some the generator L acting on an algebra of functions
DpSq Ă BpSq is defined by the quadratic form

pf, gq P DpSq2 ÞÑ ΓLpf, gq “ Lpfgq ´ fLpgq ´ gLpfq P BpSq

When f “ g sometimes we write ΓLpfq instead of ΓLpf, fq. We also recall the Cauchy-Schwartz
inequality

|ΓLpf, gq| ď
a

ΓLpf, fqΓLpg, gq and ΓLpcfq “ c2ΓLpfq (1.9)

The above inequality yields the estimate

ΓLpf ` gq “ ΓLpfq ` ΓLpgq ` 2ΓLpf, gq ď
”

a

ΓLpfq `
a

ΓLpgq
ı2

(1.10)

Let Ld be some bounded jump-type generator of the following form

Ldpfqpuq “ λpuq

ż

pfpvq ´ fpuqq Jpu, dvq

for some bounded rate function λ and some Markov transition J on S. In this case, we have

ΓLdpf, gqpuq “

ż

Ldpu, dvq pδv ´ δuq
b2
pf b gq

We consider the n-th order operators

Γ
pnq

Ld
pf1, . . . , fnqpuq :“

ż

Ldpu, dvq pδv ´ δuq
bn
pf1 b . . .b fnq (1.11)

We also have the carré du champ formula

pηQµp1qq2 ΓL pQ
ηp1q, Bηφpfqq “ ΓL pQ

µp1q, Bµφpfqq ` rφpµq ´ φpηqspfq ΓL pQ
µp1qq (1.12)

for any f P DpSq as soon as Qηp1q, Bηφpfq P DpSq.
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1.3.4 Empirical measures

We fix some integer N ě 2 and for any 2 ď i ă j ď N and x “ pxiq1ďiďN P SN we set

x´i “
`

x1, . . . , xi´1, xi`1, . . . , xN
˘

P SN´1

x´ti,ju “
`

x1, . . . , xi´1, xi`1, . . . , xj´1, xj`1, . . . , xN
˘

P SN´2

For any 2 ď i ď N and x “ pxiq1ďiďN P SN we consider the functions

ϕx´i : u P S ÞÑ ϕx´ipuq “
`

x1, . . . , xi´1, u, xi`1, . . . , xN
˘

P SN

m : x P SN ÞÑ mpxq “
1

N

ÿ

1ďiďN

δxi P PpSq (1.13)

Let X “ pXiq1ďiďN be N independent random samples from some distribution η P PpSq. Using
(1.8) we have the first order expansion

φpmpXqq ´ φpηq “ pmpXq ´ ηqBηφ´ ηpQ
mpXqp1qq pmpXq ´ ηqpQηp1qq pmpXq ´ ηqBηφ

Several estimates can be derived from the above decomposition. For instance using Cauchy-Schwartz
inequality we have the bias estimate

log pQp1qpxq{Qp1qpyqq ď q ùñ N |E rφpmpXqqpfqs ´ φpηqpfq| ď eq oscpQpfqq

2 A brief review on Feynman-Kac measures

2.1 Evolution semigroups

Consider the flow of Feynman-Kac measures pγ, ηq : t P R` :“ r0,8rÞÑ pγt, ηtq P pM`pSq ˆ PpSqq
defined for any f P BpSq by the formulae

ηtpfq “ γtpfq{γtp1q with γtpfq :“ E pfpXtqZtpXqq (2.1)

In the above display, ZtpXq stands for the exponential weight

ZtpXq :“ exp

„

´

ż t

0
VspXsqds



ùñ logE pZtpXqq “ ´
ż t

0
ηspVsqds

This shows that

ZtpXq :“ ZtpXq{EpZtpXqq “ exp

„

´

ż t

0
V spXsqds



with V t :“ Vt ´ ηtpV q

We also consider the Feynman-Kac semigroup

Qs,tpfqpxq “ E pfpXtq Zs,tpXq | Xs “ xq with Zs,tpXq :“ ZtpXq{ZspXq (2.2)

When V “ 0 the semigroup Qs,t resumes to the Markov semigroup Ps,t of the reference process Xt.
The mathematical model defined above is called the Feynman-Kac model associated with the

reference process and the potential function pXt, Vtq.
We further assume that the (infinitesimal) generators Lt of Xt are well defined on some common

sub-algebra DpSq Ă BpSq, and for any s ă t we have Qs,tpBpSqq Ă DpSq.
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We let Vtpfq “ Vtf the multiplication operator on BpSq. We also let Lt “ Lct ` Ldt be the
decomposition of the generator Lt in terms of a diffusion-type operator Lct and a bounded jump-
type generator of the following form

Ldt pfqpuq “ λtpuq

ż

pfpvq ´ fpuqq Jtpu, dvq

for some bounded rate function λt and some Markov transition Jt on S.
In this notation, for any f P DpSq and s ď t we have

Btγtpfq “ γtpL
V
t pfqq with LVt “ Lt ´ Vt ùñ γt “ γsQs,t (2.3)

The semigroup associated with the normalized Feynman-Kac measures ηt is given for any s ď t
by the formula

ηt “ φs,tpηsq :“
ηsQs,t
ηsQs,tp1q

ùñ Btηtpfq “ Λtpηtqpfq :“ ηtpL
V
t pfqq ` ηtpVtq ηtpfq (2.4)

with the collection of functional linear operators

Λtpηq : f P DpSq ÞÑ Λtpηqpfq :“ ηpLVt pfqq ` ηpVtq ηpfq P R

Finally we recall that ηt “ LawpXtq can be interpreted as the law of a nonlinear Markov process
Xt associated with the collection of generators Lt,ηt defined for any pη, f, xq P pPpSq,DpSqˆSq by

Lt,ηpfqpxq “ Ltpfqpxq ` V pxq

ż

pfpyq ´ fpxqq ηpdyq ùñ Λtpηq “ ηLt,η (2.5)

2.2 Path space measures

Consider a Feynman-Kac model pγ1t, η1t, Q1s,t,Q1t, . . .q associated with some auxiliary Markov process
X 1t on some metric space pS1, dS1q, and some bounded non negative potential functions V 1t on S1.
Also let L1t be the generator of X 1t defined on some common sub-algebra DpL1q Ă BpS1q.

Assume that the process Xt discussed in (2.1) is the historical process

Xt :“
`

X 1s
˘

sďt
P S :“ Ytě0DtpS

1q and VtpXtq :“ V 1t pX
1
tq ùñ ηt “ Q1t (2.6)

In this situation, the generator Lt and the domain DpSq of the historical process can be defined
in two different ways:

The more conventional approach is to consider cylindrical functions

fpXtq “ ϕpX 1s1^t, . . . , X
1
sn^tq

that only depend on a finite collection of time horizons si ď si`1, with 1 ď i ă n, and some bounded
functions ϕ from pS1qn into R. The regularity of the "test" function ϕ depends on the process at
hand. For jump-type processes, no additional regularity is required. For diffusion-type processes
the function is often required to be compactly supported and twice differentiable.

Another elegant and more powerful approach is to use the functional Itô calculus theory in-
troduced by B. Dupire in an unpublished article [41], and further developed in [18, 45]. This
path-dependent stochastic calculus allows to consider more general functions such as running in-
tegrals or running maximum of the process X 1t. It also allows to consider diffusion-type processes
with a drift and a diffusion term that depends on the history of the process.
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The path space S is equipped with a time-space metric dS so that pS, dSq is a complete and
separable metric space (cf. for instance proposition 1.1.13 and theorem 1.1.15 in [70]). The smooth-
ness properties of continuous function f on S are defined in terms of time and space functional
derivatives. Thus, for diffusion-type historical processes Xt, the generator Lt is defined on functions
f P DpLq which a differentiable w.r.t. the time parameter and, as before twice differentiable with
compactly supported derivatives (cf. for instance theorem 1.3.1 in [70]).

It is clearly not the scope of the article to describe in full details the above functional Itô calculus.
We refer the reader to the article [45] and the Ph.D thesis of Saporito [70].

In the further development of the article we shall use these ideas back and forth. We already
mention that the mean field particle interpretation of the Feynman-Kac measures associated with
an historical process coincides with the genealogical tree-based particle evolution of the marginal
model.

2.3 Some regularity conditions

This section discusses in some details the two main regularity conditions used in the further devel-
opment of the article.

Firstly, observe that the semigroup Ps,t associated with the historical process Xt “ pX 1sqsďt
discussed in (2.6) never satisfies the regularity condition pH0q stated in (1.2). Nevertheless it may
happens that the semigroup P 1s,t associated with X 1t satisfies condition pH0q. In this situation, to
avoid repetition or unnecessary long discussions we simply say that pH 10q is met.

We also use the following weaker conditions:

pH1q Dα ă 8 Dβ ą 0 s.t. @s ď t oscpQs,tpfqq ď α e´βpt´sq oscpfq

pH2q Dq ă 8 s.t. @s ď t @x, y P S log pQs,tp1qpxq{Qs,tp1qpyqq ď q

As before when the semigroup Q1s,t andQ1s,t of Feynman-Kac model associated with some parameters
pX 1t, V

1
t q satisfy condition pHiq, to avoid repetition or unnecessary long discussions we simply say

that pH 1iq is met. We recall that
pH0q ùñ pH1q ùñ pH2q

The proof of the l.h.s. assertion can be found in [34]. In this context, the parameters pα, βq don’t
depends on the measure µt,h discussed in (1.2). To check the second we observe that

log pQs,tp1qpxq{Qs,tp1qpyqq “

ż t

s
rφs,upδyqpVuq ´ φs,upδxqpVuqs du (2.7)

This implies that

pH1q ùñ pH2q with q “ αβ´1 oscpV q with oscpV q “ sup
tě0

oscpVtq

Using (1.6) we also have

pH2q ùñ }Bηφs,tpfq} ď eq oscpfq
`

since oscpQs,tpfqq ď oscpfq
˘

pH1q ùñ }Bηφs,tpfq} ď r e´βpt´sq oscpfq with r “ α eq and q “ αβ´1 oscpV q (2.8)

We return to the historical process Xt “ pX 1sqsďt discussed in (2.6). In this case, for any xs “
px1puqquďs P DspS

1q we have
Qs,tpfqpxsq “ Q1s,tpf

1qpx1sq
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in the above display, f and f 1 stand for some bounded measurable functions on the path space
DtpS

1q and on S1 such that

@yt “ py
1puqquďt P DtpS

1q fpytq “ f 1py1tq

This implies that

pH 11q ùñ pH2q is met with q “ αβ´1 oscpV q and }Bηφs,tpfq} ď eq oscpfq (2.9)

2.4 Forward and backward equations

Proposition 2.1. For any s ď t and η P PpSq we have the Gelfand-Pettis forward and backward
differential equations

Btφs,tpηsq “ Λtpφs,tpηsqq and Bsφs,tpηq “ ´ΛspηqBηφs,t (2.10)

In addition, for any mapping φ of the form (1.4) we also have

Btφ pφs,tpηqq “ ΛtpηqBφs,tpηqφ and Bsφ pφs,tpηqq “ ´ΛspηqBφs,tpηqφ (2.11)

Proof. The l.h.s. assertion in (2.10) is a direct consequence of (2.4). Applying these decompositions
to φs,t, for any s` h ď t we find that

φs`h,t pη ` rφs,s`hpηq ´ ηsq

“ φs`h,tpηq ` rφs,s`hpηq ´ ηs ˝ Bηφs`h,t `
1

φs,s`hpηqQηp1q

1

2
rφs,s`hpηq ´ ηs

b2 ˝ B2
ηφs`h,t

On the other hand we have

φs,s`hpηq “ η ` Λspηq h`Oph2q and φs,s`hpηqQ
ηp1q “ 1`Ophq

This yields the backward evolution formula

h´1 rφs`h,t pηq ´ φs,tpηqs ÝÑhÑ0 Bsφs,tpηq “ ´ΛspηqBηφs,t

For any mapping φ of the form (1.4) we also have

φ pφs`h,tpηqq ´ φ pφs,tpηqq “ pφs`h,tpηq ´ φs,tpηqqBφs,tpηqφ

`
1

2
pφs`h,tpηq ´ φs,tpηqq

b2B2
φs,tpηq

φ`
1

φs`h,tpηq Qφs,tpηqp1q

1

3
pφs`h,tpηq ´ φs,tpηqq

b3 ˝ B3
φs,tpηq

φ

Arguing as above we check (2.11). This ends the proof of the proposition.

2.5 Mean field particle systems

Let BpSN q Ă BpSN q be the subset of symmetric functions on SN , and BpS ˆ SN´1q Ă BpSN q
be the set of functions F on SN symmetric with respect to the last pN ´ 1q arguments. Also let
DpSN q Ă BpSN q be the set of functions F P BpSN q s.t. for any x P SN we have

Fx´i :“ F ˝ ϕx´i P DpSq

with the functions ϕx´i and the set DpSq introduced in (1.13) and (2.3).
Also let DpSN q Ă BpSN q, resp. DpS ˆ SN´1q Ă BpS ˆ SN´1q the trace of DpSN q on BpSN q,

resp. BpS ˆ SN´1q.
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Definition 2.2. The N -mean field particle interpretation of the nonlinear process discussed in (2.5)
is defined by the Markov process ξt “

`

ξit
˘

1ďiďN
P SN with generators Gt given for any F P DpSN q

and any x “ pxiq1ďiďN P SN by

GtpF qpxq “
ÿ

1ďiďN

Lt,mpxqpFx´iqpx
iq (2.12)

We let F :“ pFtqtě0, with Ft “ σpξu : u ď sq be the filtration generated by the mean field
particle model defined in (2.12).

We let Dpr0, T s, SN q be the set of function F : pt, xq P pr0, T s ˆ SN q ÞÑ Ftpxq P R with a
bounded derivative w.r.t. the first argument and s.t. Ft P DpSN q. For any F P Dpr0, T s, SN q, and
any T ě 0, we have

dFtpξtq “ rBtFt ` GtpFtqs pξtq dt` dMtpF q

In the above displayMt stands for a martingale random field on Dpr0, T s, SN q with angle bracket
defined for any functions F,G P Dpr0, T s, SN q and any time horizon t P r0, T s by the formula

BtxMpF q,MpGqyt “ ΓGtpFt, Gtqpξtq

Choosing functions of the form

Ftpxq “ mpxqpftq and Gtpxq “ mpxqpgtq ùñ ΓGtpFt, Gtqpξtq “ mpξtqΓLt,mpξtqpft, gtq (2.13)

we also check that the occupation measure mpξtq P PpSq satisfies the stochastic equation

dmpξtqpftq “ rmpξtqpBtftq ` Λtpmpξtqqpftqs dt`
1
?
N

dMtpfq (2.14)

with a martingale random field Mt on Dpr0, T s, Sq with angle brackets by the formula

BtxMpfq,Mpgqyt

“ mpξtqpΓLtpft, gtqq `

ż

mpξtqpduq mpξtqpdvq Vtpuq pftpvq ´ ftpuqqpgtpvq ´ gtpuqq

With a slight abuse of notation we also write Mt the extension of the random field Mt to F-
predictable functions Dpr0, T s, Sq.

In the further development of the article we write pM c
t ,Mc

tq and pMd
t ,Md

t q the continuous and
the discontinuous part of the martingales pMt,Mtq; as well as

Lt,η “ Lct,η ` L
d
t,η with Lct,η “ Lct

The angle bracket of Md
t is given for any functions F,G P Dpr0, T s, SN q and any time horizon

t P r0, T s by the formula

BtxMdpF q,MdpGqyt

“
ÿ

1ďiďN

ż

”

Ft,ξ´it
pvq ´ Ftpξtq

ı ”

Gt,ξ´it
pvq ´Gtpξtq

ı

“

Vtpξ
i
tqmpξtqpdvq ` λtpξ

i
tqJtpξ

i
t, dvq

‰
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Definition 2.3. Let ζt “
`

ζit
˘

1ďiďN
P pS ˆ SN´1q be the Markov process with initial condition

ζ0 “ ξ0 and generators Ht defined for any F P DpS ˆ SN´1q and x “ pxiq1ďiďN P pS ˆ SN´1q by

HtpF qpxq

“ LtpFx´1qpx1q `
ÿ

2ďiďN

ˆ

LtpFx´iqpx
iq ` Vtpx

iq

ż

pFx´ipuq ´ F pxqqmx1px
´t1,iuqpduq

˙

with the empirical probability measures

mx1px
´t1,iuq :“

ˆ

1´
2

N

˙

mpx´t1,iuq `
2

N
δx1

Theorem 2.4. Given the historical process pζ 1
t the process pζ´s qsďt coincides with the pN ´ 1q-mean

field interpretation (2.12) of the Feynman-Kac model pη´s qsďt defined as in (2.1) and (2.12) by
replacing pLs, Vsq by pL´s , V ´s q, with the jump generator

L´s pfqpuq “ Lspfqpuq `
2

N
Vspuq

`

fpζ1
s q ´ fpuq

˘

and V ´s :“

ˆ

1´
1

N

˙

Vs

Proof. By construction, the generators G´s of the process pζ´s qsďt given pζ 1
t are defined for any s ď t,

any F P DpSN´1q and any x “ pxiq1ďiăN P SN´1 by the formula

G´s pF qpxq “
ÿ

1ďiăN

LspFx´iqpx
iq `

ÿ

1ďiăN

Vspx
iq

ż

pFx´ipuq ´ F pxqqmζ1s
px´iqpduq

Observe that for any x “ pxiq1ďiăN P SN´1 and y P S we have
ż

pFx´ipuq ´ F pxqqmypx
´iqpduq

“

ˆ

1´
1

N

˙
ż

pFx´ipuq ´ F pxqqmpxqpduq `
2

N
pFx´ipyq ´ F pxqq

This implies that

ÿ

1ďiăN

Vspx
iq

ż

pFx´ipuq ´ F pxqqmypx
´tiuqpduq

“
ÿ

1ďiăN

V ´s px
iq

ż

pFx´ipuq ´ F pxqqmpxqpduq `
2

N

ÿ

1ďiăN

Vspx
iq pFx´ipyq ´ F pxqq

We conclude that

G´s pF qpxq “
ÿ

1ďiăN

„

L´s pFx´iqpx
iq ` V ´s px

iq

ż

pFx´ipuq ´ F pxqqmpxqpduq



This ends the proof of the theorem.
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3 Perturbation analysis

3.1 Semigroup estimates

We consider a collection of generators Lεt and potential functions V δ
t of the form

Lεt “ Lt ` ε Lt and V δ
t “ Vt ` δV t with ε, |δ| P r0, 1s

In the above display, V t stands for some uniformly bounded function and Lt a bounded generator
of an auxiliary jump type Markov process of the form

Ltpfqpxq “ λpxq

ż

pfpyq ´ fpxqq Ktpx, dyq

for some jump rate function function λpxq and some Markov transitions Ktpx, dyq such that

λ1 ď λpxq ď λ2 and $1 κtpdyq ď Ktpx, dyq ď $2 κtpdyq

In the above display, λi, $i stands for some positive parameters and κt some probability measures.
We let P εs,t be the transition semigroup of the process with generator Lεt. In this notation, we

have the following technical lemma.

Lemma 3.1. Assume that Ps,t satisfies pH0q for some parameters h and ρphq ą 0 and some
probability measures µt,h. In this situation, for any ε P r0, 1s and t ě 0 there exists some probability
measures µεt,h such that

ρεphq µ
ε
t,hpdyq ď P εt,t`hpx, dyq ď ρεphq

´1 µεt,hpdyq (3.1)

with the parameters

ρεphq :“ ρphq
´

e´ελ2h ` p1´ e´ελ2hq$2

¯

min
´

pλ1{λ2qp$1{$2q, e
´εpλ2´λ1qh

¯

ě ρphq min
´

pλ1{λ2qp$1{$2q, e
´pλ2´λ1qh

¯

The proof of the above lemma is provided in the appendix on page 26.
We consider the Feynman-Kac semigroup Qδ,εs,t be defined as Qs,t by replacing Vt by V δ

t and Xt

by a Markov process with generator Lεt.
Also let φpδ,εqs,t be defined as φs,t by replacing Qs,t by Q

δ,ε
s,t, and set

Lδ,εt “ εLt ´ δ Vt and Lδ,εt,η “ εLt ´ δpVt ´ ηpVtqq

Theorem 3.2. For any |ε|, |δ| P r0, 1s and any s ď t we have the semigroup perturbation formulae

Qδ,εs,t ´Qs,t “

ż t

s
Qδ,εs,u L

δ,ε
u Qu,t du “

ż t

s
Qs,u L

δ,ε
u Qδ,εu,t du (3.2)

In addition, for any η P PpSq we have

φδ,εs,tpηq ´ φs,tpηq “

ż t

s
φδ,εs,upηq L

δ,ε

u,φδ,εs,upηq
B
φδ,εs,upηq

φu,t du “

ż t

s
φs,upηq L

δ,ε
u,φs,upηq

Bφs,upηqφ
δ,ε
u,t du

16



Proof. We check (3.2) the fact that

BupQ
δ,ε
s,uQu,tq “ Qδ,εs,u pL

ε
u ´ Lu ´ δ Vuq Qu,t “ ε Qδ,εs,u Lu Qu,t ´ δ Q

δ,ε
s,u Vu Qu,t

and
BupQs,uQ

δ,ε
u,tq “ ´ε Qs,u Lu Q

δ,ε
u,t ` δ Qs,u Vu Q

δ,ε
u,t

The perturbation analysis of the normalized semigroups φδ,εs,t is slightly more involved.
Let Λδ,εt be defined as Λt by replacing pLt, Vtq by pLεt, V δ

t q. Notice that

h´1
”

φδ,εt,t`hpηq ´ η
ı

“ Λδ,εt pηq `Ophq

For any given s ď t, we consider the interpolating maps u P rs, ts ÞÑ ∆δ,ε
s,u,t defined by

∆δ,ε
s,u,t :“ φu,t ˝ φ

δ,ε
s,u

On the other hand, for any s ď u ď u` h ď t we have the decomposition

∆δ,ε
s,u`h,tpηq ´∆δ,ε

s,u,tpηq

“ φu`h,t

´

φδ,εs,u`hpηq
¯

´ φu,t

´

φδ,εs,u`hpηq
¯

` φu,t

´

φδ,εs,u`hpηq
¯

´ φu,t

´

φδ,εs,upηq
¯

“ ´Λupφ
δ,ε
s,upηqq

´

B
φδ,εs,upηq

φu,t

¯

h

`φu,t

´

φδ,εs,upηq `
”

φδ,εs,u`hpηq ´ φ
δ,ε
s,upηq

ı¯

´ φu,t

´

φδ,εs,upηq
¯

`Oph2q

This implies that

h´1
”

∆δ,ε
s,u`h,tpηq ´∆δ,ε

s,u,tpηq
ı

“ ´Λupφ
δ,ε
s,upηqqBφδ,εs,upηq

φu,t ` h
´1

”

φδ,εs,u`hpηq ´ φ
δ,ε
s,upηq

ı

B
φδ,εs,upηq

φu,t `Ophq

We conclude that
Bu∆δ,ε

s,u,tpηq “
”

Λδ,εu pφ
δ,ε
s,upηqq ´ Λupφ

δ,ε
s,upηqq

ı

B
φδ,εs,upηq

φu,t

On the other hand, we have
”

Λδ,εt pηq ´ Λtpηq
ı

pfq “ ε ηpLtpfqq ´ δ ηpf pV t ´ ηpV tqqq

By symmetry arguments, this ends the proof of the theorem.

Corollary 3.3. For any s ď t and any η P PpSq we have the estimates

pH1q ùñ }φδ,εs,tpηq ´ φs,tpηq}tv ď c pε` δq

pH2q ùñ }φδ,εs,tpηq ´ φs,tpηq}tv ď c pε` δq pt´ sq

for some finite constant c whose value doesn’t depend on the parameters ps, t, ηq, nor on pε, δq.
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3.2 Particle stochastic flows

For any t ě 0, we let ∆mpξtq be the random jump occupation measure

∆mpξtq :“ mpξtq ´mpξt´q “ ∆Mt “Mt ´Mt´

with the martingale random field Mt defined in (2.14). In this notation, we have

Nn´1 BtE
”

p∆mpξtqq
bnpf

p1q
t b . . .b f

pnq
t q | Ft´

ı

“ mpξt´qΓ
pnq

Ld
mpξt´q

pf
p1q
t , . . . , f

pnq
t q (3.3)

with the operators Γ
pnq

Ld
mpξt´q

defined in (1.11). When n “ 2 the above formula resumes to

BtE r∆mpξtqpftq ∆mpξtqpgtq | Ft´s “
1

N
mpξt´qΓLd

mpξt´q
pft, gtq

“ BtxM
d
t pfq,M

dpgqyt “ BtxMd
t pF q,MdpGqyt with pF,Gq defined in (2.13)

Definition 3.4. For any t ě s and n ě 1, we consider the integral random operators

∆nφs,tpmpξsqq :“ Nn´1 1

n!
p∆mpξsqq

bn B
n
mpξs´q`∆mpξsq,mpξs´qφs,t

and their first variational measure

Υn
mpξs´q

φs,t :“ BsE r∆nφs,tpmpξsqq | Fs´s

Choosing n “ 1 we have

∆φs,tpmpξsqq :“ ∆1φs,tpmpξsqq “ φs,tpmpξsqq ´ φs,tpmpξs´qq

Arguing as in the proof of (2.8) and using (3.3), for any collection of functions f pnq P OscpSq we
have the estimate

Nn´1 Bs E
”

∆φs,tpmpξsqq
bnpf

p1q
t b . . .b f

pnq
t q | Fs´

ı

ď enq }λ` V } (3.4)

Proposition 3.5. For any t ě s and n ě 1, we have

∆nφs,tpmpξsqq “
Nn´1

n!
p∆mpξsqq

bnBnmpξs´qφs,t `
1

N
∆n`1φs,tpmpξsqq (3.5)

In addition, for any f P BpSq we have

Υn
mpξs´q

φs,tpfq

“ p´1qn´1 mpξs´qΓ
pnq

Ld
mpξs´q

´

Q
mpξs´1q

s,t p1q, . . . , Q
mpξs´1q

s,t p1q, Bmpξs´qφs,tpfq
¯

`
1

N
Υ
pn`1q
mpξs´q

φs,tpfq

(3.6)

Proof. We have

∆n`1φs,tpmpξsqq “ Nn

«

∆φs,tpmpξsqq ´
ÿ

1ďkďn

1

k!
p∆mpξsqq

bkBkmpξs´qφs,t

ff

“ N ∆nφs,tpmpξsqq ´
Nn

n!
p∆mpξsqq

bnBnmpξs´qφs,t ðñ p3.5q
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This implies that

BsE r∆nφs,tpmpξsqq | Fs´s :“ Υn
mpξs´q

φs,t

“
Nn´1

n!
BsE

”

p∆mpξsqq
bnBnmpξs´qφs,t | Fs´

ı

`
1

N
BsE

“

∆n`1φs,tpmpξsqq | Fs´
‰

This ends the proof of the proposition.

Lemma 3.6. For any n ě 1 and s ď t we have the almost sure uniform estimates

pH2q ùñ }Υn
mpξs´q

φs,t}tv ď 2n´1epn`1qq }λ` V } (3.7)

The detailed proof of the above estimate is provided in the appendix, on page 27.
In the further development of this section, for any given time horizon t and any f P BpSq we let

s P r0, ts ÞÑMd
spφ.,tpmp.qqpfqq

be the martingale s P r0, ts ÞÑMd
spF q associated with the function

ps, xq P r0, ts ˆ SN ÞÑ F ps, xq “ φs,tpmpxqqpfq

We also denote by

s P r0, ts ÞÑM c
s

`

Bmpξ.qφ.,tpfq
˘

, resp. M c
s

´

Q
mpξ.q.,t p1q

¯

the martingale M c
s pfq associated with the F-predictable bounded function

ps, xq P r0, ts ˆ S ÞÑ fspxq “ Bmpξs´qφs,tpfqpxq , resp. fspxq “ Q
mpξs´q
s,t p1qpxq

We are now in position to state and to prove the main result of this section.

Theorem 3.7. For any time horizon t ě 0 and any f P BpSq the interpolating function

s P r0, ts ÞÑ φs,tpmpξsqqpfq P R

satisfies the stochastic differential equation

dφs,tpmpξsqqpfq “
1
?
N

dM c
s

`

Bmpξ.qφ.,tpfq
˘

` dMd
s pφ.,tpmp.qqpfqq

`
1

N
Υ2
mpξs´q

φs,tpfq ds´
1

N
mpξsqΓLcs

´

Q
mpξsq
s,t p1q, Bmpξsqφs,tpfq

¯

ds

Proof. Observe that

dmpξsq “ Λspmpξsqq ds`
1
?
N

dM c
s `∆mpξsq ´ Ep∆mpξsq | Fs´q

looooooooomooooooooon

!ds

Using Itô formula and the backward formula (2.10) we have

d φs,tpmpξsqqpfq “ ´Λspmpξsqq
`

Bmpξsqφs,tpfq
˘

ds` rφs,tpmpξs´q ` dmpξsqq ´ φs,tpmpξs´qqs pfq

“
1
?
N

dM c
s

`

Bmpξ.qφ.,tpfq
˘

` dMd
spφ.,tpmp.qqpfqq

`
1

2N
pdM c

s b dM
c
s q B

2
mpξsq

φs,tpfq ` BsE
“

∆φs,tpmpξsqqpfq ´∆mpξsqBmpξs´qφs,tpfq | Fs´
‰

ds
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This ends the proof of the theorem.

Next corollary is a direct consequence of the recursion (3.6).

Corollary 3.8. For any t ě 0 and any f P BpSq we have the almost sure formula

φs,tpmpξsqqpfq ´ φ0,tpmpξ0qqpfq

“
1
?
N

M c
s

`

Bmpξ.qφ.,tpfq
˘

`Md
spφ.,tpmp.qqpfqq

´
1

N

ż s

0
mpξuqΓLu,mpξuq

´

Q
mpξuq
u,t p1q, Bmpξuqφu,tpfq

¯

du`
1

N2

ż s

0
Υ3
mpξu´q

φu,tpfq du

(3.8)

Choosing s “ t and taking the expectation in (3.8) we obtain the following result.

Corollary 3.9. For any t ě 0 and f P DpSq we have the formula

Epmpξtqpfqq ´ Epφ0,tpmpξ0qqpfqq

“ ´
1

N

ż t

0
E
”

mpξsqΓLs,mpξsq

´

Q
mpξsq
s,t p1q, Bmpξsqφs,tpfq

¯ı

ds`
1

N2

ż t

0
E
”

Υ3
mpξs´q

φs,tpfq
ı

ds

3.3 Some non asymptotic estimates

Theorem 3.10. For any time horizon t ě 0 and any function f P OscpSq we have

pH1q ùñ |Epmpξtqpfqq ´ ηtpfq| ď c{N

pH2q ùñ |Epmpξtqpfqq ´ ηtpfq| ď c t{N

for some finite constant c whose value doesn’t depend on the parameters pt,Nq.

The proof of the above theorem is mainly based on the decomposition presented in corollary 3.9.
The estimates rely on elementary but rather technical carré du champ inequalities, and semigroup
techniques. Thus, the detail of the proof is housed in the appendix, on page 27.

The first estimate stated in the above corollary extend the bias estimate obtained in [67] to
time varying Feynman-Kac models. The central difference between homogeneous and time varying
models lies on the fact that we cannot use h-process techniques. The latter allows to interpret the
Feynman-Kac semigroups in terms of more conventional Markov semigroups.

We end this section with a some more or less direct consequences of the above estimates in the
analysis of the measures discussed in theorem 2.4.

By corollary 3.3, for any N ą 1 we have

pH1q ùñ }η´t ´ ηt}tv ď c{N and pH2q ùñ }η´t ´ ηt}tv ď c t{N

By (3.1), when pH0q is satisfied, the Feynman-Kac model defined in terms of pL´s , V ´q satisfy the
stability property pH1q. Thus, using theorem 3.10 we readily deduce the following estimates.

Corollary 3.11. We have almost sure and uniform estimates

pH0q ùñ |E
´

mpζ´t qpfq |
pζ1
t

¯

´ ηtpfq| ď c{N
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We further assume that the Feynman-Kac model is associated with the historical process Xt “

pX 1sqsďt discussed in (2.6). Also assume that the transition semigroup P 1s,t of the auxiliary processX 1t
satisfies condition pH0q; that is pH 10q is met. In this situation, using (2.9) we check that the Feynman-
Kac model associated with the historical process Xt satisfies pH2q. Thus, using corollary 3.10 we
also deduce the following estimates.

Corollary 3.12. Assume that the Feynman-Kac model is associated with the historical process
Xt “ pX

1
sqsďt of the auxiliary process X 1t. In this situation, for any N ą 1 we have almost sure and

uniform estimates
pH 10q ùñ |E

´

mpζ´t qpfq |
pζ 1
t

¯

´ ηtpfq| ď c t{N

The above results give some information on the bias of the occupation measures. We end this
section with some propagation of chaos estimate. Using (3.8), for any functions fi P OscpSq we have

E pmpξtqpf1q mpξtqpf2qq ´ E pφ0,tpmpξ0qqpf1q φ0,tpmpξ0qqpf2qq

“ ´
1

N

ÿ

pk,lqPtp1,2q,p2,1qu

ż t

0
E
”

φs,tpmpξsqqpfkq mpξuqΓLu,mpξuq

´

Q
mpξuq
u,t p1q, Bmpξuqφu,tpflq

¯ ı

du

`
1

N

ż t

0
E
”

mpξuqΓLu,mpξuq
`

Bmpξuqφu,tpf1q, Bmpξuqφu,tpf2q
˘

ı

`

ż t

0
Bs E r∆φs,tpmpξsqqpf1q ∆φs,tpmpξsqqpf2qs ds

`
1

N2

ÿ

pk,lqPtp1,2q,p2,1qu

ż t

0
E
”

φs,tpmpξsqqpfkq Υ3
mpξs´q

φs,tpflq
ı

ds

By (3.4) and using the same lines of arguments as in the proof of theorem 3.10 we check the following
estimates.

Corollary 3.13. For any time horizon t ě 0 and any f, g P OscpSq we have

pH1q ùñ |E
`

fpξ1
t q gpξ

2
t q
˘

´ ηtpfq ηtpgq| ď c{N

pH2q ùñ |E
`

fpξ1
t q gpξ

2
t q
˘

´ ηtpfq ηtpgq| ď c t{N

In the settings of corollary 3.12 we also check the almost sure estimate

pH 10q ùñ |E
´

fpζ2
t q gpζ

3
t q |

pζ 1
t

¯

´ ηtpfq ηtpgq| ď c t{N

We can extend the above arguments to any finite block of particles.

4 Many-body Feynman-Kac measures

4.1 Description of the models

We let Pξt and Pζt be the distribution of the historical process

pξt :“ pξsqsďt :“
`

ξ1
s , . . . , ξ

N
s

˘

sďt
and pζt :“ pζsqsďt :“

`

ζ1
s , . . . , ζ

N
s

˘

sďt
P DtpS ˆ SN´1q
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We set

Ztpξq :“ exp

„

´

ż t

0
mpξsqpVsqds



and Ztpξq :“ exp

„

´

ż t

0
mpξsqpV sqds



We recall for any f P BpSq the unbiased property

E
`

mpξtqpfq Ztpξq
˘

“ ηtpfq

For any 1 ď i ď N we also consider the historical process
pζ it :“ pζisqsďt and the reduced particle system ζ´t “

`

ζ2
t , . . . , ζ

N
t

˘

P SN´1

Definition 4.1. For any time horizon t P R`, the N -many-body Feynman-Kac measures Qξ
t P

PpDtpS ˆ SN´1qq and Qζ
t P PpDtpS ˆ SN´1qq are defined by Radon-Nikodym the formulae

dQξ
t {dP

ξ
t :“ Ztpξq and dQζ

t {dP
ζ
t :“ Ztpζ

1q (4.1)

4.2 A duality formula

In contrast with conventional changes of probability measures the exponential terms Ztpξq and
Ztpζ

1q have unit mean but they are not martingales w.r.t. the laws Pξt and Pζt . We let Qζi

t be the
pζ it -marginal of Qζ

t , with 1 ď i ď N .

Theorem 4.2. For any 1 ď i ď N and any time horizon t ě 0 we have

Qξ
t “ Qζ

t and Qζi

t “ Qt (4.2)

Proof. Observe that pξt :“ pξsqsďt and pζt :“ pζsqsďt coincide with the historical processes of processes
ξs and ζs. In addition, for any x “ pxsqsďt P DtpSq we have

pVtpxq :“ Vtpxtq ùñ mppξsqppVsq “ mpξsqpVsq

In this case, Qξ
t and Qζ

t coincide with the t-time marginal of the measures of the measures pQξ
t and pQζ

t

defined as above by replacing pξt, ζt, Vtq by ppξt, pζt, pVtq. In this situation the state space S is replaced
by the space of paths pS “ Ytě0 DtpSq. In addition, the generators pGt,Ht,G´t q are replaced by the
generators ppGt, pHt, pG´t q of the historical processes ppξt, pζt, pζ´t q. These generators are defined as above
by replacing pS,Lt, Vtq by ppS, pLt, pVtq where pLt stands for the generator of the historical process
pXt :“ pXsqsďt. Thus, there is no loss of generality to prove (4.2) for the t-marginal probability
measures pQξ

t ,Q
ζ
t q of pQ

ξ
t ,Q

ζ
t q.

For any pF, xq P pDpS ˆ SN´1q ˆ SN q we set

LtpF qpxq :“
ÿ

1ďiďN

LtpFx´iqpx
iq

LVt pF qpxq :“
ÿ

1ďiďN

LVt pFx´iqpx
iq “ LtpF qpxq ´N mpxqpVtq F pxq

Observe that

GtpF qpxq “ LtpF qpxq `
ÿ

1ďiďN

Vtpx
iq

ż

pFx´ipuq ´ F pxqq mpxqpduq

“ LtpF qpxq `
1

N

ÿ

1ďi ­“jďN

Vtpx
iq

“

Fx´ipx
jq ´ Fx´ipx

iq
‰

“ LtpF qpxq `
1

N

ÿ

1ďi ­“jďN

Vtpx
iq Fx´ipx

jq ´ pN ´ 1q mpxqpVtqF pxq
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This implies that

GtpF qpxq ´mpxqpVtqF pxq “ LVt pF qpxq `
1

N

ÿ

1ďi ­“jďN

Vtpx
iq Fx´ipx

jq

On the other hand, we have

1

N

ÿ

1ďi ­“jďN

Vtpx
iq Fx´ipx

jq

“
1

N

ÿ

2ďi ­“jďN

Vtpx
iq Fx´ipx

jq `
1

N

ÿ

2ďjďN

“

Vtpx
1q Fx´1pxjq ` Vtpx

jq Fx´j px
1q
‰

This implies that

BtQ
ξ
t pF q “ E

¨

˝

»

–LVt pF qpξtq `
ÿ

2ďiďN

Vtpξ
i
tq

ˆ

1´
2

N

˙

1

N ´ 2

ÿ

jRt1,iu

Fξ´it
pξjt q

`

ˆ

1´
1

N

˙

”

Vtpξ
1
t q Fξ´1

t
pξ2
t q ` Vtpξ

2
t q Fξ´it

pξ1
t q

ı



Ztpξq

˙

By symmetry arguments, we check that

BtQ
ξ
t pF q “ E

˜«

LVt pFξ´1
t
qpξ1

t q `
ÿ

2ďiďN

LtpFξ´it
qpξitq ´

ÿ

2ďiďN

Vtpξ
i
tq F pξtq

`
ÿ

2ďiďN

Vtpξ
i
tq

ż

Fξ´it
puq

ˆ

1´
2

N

˙

mpξ
´t1,iu
t qpduq `

ÿ

2ďiďN

Vtpξ
i
tq

2

N
Fξ´it

pξ1
t q

ff

Ztpξq

¸

We conclude that

BtQ
ξ
t pF q “ E

´”

LtpFξ´1
t
qpξ1

t q ´ V pξ
1
t q F pξtq

`
ÿ

2ďiďN

ˆ

LtpFξ´it
qpξitq ` Vtpξ

i
tq

ż

´

Fξ´it
puq ´ F pξtq

¯

mξ1t
pξ
´t1,iu
t qpduq

˙

ff

Ztpξq

¸

By symmetry arguments we have

BtQ
ξ
t pF q “ E pKpF qpξtq Ztpξqq “ Qξ

t pKpF qq with KpF qpxq “ HtpF qpxq ´ V px1q F pxq

In much the same way, we have

BtQ
ζ
t pF q “ E

`

KpF qpζtq Ztpζ1q
˘

“ Qζ
t pKpF qq

This ends the proof of the l.h.s. assertion in (4.2). Thus, choosing F pxq “ mpxqpfq we have

ηtpfq “ E
`

mpξtqpfq Ztpξq
˘

“ E
`

mpζtqpfq Ztpζ
1q
˘

“
1

N
ηtpfq `

ˆ

1´
1

N

˙

E
`

fpζ2
t q Ztpζ

1q
˘
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This ends the proof of the r.h.s. assertion in (4.2). The proof of the theorem is completed.

We let Xt be a random sample from mpξtq. Next corollary extend the duality formula presented
in [31] to continuous time Feynman-Kac models.

Corollary 4.3. For any F P BpS ˆDtpS ˆ SN´1qq we have the duality formula

ΠtpF q :“ E
´

F pXt, pξtq Ztpξq
¯

“ E
´

F pζ1
t ,
pζtq Ztpζ

1q

¯

The above corollary is valid for any Feynman-Kac model Qt associated with some process Xt

and some potential function Vt on some state space S. Thus it applies to the Feynman-Kac model
pQt defined as in (1.1) by replacing pXt, Vtq by the path-space model p pXt, pVtq on the path space pS.
In this notation the t-time marginal pηt of pQt coincides with the measure Qt defined in (1.1).

In the same reverse angle, let Q1t be the Feynman-Kac model associated with some process X 1t
and some potential function V 1t on some state space S1. Also let Qt :“ xQ1t be the Feynman-Kac
model associated with the historical process

Xt :“ xX 1t “ pX
1
sqsďt P S :“ pS1 “ Ysě0 DspS

1q

and the potential function Vt on S defined by

VtpXtq :“ xV 1t p
xX 1tq “ V 1t pX

1
tq

In this situation, the t-time marginal ηt of Qt coincides with the path space measure Q1t. In addition,
pξs “ pξsqsďt is the historical process of N path-valued particles ξs “ pξisq1ďiďN P SN . In addition,
each particle ξis “ pξiu,squďs P S represents the ancestral line of the particle ξ1is :“ ξis,s P S

1. For
any u ď s, ξiu,s stands for the ancestor at level u ď s. Last but not least, the N particle model
ξ1s coincides with the N -particle model associated with the Feynman-Kac model Q1t. Therefore the
duality theorem 1.1 stated in the introduction is a direct consequence of the above corollary.

Now, we come to the proof of the corollary.
Proof of corollary 4.3:
We associate with a given F P BpSˆDtpSˆSN´1qq the function F P BpDtpSˆSN´1qq defined

for any

x “ px1psq, px2psq, . . . , xN psqqqsďt P DtpS ˆ SN´1q and xptq :“ px1ptq, . . . , xN ptqq

by the integral formula

F pxq :“

ż

mpxptqqpduq F pu, xq

Using (4.2) we have
E
`

F ppξsqsďtq Ztpξq
˘

“ E
`

F ppζsqsďtq Ztpζ
1q
˘

On the other hand, for any 1 ď i ď N we have

E
`

F ppξsqsďtq Ztpξq
˘

“ E
`

F pξit, pξsqsďtq Ztpξq
˘

“ E
`

F pξ1
t , pξsqsďtq Ztpξq

˘

“ E
`

F ppξsqsďtq Ztpξq
˘

with the function F P DtpS ˆ SN´1q given by

F ppx1psq, . . . , xN psqqsďtq “ F px1ptq, px1psq, . . . , xN psqqsďtqq

Using (4.2) we also have

E
`

F ppξsqsďtq Ztpξq
˘

“ E
`

F ppζsqsďtq Ztpζ
1q
˘

“ E
`

F pζ1
t , pζsqsďtq Ztpζ

1q
˘

This ends the proof of the corollary.
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4.3 Particle Gibbs samplers

We further assume that reference process Xt “ pX
1
sqsďt P DtpS

1q in the Feynman-Kac measure (2.1)
is the historical of some auxiliary process X 1t taking values in some metric space pS1, dS1q. In this
case, Xt is a Markov process taking values in S “ Ysě0DspS

1q. Also assume that the potential
function Vt is chosen so that VtpXtq “ V 1t pX

1
tq. In this situation, the mean field particle model

ξt coincide with the genealogical tree evolutions of the mean field particle interpretation of the
Feynman-Kac measures associated with pX 1t, V 1t q.

In the same vein, the particle model ζt is path space genealogical tree based particle model. For
instance ζ1

t “ pζ
1
s qsďt is itself the historical process of the path-space process ζ1

s P DspS
1q; so that

the jumps onto ζ1
t have to be interpreted as a jump of an ancestral line onto ζ1

t

In this situation, for any given time horizon t ě 0, we have

Πtpdpz1, z2qq P PpE1 ˆ E2q with E1 “ DtpS
1q and E2 :“ DtpS ˆ SN´1q

Observe that for any z2 :“ pz2psqqsďt P E2 :“ DtpS ˆ SN´1q and any s ď t we have

z2psq :“ pz1
1psq, pz

2
2psq, . . . , z

N
2 psqqq P DspS

1q ˆDspS
1qN´1

In this notation, we have desintegration formulae

Πtpdpz1, z2qq “ ηtpdz1q Mtpz1, dz2q and Πtpdpz1, z2qq “ Qξ
t pdz2q Atpz2, dz1q

In the above display Mt stands for the Markov transition from E1 into E2 defined by

Mtpz1, dz2q :“ Pppζt P dz2 | ζ
1
t “ z1q

and At the Markov transition from E2 into E1 defined by

Atpz2, dz1q :“ mpz2ptqqpdz1q

The transition of the conventional Gibbs-sampler with target measure Πt on E :“ pE1 ˆ E2q is
defined by

Gtppz1, z2q, dpz1, z2qq :“Mtpz1, dz2q Atpz2, dz1q (4.3)

This transition is summarized in the following synthetic diagram
ˆ

z1

z2

˙

ÝÑ

ˆ

z1

z2 „ ppζt | ζ
1
t “ z1q

˙

ÝÑ

ˆ

z1 „ mpz2ptqq
z2

˙

By construction, we have the duality property

Πtpdpz1, z2qq Gtppz1, z2q, dpz1, z2qq “ Πtpdpz1, z2qq G´t ppz1, z2q, dpz1, z2qq (4.4)

with the backward transition

G´t ppz1, z2q, dpz1, z2qq “ Atpz2, dz1q Mtpz1, dz2q

Recall that ηt coincide with the marginal Π1t of Πt on E1 “ DtpS
1q. In addition, integrating (4.4)

w.r.t. z2 we also have the reversibility property

ηtpdz1q Ktpz1, dz1q “ ηtpdz1q Ktpz1, dz1q
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with the Markov transition Kt “MtAt from DtpS
1q into itself defined by

Ktpfqpz1q :“

ż

Ktpz1, dz1q fpz1q “ E
´

mpζtqpfq | pζ
1
t “ z1

¯

We further assume that the Markov transitions of X 1t satisfy condition pH0q. On this situation,
combining corollary 3.3 with corollary 3.12, for any time horizon t ě 0, any function f with unit
oscillations and any µ P PpDtpS

1qq and n ě 1 we check that

}Ktpfq ´ ηtpfq} ď cpt_ 1q{N, which implies oscpKtpfqq ď cpt_ 1q{N ,

and this yields }µKn
t ´ ηt}tv ď pcpt_ 1q{Nqn

for some finite constant c whose value doesn’t depend on the parameters pf, t,Nq. Notice that since
we work on historical processes, Qt in Theorem 1.2 becomes ηt here.

Appendix

Proof of lemma 3.1

Let Xs,tpxq, with t ě s, be the stochastic flow associated with the generator Lt starting at Xs,spxq “
x at time t “ s. In this notation, we have the perturbation formula

P εs,tpfqpxq

“ E
”

fpXs,tpxqq e
´ε

şt
s λpXs,upxqqdu

ı

`

ż t

s
E
”

ελpXs,upxqq e
´ε

şu
s λpXs,vpxqqdvKupP

ε
u,tpfqqpXs,upxqq

ı

du

For non negative functions f and any t ě 0 and h ą 0 we have

P εt,t`hpfq ď e´ελ1hPt,t`hpfq ` ελ2$2

ż t`h

t
e´ελ1pu´tq κuP

ε
u,t`hpfq du

ď eεpλ2´λ1qh
„

e´ελ2hPt,t`hpfq ` ελ2$2

ż t`h

t
e´ελ2pu´tq κuP

ε
u,t`hpfq du



In the same vein, we have

P εt,t`hpfq ě pλ1{λ2qp$1{$2q

„

e´ελ2hPt,t`hpfq ` ελ2$2

ż t`h

t
e´ελ2pu´tq κuP

ε
u,t`hpfq du



This shows that

ρεphq ď
dpδxP

ε
t,t`hq

dµεt,h
pyq ď ρεphq

´1

with the probability measure

µεt,h 9 e´ελ2hµt,h ` ελ2$2

ż t`h

t
e´ελ2pu´tq κuP

ε
u,t`hpfq du

This ends the proof of the lemma.
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Proof of (3.7)

For any functions fi P OscpSq and any l ď k we have
ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ź

1ďlďk

∆mpξtqpflq | Ft´

ffˇ

ˇ

ˇ

ˇ

ˇ

ď
1

Nk

«

ÿ

1ďiďN

`

Vtpξ
i
tq ` λtpξ

i
tq
˘

ff

ď
1

Nk´1
}λ` V }dt

ùñ Nk |Υk`1
mpξs´q

φs,tpfq| “
Nk

pk ` 1q!

ˇ

ˇ

ˇ
BsE

”

p∆mpξsqq
bpk`1q B

pk`1q
mpξs´q

φs,tpfq | Fs´
ıˇ

ˇ

ˇ

“ Nk

ˇ

ˇ

ˇ

ˇ

ˇ

BsE

«

1

mpξsqQ
mpξs´q
s,t p1q

´

∆mpξq
´

Q
mpξs´q
s,t p1q

¯¯k
∆mpξqBmpξs´qφs,tpfq | Fs´

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď ep2`kqq }λ` V }

Proof of theorem 3.10

We use (1.12) to check that

mpξsqΓLs,mpξsq

´

Q
mpξsq
s,t p1q, Bmpξsqφs,tpfq

¯

“ pηsQ
mpξsq
s,t p1qq2 mpξsqΓLs,mpξsq

`

Qηss,tp1q, Bηsφs,tpfq
˘

`pηsQ
mpξsq
s,t p1qq2 rφs,tpηsq ´ φs,tpmpξsqqspfq mpξsqΓLs,mpξsq

`

Qηss,tp1q
˘

Using (1.6) we also have the estimate
ˇ

ˇ

ˇ
mpξsqΓLs,mpξsq

´

Q
mpξsq
s,t p1q, Bmpξsqφs,tpfq

¯ˇ

ˇ

ˇ
ď e3q oscpQs,tpfqq mpξsqΓLs,mpξsq

`

Qηss,tp1q
˘

`e2q
b

mpξsqΓLs,mpξsq
`

Qηss,tp1q
˘

b

mpξsqΓLs,mpξsq pBηsφs,tpfqq

(4.5)
On the other hand, we have

Bηsφs,tpfq “ Qηss,t rf ´ ηtpfqs and Qηss,tpfqpxq “ E
´

fpXtq e
´
şt
s V upXuq du | Xs “ x

¯

ùñ BsQ
ηs
s,tpfq “ ´LspQ

ηs
s,tpfqq ` V s Q

ηs
s,tpfq

ùñ BspQ
ηs
s,tpfqQ

ηs
s,tpgqq “ ´Q

ηs
s,tpfq LspQ

ηs
s,tpgqq ´Q

ηs
s,tpgq LspQ

ηs
s,tpfqq ` 2V s Q

ηs
s,tpfqQ

ηs
s,tpgq

We also have

Lt,µpfq “ Ltpfq ` Vt rµpfq ´ f s ðñ Ltpfq ´ Lt,µpfq “ Vt rf ´ µpfqs

This yields the formula

ηΓLt,ηpf, gq ´ ηΓLtpf, gq “

ż

ηpdxq ηpdyq Vtpyq rfpyq ´ fpxqsrgpyq ´ gpxqs

“ ηpVtpfgqq ` ηpVtq ηpfgq ´ ηpfVtq ηpgq ´ ηpgVtq ηpfq
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For any given time horizon t and s P r0, ts we have

dmpξsqpQ
ηs
s,tpfqQ

ηs
s,tpgqq ´

1?
N
dMspQ

η..,tpfqQη..,tpgqq

“ mpξsq
“

Ls,mpξsqpQ
ηs
s,tpfqQ

ηs
s,tpgqq ´Q

ηs
s,tpfq LspQ

ηs
s,tpgqq ´Q

ηs
s,tpgq LspQ

ηs
s,tpfqq ` 2V s Q

ηs
s,tpfqQ

ηs
s,tpgq

‰

ds

“ mpξsq
”

Γs,Ls,mpξsqpQ
ηs
s,tpfq, Q

ηs
s,tpgqq ` Vs Q

ηs
s,tpfq pmpξsqQ

ηs
s,tpgq ´Q

ηs
s,tpgqq

`Vt Q
ηs
s,tpgq pmpξsqQ

ηs
s,tpfq ´Q

ηs
s,tpfqq ` 2V s Q

ηs
s,tpfqQ

ηs
s,tpgq

‰

ds

This implies that

mpξtqpfgq ´mpξ0qpQ
η0
0,tpfqQ

η0
0,tpgqq ´

1
?
N

MtpQ
η..,tpfqQη..,tpgqq

“

ż t

0
mpξsqΓs,Ls,mpξsqpQ

ηs
s,tpfq, Q

ηs
s,tpgqq ds

`

ż t

0
mpξsq

“

Vs Q
ηs
s,tpfq pmpξsqQ

ηs
s,tpgq ´Q

ηs
s,tpgqq

`Vs Q
ηs
s,tpgq pmpξsqQ

ηs
s,tpfq ´Q

ηs
s,tpfqq ` 2pVs ´ ηspVsqq Q

ηs
s,tpfqQ

ηs
s,tpgq

‰

ds

After some simplifications we check that
ż t

0
mpξsqΓs,Ls,mpξsqpQ

ηs
s,tpfq, Q

ηs
s,tpgqq ds

“ mpξtqpfgq ´mpξ0qpQ
η0
0,tpfqQ

η0
0,tpgqq ´

1
?
N

MtpQ
η..,tpfqQη..,tpgqq

`

ż t

0

“

2ηspVsq mpξsqpQ
ηs
s,tpfqQ

ηs
s,tpgqq

´mpξsqpVs Q
ηs
s,tpfqq mpξsqQ

ηs
s,tpgq ´mpξsqpVs Q

ηs
s,tpgqq mpξsqQ

ηs
s,tpfq

‰

ds

Choosing f “ g “ 1 and taking the expectations we find that
ż t

0
E
”

mpξsqΓs,Ls,mpξsqpQ
ηs
s,tp1qq

ı

ds

“ 1´ η0pQ
η0
0,tp1q

2q ` 2

ż t

0
E
“

ηspVsq mpξsqpQ
ηs
s,tp1q

2q ´mpξsqpVs Q
ηs
s,tp1qq mpξsqQ

ηs
s,tp1q

‰

ds

ď 1` 2e2q }V } t
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Choosing f “ g “ h´ ηtphq, with h P OscpSq and taking the expectations we find that
ż t

0
E
”

mpξsqΓs,Ls,mpξsqpBηsφs,tphqq
ı

ds

“ E
“

mpξtqprh´ ηtphqs
2q
‰

´ η0prBη0φ0,tphqs
2q

`2

ż t

0
E
“

ηspVsq mpξsqprBηsφs,tphqs
2q ´mpξsqpVs Bηsφs,tphqq mpξsqpBηsφs,tphqq

‰

ds

ď 1` 4e2q }V } t

For any f P OscpSq combining (4.5) with Cauchy-Schwartz inequality we find that that
ż t

0
|mpξsqΓLs,mpξsq

´

Q
mpξsq
s,t p1q, Bmpξsqφs,tpfq

¯

| ds ď 2e3q
“

1` 4e2q }V }
‰

t

Combining the above estimate with (3.7) and corollary 3.9 we conclude that

pH2q ùñ N |Epmpξtqpfqq ´ Epφ0,tpmpξ0qqpfqq| ď 2e3q

ˆ

1` 4e2q }V } `
1

N2
2eq }λ` V }

˙

t

We further assume that pH1q is satisfied. In this case, using (4.5) we also have

|mpξsqΓLs,mpξsq

´

Q
mpξsq
s,t p1q, Bmpξsqφs,tpfq

¯

| ď e3q α e´βpt´sq mpξsqΓLs,mpξsq
`

Qηss,tp1q
˘

`e2q
b

mpξsqΓLs,mpξsq
`

Qηss,tp1q
˘

b

mpξsqΓLs,mpξsq pBηsφs,tpfqq

For any rβ P R we set

rQηss,tpfqpxq :“ e
rβpt´sq Qηss,tpfqpxq

“ E
´

fpXtq e
´
şt
s
rVupXuq du | Xs “ x

¯

with rVtpxq “ V tpxq ´ rβ

Arguing as above, we have

Bsp rQ
ηs
s,tpfq

rQηss,tpgqq “ ´
rQηss,tpfq Lsp

rQηss,tpgqq ´
rQηss,tpgq Lsp

rQηss,tpfqq ` 2 rVs rQηss,tpfq
rQηss,tpgq

and

dmpξsqp rQ
ηs
s,tpfq

rQηss,tpgqq ´
1
?
N

dMsp rQ
η..,tpfq rQη..,tpgqq

“ mpξsq
”

Γs,Ls,mpξsqp
rQηss,tpfq,

rQηss,tpgqq ` Vs
rQηss,tpfq pmpξsq

rQηss,tpgq ´
rQηss,tpgqq

`Vt rQηss,tpgq pmpξsq
rQηss,tpfq ´

rQηss,tpfqq ` 2rVs rQηss,tpfq
rQηss,tpgq

ı

ds
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This implies that
ż t

0
e2rβpt´sq mpξsqΓs,Ls,mpξsqpQ

ηs
s,tpfq, Q

ηs
s,tpgqq ds

“ mpξtqpfgq ´ e
rβt mpξ0qpQ

η0
0,tpfqQ

η0
0,tpgqq ´

1
?
N

Mtp rQ
η..,tpfq rQη..,tpgqq

`

ż t

0
e2rβpt´sq

”

2pηspVsq ` rβq mpξsqpQ
ηs
s,tpfqQ

ηs
s,tpgqq ´mpξsqpVs Q

ηs
s,tpfqq mpξsqQ

ηs
s,tpgq

´mpξsqpVs Q
ηs
s,tpgqq mpξsqQ

ηs
s,tpfq

‰

ds

Choosing f “ g “ 1 and rβ ă 0 we have
ż t

0
e2rβpt´sq E

”

mpξsqΓs,Ls,mpξsqpQ
ηs
s,tp1qq

ı

ds

“ 1´ e
rβt η0pQ

η0
0,tp1q

2q

`2

ż t

0
e2rβpt´sq E

”

pηspVsq ` rβq mpξsqpQ
ηs
s,tp1q

2q ´mpξsqpVs Q
ηs
s,tp1qq mpξsqQ

ηs
s,tp1q

ı

ds

ď 1` e2q
´

1` 2|rβ|´1}V }
¯

“ 1` e2q
`

1` 4β´1}V }
˘

when rβ “ ´β{2

Choosing f “ g “ rh´ ηtphqs, with h P OscpSq and 0 ă rβ ă β we have
ż t

0
e2rβpt´sq E

”

mpξsqΓs,Ls,mpξsqpBηsφs,tphq
ı

ds

ď E
“

mpξtqprh´ ηtphqs
2q
‰

`2

ż t

0
e2rβpt´sq

”

pηspVsq ` rβq mpξsq
´

rBηsφs,tphqs
2
¯

´mpξsqpVs Bηsφs,tphqq mpξsqBηsφs,tphq
ı

ds

ď 1` 2r2p2}V } ` rβq

ż t

0
e´2pβ´rβqpt´sq ds

ď 1` r2p2}V } ` rβq pβ ´ rβq´1 “ 1` r2p4}V }β´1 ` 1q when rβ “ β{2

We end the proof of the theorem using the fact that

|mpξsqΓLs,mpξsq

´

Q
mpξsq
s,t p1q, Bmpξsqφs,tpfq

¯

|

ď e3qp1` αq e´βpt´sq{2mpξsqΓLs,mpξsq
`

Qηss,tp1q
˘

` e2q eβpt´sq{2mpξsqΓLs,mpξsq pBηsφs,tpfqq

In the last assertion we have used the fact that the estimate
?
ab ď ca` b{c, for all a, b, c ą 0. This

ends the proof of the theorem.
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