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Abstract

Continuous time Feynman-Kac measures on path spaces are central in applied probability,
partial differential equation theory, as well as in quantum physics. This article presents a new
duality formula between normalized Feynman-Kac distribution and their mean field particle in-
terpretations. Among others, this formula allows us to design a reversible particle Gibbs-Glauber
sampler for continuous time Feynman-Kac integration on path spaces. This result extends the
particle Gibbs samplers introduced by Andrieu-Doucet-Holenstein [2] in the context of discrete
generation models to continuous time Feynman-Kac models and their interacting jump parti-
cle interpretations. We also provide new propagation of chaos estimates for continuous time
genealogical tree based particle models with respect to the time horizon and the size of the
systems. These results allow to obtain sharp quantitative estimates of the convergence rate to
equilibrium of particle Gibbs-Glauber samplers. To the best of our knowledge these results are
the first of this kind for continuous time Feynman-Kac measures.

Keywords :
Mathematics Subject Classification :

1 Introduction

Feynman-Kac measures on path spaces are central in applied probability as well as in quantum
physics. They also arise in a variety of application domains such as in estimation and control the-
ory, as well as a rare event analysis. For a detailed review on Feynman-Kac and their application
domains we refer to the three books [7), [8, [13], and the references therein. Their mean field type
particle interpretations is defined as a system of particles jumping a given rate uniformly onto the
population. From the pure numerical viewpoint, this interacting jump transition can be interpreted
as an acceptance-rejection scheme with a recycling. Feynman-Kac interacting particle models en-
capsulate a variety of algorithms such as the diffusion Monte Carlo used to solve Schrédinger ground
states, see for instance the series of articles [3, 4 16l 23], 26], 27] and the references therein.

Their discrete time versions are encapsulate a variety of well known algorithms such as particle
filters [9] (a.k.a. sequential Monte Carlo methods in Bayesian literature 5], [7, 8, 13, 17]), the go-with
the winner [I], as well as the self-avoidind random walk pruned-enrichment algorithm by Rosenbluth
and Rosenbluth [24], and many others. This list is not exhaustive (see also the references therein).
The research monographs [7, [§] provide a detailed discussion on these subjects with precise reference
pointers.

The seminal article [2] by Andrieu, Doucet and Holenstein introduced a new way to combine
Markov chain Monte Carlo methods with discrete generation particle methods. A variant of the



method, where ancestors are resampled in a forward pass, was developed by Lindsten, Schén and
Jordan in [2§], and Lindsten and Schon [29]. In all of these studies, the validity of the particle
conditional sampler is assessed by interpreting the model as a traditional Markov chain Monte
Carlo sampler on an extended state space. The central idea is first to design a detailed encoding of
the ancestors at each level in terms of random maps on integers, and then to extend the "target"
measure on a sophisticated state space incapsulating these iterated random sequences.

In a more recent article [14], we provide an alternative and we believe more natural interpretation
of these particle Markov chain Monte Carlo methods in terms of a duality formula extending the well
known unbiasedness properties of Feynman-Kac particle measures on many-body particle measures.
This article also provides sharp quantitative estimates of the convergence rate to equilibrium of
the models with respect to the time horizon and the size of the systems. The analysis of these
models, including backward particle Markov chain Monte Carlo samplers has been further developed
in 10}, 11].

The main objective of the present article is to extend these methodologies to continuous time
Feynman-Kac measures on path spaces.

The first difficulty comes from the fact that the discrete time analysis [10, 11} 14] only applies
to simple genetic type particle models, or equivalently to branching models with pure multinomial
selection schemes. Thus, these results don’t apply to discrete time approximation of continuous
time models based on geometric type jumps, and any density type argument cannot be applied.

In contrast with their discrete time version, continuous time Feynman-Kac particle models
are not described by conditionally independent local transitions, but in terms of interacting jump
processes. This class of processes can be interpreted as Moran type interacting particle systems [21]
22]. They can also be seen as Nanbu type interpretation of a particular spatially homogeneous
generalized Boltzmann equation [12 20].

The analysis of continuous time genetic type particle models is not so developed as their dis-
crete time versions. For instance, uniform convergence estimates are available for continuous time
Feynman-Kac models with stable processes [13], 15} 16}, 23]. Nevertheless, to the best of our knowl-
edge, sharp estimates for path space models and genealogical tree based particle samplers in con-
tinuous time have never been discussed in the literature. These questions are central in the study
the convergence to equilibrium of particle Gibbs-Glauber sampler on path spaces.

In the present article we provide a duality formula for continuous time Feynman-Kac measures
on path-spaces (cf. theorem . This formula on generalogical tree based particle models that
can be seen as an extension of well known unbiasedness properties of Feynman-Kac models to their
many body version (defined in section . The second main result of the article is to design and to
analyze the stability properties of a particle Gibbs-Glauber sampler of path space (cf. theorem |1.2]).
Our approach combines a perturbation analysis of nonlinear stochastic semigroups with propagation
of chaos techniques (cf. section . Incidentally these techniques also provide with little efforts new
uniform propagation of chaos estimates w.r.t. the time horizon (cf. corollary .

1.1 Statement of the main results

Let (X, Vi) be a continuous time Markov process and a bounded non negative function on some

metric space (5, dg). We let P, be the distribution of (X)s<: on the set Dy(S) of of cadlag paths from

[0,¢] to S. As arule in the further development of the article X, = (Xs)s<t stands for the historical

process of some process X;. In this notation, we extend V; to D;(S) by setting XA/t()A(t) = Vi(Xy).
The Feynman-Kac probability measures Q; associated with (X3, V;) are defined by

1 t
00, = — exp [— | %(Xs)ds] 0P,
Zy 0

2



where Z; stands for some normalizing constant.

These measures can be computed in terms the occupation measures of the ancestral lines of an
interacting jump process. Consider a system of N particles evolving independently as X; with jump
rate V;(Xy). At each jump time the particle jumps onto a particle uniformly chosen in the pool.

Equivalently, the N ancestral lines & = (£))1<i<n of length ¢ can also be seen as a system of N
path-valued particles evolving independently as the historical process )A(t, with jump rate IA/t

The occupation measure of the genealogical tree is given by the empirical measures

1
m(&) := N Z de; and we denote by X¢ a random sample from m(&)

1<i<N

The dual process (; = ((})1<i<n is also defined in terms of N the ancestral lines of length ¢ of
an interacting jump process. The main difference is that the first line at any time ¢ is frozen and
given by (} := X;. The remaining (N — 1) path-valued particles ¢, := (Cti)KiAéN are defined as
above with a rescaled jump rate (1 — 1/N)V;, with an additional jump rate 2V;/N at which the
path-particle jump onto the first frozen ancestral line.

The first main result of the article is the following duality formula.

Theorem 1.1 (Duality formula). For any time horizon t = 0 and any bounded measurable function
F on Dy(S)? x Di(S)N~1 symmetric on the last (N — 1) coordinates we have

B (F05.8) e |- [ t (e Tas| ) =& (PR oo [ tﬁ;(&)ds]) (1)

0 0

We consider the following regularity condition
(Ho) 3h>0 st. Vt=0 VeeS p(h) pnl(dy) < Pn(z,dy) <p(h)™" pen(dy) (1.2)

for some probability p;, on S and some constant p(h) > 0 whose value doesn’t depend on the
parameters (z,y). For instance, condition is satisfied for jump-type elliptic diffusions on
compact manifolds S with a bounded jump rate.

The second main result of the article can be stated basically as follows.

Theorem 1.2 (Particle Gibbs-Glauber dynamics). For any time horizon t = 0 the measure Q; is
reversible w.r.t. the Markov transition K on Dy(S) defined for any bounded measurable function f
on Dy(S) and any path x € Di(S) by the formula

Ki(f)(@) == E (m(G)(f) | Xi = =)
In addition, when (Hy) is satisfied, for any probability measure p on D(S) we have
N osc(Ky(f)) <ctose(f) and VYn=1 |[uK} —Qlw < (ct/N)"
for some finite constant ¢ whose value doesn’t depend on the parameters (f,t,N).

1.2 Basic notation and preliminary results

Let B(S) be the Banach space of bounded functions f on S equipped with the uniform norm
[ f] := supgeg |f(z)]. Also let Osc(S) < B(S) be the subset of functions f with unit oscillations;

that is s.t. osc(f) :=sup,, |f(z) — f(y)] < 1.



We also let M(S) the set of finite signed measures on S, M (S) € M(S) the subset of positive
measures and P(S) € M (S) the subset of probability measures. Given a random measure y on S
we write E(u) the first moment measure given by

Bn) © f € B(S) - B)(f) = Eu(H) with u(r) = | (2)
The total variation norm on the set M(S) is defined by

lpllew = sup{|u(f)] : f € Osc(9)} (1.3)

1.2.1 Integral operators
For any bounded positive integral operator Q(z,dy) and any (u, f, ) € (M(S) x B(S) x ) we define
by u@Q € M(S) and Q(f) € B(S) by the formulae

(1Q) (dy) = J w(dr)Q(r.dy) and Q(f J Qe dy) £(y)

By Fubini theorem we have pQf := u(Q(f)) = (uQ)(f). We also write Q™ the n iterate of @

defined by the recursion Q"(f) = Q(Q"1(f)) = Q" 1(Q(f)).
When Q(1) > 0 we let Q be the Markov operator

Q : feB(S) > Qf) == Q(f)/Q(1) € B(S)
We also let ¢ be the mapping from P(S) into itself defined by

Q

o = MM =1 amd 9@ =QNE@ (L)

() = nQ" with Q7:=

Notice that
Q"(1) = pQ"(1) Q1) = (uQ"(1)) ' = nQ"(1)

1.2.2 Taylor expansions

Observe that for any n,v € P(S) we have the decomposition
P(v) —d(n) = nQ"(1) x (v—n)one
with the first order operator
On¢ = feB(S) = 0yo(f) = QLS — o(n)(f)] € B(S) = 1dy¢ = 0 = dyo(1) (1.5)

Also observe that

ono(f)(x) = Q"(1)(x) f n(dy) Q"(M)(y) () (=) — QN W) o)
1.6

= [0y¢] < Q1) 0sc(Q(f)) and [$(v) = d(n)]ew < [[QV(D] A [QTD]] 0sc(Q(f))

More generally, using the identity

Loy aowpe 022 (17)




which is valid for any = > 0 and n > 1, we check the Taylor with remainder expansion

n —=n-+1
(v — )@ a7 (1.8)

)

o) = o+ Y o ) e

1<k<n

(n+1)!
In the above display, é’f’]qb stand for the collection of integral operators

o) = (DF R [QUPE D @aye(f)] and Tnte = nQu(1) a3
For any p,n € P(S) we have

Ond(f) = Q'f —omfl = pQ"(1) (@uo(f) + Q" (1) [o(n) — ¢(](f))

1.2.3 Carré du champ operators

The carré du champ operator associated with some the generator L acting on an algebra of functions
D(S) < B(S) is defined by the quadratic form

(f.9) € D(S)* > T'L(f,9) = L(fg) — fL(g) — gL(f) € B(S)

When f = g sometimes we write I'r(f) instead of T'r(f, f). We also recall the Cauchy-Schwartz
inequality

ITL(f, 9l <V/TL(f, TLlg,9) and Tr(cf) = ATL(f) (1.9)
The above inequality yields the estimate

Polf +6) = Do) + Dulo) + 202(f.0) < [VIL0H) + VI(0)| (1.10)

Let L¢ be some bounded jump-type generator of the following form
LA(f)(u) = Au) J (f(v) = f(w)) J(u, dv)
for some bounded rate function A and some Markov transition J on S. In this case, we have
Cpalfog)la) = | Do) (6, = 6% (F @)
We consider the n-th order operators
D0 Fd ) = [ Lude) 6, =80 (1© .. 1) (111)
We also have the carré du champ formula

(nQ"(1))? T2 (Q(1),0y0(f)) = T (Q"(1),0ud(f) + [&(1) — om)I(f) TL (Q*(1))  (1.12)

for any f € D(S) as soon as Q"(1), 0,0(f) € D(S).



1.2.4 Empirical measures

For any N > 1, we let Sy := SV /Sy be the N symmetric product of S, where Sy stands for the
symmetric group of order N.
We fix some integer N > 2 and for any 2 <i < j < N and o = (2%)1<;<n € Sy we set
b = (ml,...,x‘ , T ,...,xN) €Sn_1
o (2%} - ({1}17 ot gt i gt ,a:N) € Sy_o
For any 2 <4 < N and z = (2%)1<;<n € Sy we consider the functions
Opi * WES > o i(u) (azl, ot et ,mN) e SN

0,: € P(S5) (1.13)

1<i<N

=~ |

m : xeSy — m(z)=

Let X = (X%)1<;<n be N independent random samples from some distribution € P(S). Using
(L.8) we have the first order expansion

$(m(X)) = () = (m(X)=n)éye —n(@™ (1)) (m(X) —=m)(Q"(1)) (M(X) —n)éye

Several estimates can be derived from the above decomposition. For instance using Cauchy-Schwartz
inequality we have the bias estimate

log (Q(1)(2)/Q(M)(y)) < ¢ == N [E[¢(m(X))(f)] = ¢(n)(f)] < e 0sc(Q(F))

2 A brief review on Feynman-Kac measures

2.1 Evolution semigroups

Consider the flow of Feynman-Kac measures (v,7n) : t € Ry := [0, 0[— (v, nt) € (M4(S) x P(S))
defined for any f € B(S) by the formulae

ne(f) = w(f)/ (1) with %(f):=E(f(X:)Z:(X)) (2.1)

In the above display, Z;(X) stands for the exponential weight

t

2(x) = e |- [ tvsocs)ds} — g E (Z4(X) = - [ n.(v)ds

This shows that

t

Zy(X) = Zy(X)/E(Z (X)) = exp [—L Vs(Xs)ds] with V=V — (V)

We also consider the Feynman-Kac semigroup
Qst(N) (@) = E(f(Xy) Zoy(X) | Xs = x) with Z,(X) := Zi(X)/Zs(X) (2.2)

When V' = 0 the semigroup @, resumes to the Markov semigroup P ; of the reference process X;.
The mathematical model defined above is called the Feynman-Kac model associated with the
reference process and the potential function (X, V).



We further assume that the (infinitesimal) generators L; of X; are well defined on some common
sub-algebra D(S) < B(S), and for any s < ¢t we have Qs+(B(S5)) < D(S5).

We let Vi(f) = Vif the multiplication operator on B(S). We also let L, = L{ + L be the
decomposition of the generator L; in terms of a diffusion-type operator L{ and a bounded jump-
type generator of the following form

L{(f)(u) = M(w) J (f(v) = f(u)) Je(u, dv)

for some bounded rate function A\; and some Markov transition J; on S.
In this notation, for any f € D(S) and s <t we have

oi(f) = w(LY(f)) with L} =Li—V, = 7 = 7Qsy (2.3)

The semigroup associated with the normalized Feynman-Kac measures 7; is given for any s < ¢
by the formula

N = %,t(ﬂs) = w = o (f) = Me(ne)(f) = Ut(LY(f)) +n:(Ve) me(f) (2.4)
775@3715(1)

with the collection of functional linear operators

Ae(n) = feD(S) = Ae(n)(f) == n(Ly () +n(Ve) n(f) € R

Finally we recall that n; = Law(X}) can be interpreted as the law of a nonlinear Markov process
X associated with the collection of generators Ly ,, defined for any (n, f,z) € (P(S), D(S) x S) by

Lt,n<f><x>=Lt<f><x>+v<x>f F) - f@)ndy) — M) =nLe,  (25)

2.2 Path space measures

Consider a Feynman-Kac model (v;,n;, Q% ;, Q;, . . .) associated with some auxiliary Markov process
X/ on some metric space (S’,dg), and some bounded non negative potential functions V;/ on S’.
Also let L} be the generator of X/ defined on some common sub-algebra D(L') < B(S").
Assume that the process X; discussed in (2.1)) is the historical process
X = (X]

5)s<t

€S = Ut;QDt(S/) and ‘/t(Xt) = VZ(X;) = Nt = Q; (26)

In this situation, the generator L; and the domain D(S) of the historical process can be defined
in two different ways:
The more conventional approach is to consider cylindrical functions

f(Xt) = tp(X;Mt, cee 7Xén/\t)

that only depend on a finite collection of time horizons s; < s;11, with 1 < ¢ < n, and some bounded
functions ¢ from (S’)" into R. The regularity of the "test" function ¢ depends on the process at
hand. For jump-type processes, no additional regularity is required. For diffusion-type processes
the function is often required to be compactly supported and twice differentiable.

Another elegant and more powerful approach is to use the functional Ité calculus theory intro-
duced by B. Dupire in an unpublished article [I8], and further developed in [6] 19]. This path-
dependent stochastic calculus allows to consider more general functions such as running integrals



or running maximum of the process X/. It also allows to consider diffusion-type processes with a
drift and a diffusion term that depends on the history of the process.

The path space S is equipped with a time-space metric dg so that (S,dg) is a complete and
separable metric space (cf. for instance proposition 1.1.13 and theorem 1.1.15 in [25]). The smooth-
ness properties of continuous function f on S are defined in terms of time and space functional
derivatives. Thus, for diffusion-type historical processes X;, the generator L; is defined on functions
f € D(L) which a differentiable w.r.t. the time parameter and, as before twice differentiable with
compactly supported derivatives (cf. for instance theorem 1.3.1 in [25]).

It is clearly not the scope of the article to describe in full details the above functional Ité calculus.
We refer the reader to the article [I9] and the Ph.D thesis of Saporito [25].

In the further development of the article we shall use these ideas back and forth. We already
mention that the mean field particle interpretation of the Feynman-Kac measures associated with
an historical process coincides with the genealogical tree-based particle evolution of the marginal
model.

2.3 Some regularity conditions

This section discusses in some details the two main regularity conditions used in the further devel-
opment of the article.

Firstly, observe that the semigroup Ps; associated with the historical process X; = (X)) s<t
discussed in never satisfies the regularity condition (Hy) stated in (1.2)). Nevertheless it may
happens that the semigroup Py, associated with X7 satisfies condition (Hp). In this situation, to
avoid repetition or unnecessary long discussions we simply say that (H{)) is met.

We also use the following weaker conditions:

(Hy) Ja<oo IB>0 st Vs<t osce(Quu(f)) Sa eP1=9) ose(f)
(Hy) dg< oo st. Vs<t Ve,yes log (Qs,¢(1)(2)/Qs+(1)(y)) < g

As before when the semigroup @S’t and Q&t of Feynman-Kac model associated with some parameters
(X{,V/) satisty condition (H;), to avoid repetition or unnecessary long discussions we simply say
that (H}) is met. We recall that

(Ho) = (H1) = (H2)
The proof of the 1.h.s. assertion can be found in [I5]. To check the second we observe that

log (Qs,+(1)(2)/Qs(1)(y)) = J [f5,u(0y) (Vi) = @5,u(02) (Va)] (2.7)

S

This implies that
(H) = (Hy) with ¢=aB osc(V) with osc(V) = suposc(V})

t=0

Using we also have
(Hy) = [0yosi(f)] < e osc(f)  (since osc(Q4(f)) < osc(f))
(Hi)) = |0npsi(f)I <7 e Blt—s) osc(f) with r=ae?! and q=af ! osc(V) (2.8)

We return to the historical process X; = (X}),, discussed in (2.6). In this case, for any =, =
(' (u))u<s and ys = (' (u))u<s € Ds(S") we have

Qst(f)(ws) = QL (f)()

<
<

This implies that
(H) = (Hy) ismet with ¢ =aB8 " osc(V) and [0,0s:(f)] <e? osc(f) (2.9)



2.4 Forward and backward equations

Proposition 2.1. For any s < t and n € P(S) we have the Gelfand-Pettis forward and backward
differential equations

atﬁbS,t(US) = At(%,t(%)) and asQSS,t(n) = _AS(n)an¢8,t (2.10)
In addition, for any mapping ¢ of the form we also have
01d (9s,6(n) = Me(M) 0y, ,(y®  and s (ds:(n)) = —As(1)0p, ()P (2.11)

Proof. The Lh.s. assertion in (2.10) is a direct consequence of (2.4]). Applying these decompositions
to ¢s, for any s + h <t we find that

¢S+h7t (77 + [¢s,s+h(77) - 77])

1 1

0Dy 3 [Pueen(m) =l 0 Cidne

= ¢s+h,t(77) + [¢s,s+h(77) - 77] © a77¢s+h,t +

On the other hand we have
Gs,stn(m) =1+ As(n) h+O(h?) and  ¢yein(m@Q"(1) = 1+ O(h)
This yields the backward evolution formula
ht [Pstht (N) — Gst(N)] =m0 0sPst(n) = —As(n)0nds
For any mapping ¢ of the form (1.4} we also have
¢ (s4nt(n) — & (Pst() = (Ds+nt(n) — 5,t(1))0g, ()@

1 1
Gsint(n) Qt(M(1) 3
Arguing as above we check (2.11)). This ends the proof of the proposition. [

1
5 (srna(n) = Gse ()3, ) +

(D54t () = Dss()®P 003 (0

2.5 Mean field particle systems

Let B(Sy) = B(SY) be the subset of symmetric functions on S, and B(S x Sy_1) < B(SY)
be the set of functions F' on SY symmetric with respect to the last (N — 1) arguments. Also let
D(SN) = B(SN) be the set of functions F' € B(SY) s.t. for any = € Sy we have

FE, i:=Fop,ieD(S)

with the functions ¢, and the set D(S) introduced in and (2.3).

Also let D(Sy) < B(Sy), resp. D(S x Sy_1) < B(S x Sy_1) the trace of D(SY) on B(Sy),
resp. B(S x Sy_1).
Definition 2.2. The N-mean field particle interpretation of the nonlinear process discussed in
15 defined by the Markov process & = (ﬁ) € Sy with generators Gy given for any F € D(SN)
and any © = (¢")1<i<n € SN by

Gi(F)(@) = Y, LymFai)(@) (2.12)

1<i<N

1<i<N

9



We let F := (Fi)i=0, with F; = 0(&, : u < s) be the filtration generated by the mean field
particle model defined in (2.12)).

We let D(|0,t], Sn) be the set of function F' : (s,x) € (|0,t] x Sy) — Fs(x) € R with a bounded
derivative w.r.t. the first argument and s.t. F; € D(Sy). For any F' € D([0,T],Sn), and any T > 0,
we have

dFy (&) = [0 F + Gi(Fy)] (&) dt + dMy(F)

In the above display M, stands for a martingale random field on D([0,T7], Sy) with angle bracket
defined for any functions F,G € D(|0,T], Sn) and any time horizon ¢ € [0,7] by the formula

O M(F), M(G))e = T'g,(Fy, Gi)(&)
Choosing functions of the form
Fy(z) =m(x)(fy) and Gi(x) =m(z)(g:) = Lg,(Fy, G)(&) = m(&)LL, ., (fro90)  (2.13)

we also check that the occupation measure m(&;) € P(S) satisfies the stochastic equation

1
dm(&)(fe) = [m(&e) (O fe) + Ae(m(&e)) (fe)] dt + N dM;(f) (2.14)

with a martingale random field M; on D([0,T1],S) with angle brackets by the formula
oM (f), M(g))

= m(&) (L, (fi,9:)) + f m(&;) (du) m(&)(dv) Vi(u) (fe(v) = fe(w))(g:(v) — g (w))

With a slight abuse of notation we also write M; the extension of the random field M; to F-
predictable functions D([0,T], S).

In the further development of the article we write (Mf, M$) and (Mg, M¢) the continuous and
the discontinuous part of the martingales (M, M;); as well as

Liy=L§, +L{, with Lf =L

The angle bracket of M{ is given for any functions F,G € D([0,T],Sy) and any time horizon
t € [0,T] by the formula

OMUF), MU G

= % B 0) = F@)] |G 0) — Gulé)]| V€l @) + Ml e )]

1<i<N
Definition 2.3. Let {; = (C§)1<i<N € (S x Sn—1) be the Markov process with initial condition
Co = & and generators Hy defined for any F € D(S x Sy_1) and z = (2")1<i<n € (S x Sn_1) by

Hi(F)(x)

= L(Fp-1) (@) + )] (Lt(Fmi)(a?")JrW(x") f (Fmi(U)—F(l‘))mxl(ﬂﬁ“’i})(dU))

2N
with the empirical probability measures

Mg () = (1 — ;) m(z— ) 4 % Oyt

10



Theorem 2.4. Given the historical process @1 the process ((; )s<t coincides with the (N —1)-mean

field interpretation of the Feynman-Kac model (n; )s<t defined as in and by
replacing (L, Vs) by (L3, V), with the jump generator

L (D) = L) + = Valw) ()~ () and V, = (1_]1V> V.

Proof. By construction, the generators G, of the process ((; )s<t given Etl are defined for any s < t,
any F'e D(Sy_1) and any = = (2")1<j<n € Sy—1 by the formula

G (F)(x)= ) Ls(F)@)+ ) Vi(a") f (Fp-i(u) = F(z)) me (z7")(du)

1<i<N 1<i<N

Observe that for any z = (2)1<;<n € Sy_1 and y € S we have

j (Fyi(u) — F(x)) my(z~) (du)

This implies that

S V) j (Fyes(u) = F () my(a 1) (du)

1<i<N
= B V6 | (B - Fe)m@@) + ¢ Y Vilel) (Fesly) - F)
1<i<N 1<i<N

We conclude that

G () = [L5<Fx-i><xi>+vs<xi> | <Fx-z-<u>—F<x>>m<x><du>]

1<i<N

This ends the proof of the theorem. |

3 Perturbation analysis

3.1 Semigroup estimates

We consider a collection of generators L§ and potential functions V;° of the form
Li=Li+eL; and VP =V, 40V, with |e,|d]€[0,1]

In the above display, V; stands for some uniformly bounded function and L; a bounded generator
of an auxiliary jump type Markov process of the form

Ti(/)(@) = A f () — () Kile, dy)

11



for some A = 0 and some Markov transition Kj;.
We let Pg, be the transition semigroup of the process with generator L{. In this notation, we
also have the perturbation formula

t
P;t = eiGA(t*S)PS’t + 6)\J 676)\(U75) Ps,uKupvj,t du

s

This shows that A5, PF )
(Ho) = p(h) < —2"(y) < p(h)™! (3.1)
ey 1,

with the probability measure

t+h
=e M 4 EAJ e~ Aut) Py Py g, du
t

€
Hi.n

)

We consider the Feynman-Kac semigroup Qg’; be defined as Qs+ by replacing V; by V;‘S and Xy
by a Markov process with generator L.

Also let ¢>§ng) be defined as ¢, by replacing Qs by Qg’;, and set
Lf’ﬁ = eft -4 Vt and Lf:; = eft - (S(Vt - 77(?75))
Theorem 3.1. For any ||, || € [0,1] and any s < t we have the semigroup perturbation formulae

t t
Q% — Qus = f Q% L Quy du = f Qe L5 Q% du (3.2)
S

s

In addition, for any n € P(S) we have

t t
625 (n) = 6s1(n) = J Oam) L2 3y bus du = j Gsu(M) L0 () Conutny®us du

w, 25 (1)
Proof. We check (3.2)) the fact that
0u(Q2Qup) = Q%% (Li — Lu = 8 V) Quy = € Q2 Lu Qup — 6 Q25 Vu Quyt

and

2u(Qsu@35) = —€ Quu Ly Q25 + 6 Qs Vi Q55

The perturbation analysis of the normalized semigroups qﬁg’; is slightly more involved.
Let Af’e be defined as A; by replacing (L, V;) by (LS, V;?). Notice that

h7 |60 = 0] = () + O(h)

For any given s < t, we consider the interpolating maps u € [s,t] — Ag:;t

defined by

5’
A% =y 0 ¢

s,ut S,U

12



On the other hand, for any s < u < u + h <t we have the decomposition

Agiﬂ-h,t(n) - Agilt(n)
= Gurnt (920 ) = Gut (8 () + b0t (6154, M) = Gt (22 m))
=~ (85 ) (0,500t )

tou (B30 + 025,00 = 62em)]) = dua (850n) + O
This implies that

Bl [Ai:;h’t(n) - Aifm(”)]

= —Au(¢gli(77))a¢giz(n)¢u,t + hil [ngﬁﬁ_h(n) - <Z5g’,2(77)] 6¢§12(n)¢u,t + O(h)

We conclude that 5
OulS ) = | NS08 ) = Mu(@em) | 2,50 ) St
On the other hand, we have

[43<(m) = M| (1) = € nTe ) = 6 0(f (Ve = (V)

By symmetry arguments, this ends the proof of the theorem. ]

Corollary 3.2. For any s <t and any n € P(S) we have the estimates

(H1) = [625(n) — ¢se(m) v < ¢ (€ + )
(Ha) = [625(0) = os(n) oo < (€ +8) (t—s)

for some finite constant ¢ whose value doesn’t depend on the parameters (s,t,n), nor on (€,9).

3.2 Particle stochastic flows

For any ¢t > 0, we let Am(&;) be the random jump occupation measure
Am(&) = m(&) —m(§-) = AMy = My — M,
with the martingale random field M; defined in (2.14). In this notation, we have

N GE[(AmE@)® (@@ ) | A | =meory) i) (33)
m(&s_—
with the operators FS.; defined in (1.11). When n = 2 the above formula resumes to
m(&r—)

QR [AM(E) () Am(€) (o) | Fil = 5 ml& Tps ()

= (M (f), MU (9))e = 0 M{(F), MU (G)),  with (F,G) defined in [2:13)

13



Definition 3.3. For anyt = s and n = 1, we consider the integral random operators

n

AGuu(m(€)) = N" o (AmEN® Tne, - am(eme. )00
and their first variational measure
T st = BEIA G (m(€) | Fo ]
Choosing n = 1 we have
oo (m(&)) 1= Algyy(m(E)) = bur(ml€) - bup(m(ce )

Arguing as in the proof of (2.8) and using (3.3), for any collection of functions f(™ € Osc(S) we
have the estimate

NV OE | Adu(m(&)® (A ©.. @ f7) | Fo | < A+ V] (3.4)

Proposition 3.4. For anyt > s and n = 1, we have

n—1

A (m(€)) = = (Am(EN)T T, 1Dt + xr A 6uu(m(E)) (3.5)

In addition, for any f € B(S) we have

T?n(gs_)(bs,t(f)

= (1 w6 (@UE ), Q) B, 0]+ T f0elh)

Lnes N
(3.6)
Proof. We have
1
AT (m(E)) = N [A@,t(m(&s)) - Y = <Am<fs>>®kaz(gs_)¢s,t]
1<k<sn
n Nn
= N A (m(E)) — S (Am(E) e, 00 = ()
This implies that
OB [A" st (m(&s)) | For] := Trnll(gs_)%,t
Nn ! Xn an 1 n+1
OB | (Am(E))® e, ybst | Fo | + 1 GE[A™64(m()) | Fo-]
This ends the proof of the proposition. |
Lemma 3.5. For any n > 1 and s < t we have the almost sure uniform estimates
(Hz) = [T e, < 2" 1A 1+ V) (3.7)

14



The detailed proof of the above estimate is provided in the appendix, on page
In the further development of this section, for any given time horizon ¢t and any f € B(S) we let

s € [0,8] = M. e (m())(f))
be the martingale s € [0,] — MY(F) associated with the function
(s,2) € [0,1] x Sy = F(s,2) = ¢s(m(x))(f)

We also denote by

5 € 10,1 1> M (e y6.4(f) + resp. Mg (QUE) (1))

the martingale MS(f) associated with the F-predictable bounded function

(5,2) € [0,] X 8 = [o(x) = Onie, 10or()(@) , resp. fulw) = QU (1) ()
We are now in position to state and to prove the main result of this section.

Theorem 3.6. For any time horizon t = 0 and any f € B(S) the interpolating function

s € [0,1] = ¢ (m(&:))(f) € R
satisfies the stochastic differential equation
L
VN

1 1 m(€s
+N Tfn(gs,)ﬁbs,t(f) ds — N m(fs)FLg (Qs,lt(5 )(1)aam(fs)¢s,t(f)) ds

dps, i (m(E:))(f) = AMS (On(e )¢ ..4(f)) + dME (6. (m())(S))

Proof. Observe that

1 C
Am(E) = As(m() ds + — M + Am(&s) ~ E(Am(&,) | 7 )

Lds

Using It6 formula and the backward formula (2.10) we have

d ¢s.(m(&:))(f) = —As(m(&s)) (Om(e) 052 (f)) ds + [dar(m(Ees) + dm(&s)) — daa(m(Ee-))] (f)

- jﬁ AM (Bun(e.yd. (1) + dMUG. 1 (m())(F)

1
o (AMS @A) 07 bs1(F) + OB [Ads s (m(€0))(f) — Am(Ee)Onie, y0s(f) | Fa] ds

This ends the proof of the theorem. |

Next corollary is a direct consequence of the recursion (3.6]).
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Corollary 3.7. For anyt > 0 and any f € B(S) we have the almost sure formula

st (&) (f) = P0,.(m(0)) ()

— e M (e 6.0() + M. ) ()
1 S
)

ml&y 1 5 1
m(gu)FLu,m(Su) (Qu,t@ )(1)76m(fu)¢u,t(f)) du+ —5 JO Tfn(gu_)gbu,t(f)idu

N2
(3.8)
Choosing s = t and taking the expectation in (3.8)) we obtain the following result.
Corollary 3.8. For anyt > 0 and f € D(S) we have the formula

E(m(&)(f)) — E(do,.(m(&))(f))

3.3 Some non asymptotic estimates

Theorem 3.9. For any time horizon t = 0 and any function f € Osc(S) we have

(H1) = [E(m(&)(f)) —m(f)
—ne(f)

for some finite constant ¢ whose value doesn’t depend on the parameters (t, N).

The proof of the above theorem is mainly based on the decomposition presented in corollary
The estimates rely on elementary but rather technical carré du champ inequalities, and semigroup
techniques. Thus, the detail of the proof is housed in the appendix, on page

The first estimate stated in the above corollary extend the bias estimate obtained in [23] to
time varying Feynman-Kac models. The central difference between homogeneous and time varying
models lies on the fact that we cannot use h-process techniques. The latter allows to interpret the
Feynman-Kac semigroups in terms of more conventional Markov semigroups.

We end this section with a some more or less direct consequences of the above estimates in the
analysis of the measures discussed in theorem

By corollary for any N > 1 we have

(Hi) = [n = millew < ¢/N - and - (Ho) == |7 = neflew < ¢ t/N

By (3.1), when (Hy) is satisfied, the Feynman-Kac model defined in terms of (L;,V ™) satisfy
conditions the stability property (Hi). Thus, using theorem we readily deduce the following
estimates.

Corollary 3.10. We have almost sure and uniform estimates

(Ho) = [E (m(¢) (N 1 &) = m(DI < /N
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We further assume that the Feynman-Kac model is associated with the historical process X; =
(X!)s<t discussed in 1} Also assume that the transition semigroup P; ; of the auxiliary process X;
satisfies condition (Hyp); that is (H{) is met. In this situation, using we check that the Feynman-
Kac model associated with the historical process X; satisfies (Hz). Thus, using corollary we
also deduce the following estimates.

Corollary 3.11. Assume that the Feynman-Kac model is associated with the historical process
Xt = (X])s<t of the auziliary process X{. In this situation, for any N > 1 we have almost sure and
uniform estimates

(Hp) = |E (m(G)(F) | &) = m(H <ct/N

The above results give some information on the bias of the occupation measures. We end this
section with some propagation of chaos estimate. Using (3.8)), for any functions f; € Osc(.S) we have

E (m(&)(f1) m(&)(f2)) — E (o, (m(£0))(f1) do.t(m(£0))(f2))

1 t m
"N, {(2)( ! JO E |60 (m(€))(f0) MEDT L ey (Qrk™ (V) Omieydua(£)) | du
Ded(1,2),(2,1

+]1,JO E [m(éu)rLu’m(gu) (Om(en) Dt (f1)s Om(en) Purt(f2)) ]
t 1
+[ 0| AvtmEn(h) jaGme) ()] ds

1 t [ 5 1
L E | duntm(e) (i) T, 6 (fz)] s
N2 (k,l)e{(lZ,Q),(Q,l)} JO t (Gt 2

By (3.4) and using the same lines of arguments as in the proof of theorem we check the following
estimates.

Corollary 3.12. For any time horizon t = 0 and any f,g € Osc(S) we have

(H) = [E(f(&) 9(&)) —m(f) m(g)l
(Hy) = [E(£(&) 9(&D) — me(f) me(9)]

In the settings of corollary we also check the almost sure estimate
(Hy) = [E(£(¢D) 9(¢}) | G') = m(F) mlg)| < c /N

We can extend the above arguments to any finite block of particles.

4 Many-body Feynman-Kac measures

4.1 Description of the models
We let Pf and IP’% be the distribution of the historical process

& 1= (E)sct = (&1, €)) o, and o= (Cext = (¢, ) oy € Di(S x Syo1)
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We set,
246 = e |- [ tm@s)(vs)ds] wd Q) = exp |- [ tm<53><vs>ds]

We recall for any f € B(S) the unbiased property

E (m(&)(f) Zi(€)) = ne(f)

For any 1 < i < N we also consider the historical process
@i = (CY)s<¢ and the reduced particle system (7 = (Cf, ... ,CtN) € Sy_1

Definition 4.1. For any time horizon t € R,, the N-many-body Feynman-Kac measures Qf €
P(D¢(S x Sy—1)) and Qg € P(D¢(S x Sny_1)) are defined by Radon-Nikodym the formulae

dQS/dP: == Zy(€)  and  dQS/dPS = Z,(C") (4.1)

4.2 A duality formula

In contrast with conventional changes of probability measures the exponential terms 7{/‘(5) and
Z;(¢Y) have unit mean but they are not martingales w.r.t. the laws P% and P{. We let Q¢ be the
Cti—marginal of Qf, with 1 <7< N.

Theorem 4.2. For any 1 <t < N and any time horizon t = 0 we have

Q=0 and Q =Q (4.2)

Proof. Observe that é = (&s)s<t and & := ((s)s<t coincide with the historical processes of processes
&s and (5. In addition, for any x = (z5)s<t € D¢(S) we have

Vi(2) := Vilay) = m(E)(V;) = m(&)(Va)

In this case, @f and Qg coincide with the ¢-time marginal of the measures of the measures @f and

@g defined as above by replacing (&, (, Vi) by (é,&,@) In this situation the state space S is
replaced by the space of paths R
S = ui=0 Di(S)

In addition, the generators (G, Hs, G, ) are replaced by the generators (ét, 7-Att7 jt) of the historical
processes (ét, G, 6{1). These generators are defined as above by replacing (S, L, V;) by (§, L, YA/t)
where L; stands for the generator of the historical process X; := (X;)s<¢- Thus, there is no loss of
generality to prove for the ¢t-marginal probability measures (@f,@f ) of (Q%,Q%).

For any (F,x) € (D(S x Sy_1) x Sy) we set

L)) = Y LiF, @)
1<i<N

LY(F)a) = Y LY(E )G = L(F)) = N m()(Vi) F()
1<i<N

18



Observe that

Gi(F)(x) = Li(F)(x) + Vi(a") J (Fy—i(u) = F(z)) m(z)(du)

This implies that

On the other hand, we have

1 . .
5 D Vi) Eei()
1<itj<N
1 4 . 1 . .
== D, V@) Ea)+ < Y [Vilah) Foa (@) + V(@) Fyes(2h)]
N 4~ N -
2SN 2<j<N

This implies that

oir) =8 (e (P + (1) (1= 3 ) V(@) Fya(

+ (1 - ]{,) Vi) Fer(6)) + V(D) thz@é)]} Zt<£>)

By symmetry arguments we check that

Qs (F) =E (

e+ 3 L)@ + (V-1 @) (1-3) Fel)

2<i<N

V=) &) 3 Faleh)| 2100)

This implies that

at@§<F>=E< LY (Fe)(E) + ), LiF)E) — 55— 2 Vilé) Fea(€))
2<i<N 2<iF <N
Y ) (1-2) @) S V) = Foued)| 200
N_22<i:|=j<N o N & N_22<i:|=j<N PN e t

We conclude that
0@ (F) = E (| Lo(Fe ) () - V(e F(&)

b % (e v [ (rp - ) mN@t“’“)(du))] zt@))

2<i<N
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By symmetry arguments we have
00 (F) = E(K(F)(&) Zi(©) = QI (F) with  K(F)(@) = Ha(F)(2) = V(a') F(x)
In much the same way, we have
25 (F) = E (K(F)(G) Z(¢h) = T; (K(F))
This ends the proof of the Lh.s. assertion in (£.2). Thus, choosing F(z) = m(z)(f) we have
m(f) = E(m&)(f) Z:(€))
1

= E(mC)(f) Z4c) = mh) + (1= 5 ) B Z4(c)

This ends the proof of the r.h.s. assertion in (4.2). The proof of the theorem is completed. |

We let X; be a random sample from m(&). Next corollary extend the duality formula presented
in [14] to continuous time Feynman-Kac models.

Corollary 4.3. For any F € B(S x D¢(S x Sy_1)) we have the duality formula
(F) =B (F(X,6) Zu(&)) = E (F(¢8) Zu¢h))

Proof. We associate with a given F € B(S x Di(S x Sy_1)) the function F € B(D¢(S x Sn_1))
defined for any

z = (21(s), (@2(s), ..., 2N (5)))s<t € Di(S x Sy_1) and  z(t) := (z'(t),..., 2 (t))

by the integral formula

F(z):= f m(x(t))(du) F(u,z)

Using we have B B B -
E (F((SS)SSt) Zt(g)) =E (F((CS)sst) Zt(cl))

On the other hand, for any 1 <7 < N we have

E((@'(s), . &M (s))s<t) = Fz'(8), (' (5), ..., a™ (5))s<t))
Using we also have

E (E((§S)8<t) 7,5(5)) =E (E((CS)SG) 7t(gl)) =E (F(Ctla (@)sgt) Zt(gl))

This ends the proof of the corollary. |
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4.3 Particle Gibbs samplers

We further assume that reference process Xy = (X.)s<t € Di(S’) in the Feynman-Kac measure
is the historical of some auxiliary process X[ taking values in some metric space (S, dg). In this
case, X; is a Markov process taking values in S = Us>0Ds(S’). Also assume that the potential
function V; is chosen so that Vi(X;) = V/(X]). In this situation, the mean field particle model
& coincide with the genealogical tree evolutions of the mean field particle interpretation of the
Feynman-Kac measures associated with (X7, V/).

In the same vein, the particle model (; is path space genealogical tree based particle model. For
instance ¢} = (¢!)s<; is itself the historical process of the path-space process ¢! € Dy(S’); so that
the jumps onto ¢} have to be interpreted as a jump of an ancestral line onto ¢}

In this situation, for any given time horizon ¢ > 0, we have

y(d(z1,22)) € P(Ey x Ey) with Ey = Dy(S’) and Ej:= Di(S x Sy_1)

Observe that for any z9 := (22(5))s<t € F2 := D(S x Sy—1) and any s < t we have
29(5) 1= (21(5), (2(5), .., 25 ())) € D(S) x D(S) w1

In this notation, we have desintegration formulae

I, (d(z1, 22)) = ne(dz1) My(z1,dz) and  IL(d(z1, 22)) = Qf (dz2) As(zo,d21)
In the above display M stands for the Markov transition from Fj into Fs defined by

My (21, dzs) = P(G € dzo | ¢} = 21)
and A; the Markov transition from Es into E; defined by
Ad(z2,dz1) 1= m(z2(0) (d21)

The transition of the conventional Gibbs-sampler with target measure II; on E := (E; x E») is
defined by
Gt((zl, ZQ),d(El,EQ)) = Mt(zl, d?g) At(gg,dzl) (43)

This transition is summarized in the following synthetic diagram

< 21 > < z1 ) (Zl ~ m(z2(t)) >
—> _ ~ 1 —> o
29 Zog ~ (G| ¢ =21) 22
By construction, we have the duality property
i (d(21, 22)) Gi((21, 22), d(Z1,72)) = Ii(d(Z1,%2)) Gy ((Z1,7%2),d(21, 22)) (4.4)
with the backward transition
Gy ((21,%2),d(21, 22)) = At(Z2,dz1) My(21, d22)

Recall that n; coincide with the marginal II} of I, on Ey = Dy(S’). In addition, integrating (4.4)
w.r.t. Zo we also have the reversibility property

nt(dzl) Kt(zl, dfl) = nt(dzl) Kt(fl, dzl)
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with the Markov transition K; = M;A; from Dy(S’) into itself defined by

Ki(7)() i= | Ko, d21) 10 =B (m(@($) | & = =)

We further assume that the Markov transitions of X satisty condition (Hp). In this situation,
combining corollary with corollary [3.11}, for any time horizon ¢ = 0, any function f with unit
oscillations and any p € P(D(S")) and n > 1 we check that

IKe(f) — ne(f)] < et/N, which implies osc(K(f)) < ct/N, which implies ||uK} — n¢l|¢ < (ct/N)"

for some finite constant ¢ whose value doesn’t depend on the parameters (f,t, N).

Appendix
Proof of

For any functions f; € Osc(S) and any | < k we have

E [ [ amE)(f) | ft]

1<i<k

< % [ Z (Vt(ft)"‘)\t(ft))] Ni 7 A+ V]at

1<i<N

Nk:

= NF |Tk m(Es )¢st(f)| = W

| (Am(e)®ED a0 0uu(f) | o ||

1
0;E
[ (€)QIE (1)

< BRI\ V|

= N

(Am(é) (Qgt(gs’)(1)>)k AME) e,y 054 (F) | ;_”

Proof of theorem [3.9]
We use (1.12)) to check that

MEITL, ey (i (1), O 65a(1)
= QU (1)) m(E)T L, e, (QT4(1), Oy bse ()

+(msQIE (1)) [Ds,6(ns) — bse(m(EN(F) METL, e, (QU(1)

Using (1.6) we also have the estimate

M€, e, (@275’55%1),am@s)qbs,t(f))\<e3q 05¢(Qu s (1) MENT L, ey (Q5(1)

+€2q \/m §8 Lis,mi(es) \/m 55 L mes) (am bs t(f))
(4.5)
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On the other hand, we have

O 0oa(f) = QU f = m(f)] and QUy(f)(w) =B (F(Xy) e IVulXo du | X, — )
S 55ngt(f) = —Lg( Zst(f)) + Vs QZ,St(f)
— 2,(QUUNQL9) = —QUf) Lo(@U3(9)) — QLi9) Lo(QU4(D) + 2V QL)@ (9)

We also have

Lew(f) = Le(f) + Ve [u(f) = fT = Le(f) = Lepu(f) = Vi [f — u(f)]
This yields the formula

e, (f,9) =L, (f,9) = f n(dz) n(dy) Vi(y) [f(y) — f(@)][g(y) — g()]
= n(Vi(fg)) + n(Vi) n(fg) —n(fVi) n(g) —n(gVt) n(f)

For any given time horizon t and s € [0, ] we have

dm(&:)(Qe(QY(9)) — 5 dML(Q (R (9))
= m(8s) [Lsm(e,) (QU(NQE(9) — QU(F) Lo(QT(9)) — Qli(g) Ls(QL(f)) +2Vs QU(NQL(9)] ds
= m(&s) [Ts,Ls,m(gs)( (), Q(9)) + Ve QLL(f) (m(&:)Q%(9) — Qi(9))

+V2 Q1i(9) (m(&)QY(f) — QI (N) + 2V, QI4())QL(9)] ds
This implies that

m(E)(Fg) — mE) QLN (D) — —= MUQ"(HQ™(9))

=

t
- jo MENTs 1 e (@) QT (0)) ds

+JO m(E) [Ve QU(f) (m(ENQT(9) — Q1(9))

+Ve QY3(9) (m(E)QIS) — QY (1) +2(Vs — ns(V3)) QI (@1 (9)] ds

After some simplifications we check that

t
jo MENT s L e, (@), QP (9)) ds

= m(&)(f9) — m(€) QI (NQ(9)) — jﬁ MUQ"(NQ™(9))

i L [204(V) m(E)(QT(NQ(9))

—m(&s) (Vs QI3(F)) m(&)Q1i(g) — m(&)(Vs QF3(9)) m(&)QIA(f)] ds

23



Choosing f = g = 1 and taking the expectations we find that

Jt E [m(gs)FS,Ls,m(Es)(ngt(l))] ds

0
= 1—no(Q%(1)*) +2 fo E [15(Vs) m(&)(Q7(1)?) — m(&)(Vs Q14(1)) m(&)QT(1)] ds

<1+2e% |Vt
Choosing f = g = h —m(h), with h € Osc(S) and taking the expectations we find that

Jo E [m(fs)Fs,Ls_m(gs) (. ¢>s,t(h))] ds
=E [m(ét)([h - Ut(h)]2)] — no([§n0¢07t(h)]2)

t
+2f0 E [1s(Vs) m(&6) ([0, b6 (R)]?) — m(€6) (Vi 0y, Ps,6(R)) () (O, bs,6(R))] ds
<1+4e |Vt
For any f € Osc(S) combining with Cauchy-Schwartz inequality we find that that
t
|} T e (). Oueaa (1) s < 26 [1-+46 V]

Combining the above estimate with (3.7) and corollary we conclude that

(Ha) = N [E(m(&)(f)) — E(bos(m(&0))(f))] < 2¢™ (1 +4e* V]| + % 2e A+ Vl) t

We further assume that (H;) is satisfied. In this case, using (4.5) we also have
IMmETL, ey (QZt(SS)(l)vam(&)%,t(f)) | < e ae U9 m(g)Iy, Ly mies) (Qe2(1))

+e2 \/m(fs) omien ( \/m EILL, ieny (Ons@st(f))
For any 5 € R we set
D) = D QI()(@)
- E (f(Xt) e L VulXu) du | x x) with Vi(z) = Vi(z) - §
Arguing as above, we have

05(Q™(NQ™(9)) = —Q™(f) Ls(Q7(9)) — @%,(9) Ls(Q™(f)) +2 Vi Q%(f) Q%,(9)

and

dm(€)( Q1O (9)) — —

VN
= &) | Tt ey QL) QL)) + Vi QLF) (m(€)QL(9) — QUi(9)

dMs(én,t(f)én,t(g))

Vi Qlilg) (mlE)QU(S) = QL) + 275 QL(f) Qlilo)| ds
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This implies that

t ~
f U m(ENTs L, e, (@), QT (9)) ds

0

= m(&)(fg) — € m(€)(QU(HQY, M(Q"(H)Q"4(9))

1
o)~ 75
# D 200,00+ B) m(E)(@QU ()R ) = m(E)V: QL) m€)QL (o)

—m (&) (Vs Qy3(9)) m(&)QI(f)] ds

Choosing f =g =1 and B < 0 we have

[ 50 [T, (@] s
=1 - np(QR(1)?)
+2 JO 2T E | (n,(V2) + B) ml€)(QU (1)) = m(g) (Vs QU(1) m(€)QU(1)| ds
<l+e (14287 VI) =1+ €2 (1+487V]) when §=-p/2
Choosing f = g = [h — m(h)], with h € Osc(S) and 0 < 3 < 8 we have
[} e B (€ 00 60a0)]

E [m(&)([h — n(h)]?)]

0

t ~
<1+ 2722V + 5)J e~ 2B=A)t=9) g
0

SL+r°QVI+5) (B=F) ' =1+r2@|V[F " +1) when §=5/2

We end the proof of the theorem using the fact that
ML, ey (@ (1), Oy 652() |

<ML+ a) e PEIPm(E)T L, () (QU(L) + e PIPm(ENT L, ) (9n,ds:(f))

w2 [ V) + B) ml€a) ([0 0uaWIE) = (Ve 2y, D) ()00, 60a(h)] ds

In the last assertion we have used the fact that the estimate v/ab < ca +b/e, for all a,b,c > 0. This

ends the proof of the theorem.
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