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Abstract

We consider the problem of collectively delivering some package from a specified
source to a designated target location in a graph, using multiple mobile agents.
Each agent has limited energy which constrains the distance it can move. Hence
multiple agents need to collaborate to move the package, each agent handing
over the package to the next agent to carry it forward. Given the positions of
the agents in the graph and their respective budgets, the problem of finding a
feasible movement schedule for the agents can be challenging. We consider two
variants of the problem: in non-returning delivery, the agents can stop any-
where; whereas in returning delivery, each agent needs to return to its starting
location, a variant which has not been studied before.

We first provide a polynomial-time algorithm for returning delivery on trees,
which is in contrast to the known (weak) NP-hardness of the non-returning ver-
sion. In addition, we give resource-augmented algorithms for returning delivery
in general graphs. Finally, we give tight lower bounds on the required resource
augmentation for both variants of the problem. In this sense, our results close
the gap left by previous research.

Keywords: delivery; mobile agents; limited battery; resource augmentation;
budget

1. Introduction

We consider a team of mobile robots which are assigned a task that they
need to perform collaboratively. Even simple tasks such as collecting an item
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and delivering it to a target location can become challenging when it involves
the cooperation of several agents. The difficulty of collaboration can be due5

to several limitations of the agents, such as limited communication, restricted
vision or the lack of persistent memory, and this has been the subject of exten-
sive research (see [1] for a recent survey). When considering agents that move
physically (such as mobile robots or automated vehicles), a major limitation of
the agents are their energy resources, which restricts the travel distance of the10

agent. This is particularly true for small battery operated robots or drones, for
which the energy limitation is the real bottleneck. We consider a set of mobile
agents where each agent i has a budget Bi on the distance it can move, as in
[2, 3]. We model their environment as an undirected edge-weighted graph G,
with each agent starting on some vertex of G and traveling along edges of G,15

until it runs out of energy and stops forever. In this model, the agents are
obliged to collaborate as no single agent can usually perform the required task
on its own. Our goal is to design centralized algorithms for the agents for such
a type of collaboration.

The problem we consider is that of moving some physical item (henceforth20

called package) from a given source location to a target location in the graph
G using a subset of the agents. Although the problem sounds simple, finding
a valid schedule for the agents to deliver the package is computationally hard,
even if we are given full information on the graph and the location of the agents.
Given a graph G with designated source and target vertices, and k agents with25

given starting locations and energy budgets, the decision problem of whether
the agents can collectively deliver a single package from the source to the target
node in G is called BudgetedDelivery. Chalopin et al. [3, 4] showed that
Non-Returning BudgetedDelivery is weakly NP-hard on paths and strongly
NP-hard on general graphs.30

Unlike previous papers, we also consider a version of the problem where each
agent needs to return to its starting location after completing its task. This is a
natural assumption, e.g. for robots that need to return to their docking station
for maintenance or recharging. We call this variant Returning BudgetedDe-
livery. Surprisingly, this variant of the problem is easier to solve when the35

graph is a tree (unlike the original version of the problem), but we show it to
be strongly NP-hard even for planar graphs. We present a polynomial time
algorithm for solving Returning BudgetedDelivery on trees.

For arbitrary graphs, we are interested in resource-augmented algorithms.
Since finding a feasible schedule for BudgetedDelivery is computationally40

hard when the agents have just enough energy to make delivery possible, we
consider augmenting the energy of each robot by a constant factor γ, to enable
a polynomial-time solution to the problem. Given an instance of Budgeted-
Delivery and some γ > 1, we have a γ-resource-augmented algorithm, if the
algorithm, running in polynomial time, either (correctly) answers that there is45

no feasible schedule, or finds a feasible schedule for the modified instance with
augmented budgets B̂i = γ ·Bi for each agent i.
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Our Model. We consider an undirected edge-weighted graph G = (V,E) with
n = |V | vertices and m = |E| edges. The weight (think length) w(e) of an edge
e ∈ E defines the energy required to cross the edge in either direction in the50

following sense: We have k mobile agents which are initially placed on arbitrary
nodes p1, . . . , pk of G, called starting positions. Each agent i has an initially
assigned energy budget Bi ∈ R≥0 and can move along the edges of the graph, for
a total distance of at most Bi (if an agent travels only on a part of an edge, its
traveled distance is downscaled proportionally to the part traveled). The agents55

are required to move a single package from a given source node s to a target
node t. An agent can pick up the package from its current location, carry it to
another location (a vertex or a point inside an edge), and drop it there. Agents
have global knowledge of the graph and are controlled by a central entity.

Given a graph G with vertices s 6= t ∈ V (G) and the starting nodes and60

budgets for the k agents, we define BudgetedDelivery as the decision prob-
lem of whether the agents can collectively deliver the package without exceeding
their individual budgets. In Returning BudgetedDelivery each agent needs
to return to its respective starting position before using up its energy budget;
in the Non-Returning version we do not place such a restriction on the agents65

and an agent may terminate at any location in the graph.
A solution to BudgetedDelivery is given in the form of a schedule which
prescribes for each agent whether it moves and if so, the two locations in which
it has to pick up and drop off the package. A schedule is feasible if the package
can be delivered from s to t.70

Related Work. Delivery problems in the graph have been usually studied for
a single agent moving in the graph. For example, the well known Traveling
salesman problem (TSP) or the Chinese postman problem (CPP) require an
agent to deliver packets to multiple destinations located in the nodes of the
graph or the edges of the graph. The optimization problem of minimizing the75

total distance traveled is known to be NP-hard [5] for TSP, but can be solved
in polynomial time for the CPP [6].

When the graph is not known in advance, the problem of exploring a graph
by a single agent has been studied with the objective of minimizing the number
of edges traversed (see e.g. [7, 8]). Exploration by a team of two agents that80

can communicate at a distance has been studied by Bender and Slonim [9] for
digraphs without node identifiers. The model of energy-constrained robot was
introduced by Betke et al. [10] for single agent exploration of grid graphs. Later
Awerbuch et al. [11] studied the same problem for general graphs. In both these
papers, the agent could return to its starting node to refuel and between two85

visits to the starting node, the agent could traverse at most B edges. Duncan
et al. [12] studied a similar model where the agent is tied with a rope of length
B to the starting location and they optimized the exploration time, giving an
O(m) time algorithm.

For energy-constrained agents without the option of refueling, multiple agents90

may be needed to explore even graphs of restricted diameter. Given a graph
G and k agents starting from the same location, each having an energy con-
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straint of B, deciding whether G can be explored by the agents is NP-hard,
even if the graph G is a tree [13]. Dynia et al. studied the online version of
the problem [14, 15]. They presented algorithms for exploration of trees by k95

agents when the energy of each agent is augmented by a constant factor over
the minimum energy B required per agent in the offline solution. Das et al. [16]
presented online algorithms that optimize the number of agents used for tree
exploration when each agent has a fixed energy bound B. On the other hand,
Dereniowski et al. [17] gave an optimal time algorithm for exploring general100

graphs using a large number of agents. Ortolf et al. [18] showed bounds on the
competitive ratio of online exploration of grid graphs with obstacles, using k
agents.

When multiple agents start from arbitrary locations in a graph, optimizing
the total energy consumption of the agents is computationally hard for sev-105

eral formation problems which require the agents to place themselves in desired
configurations (e.g. connected or independent configurations) in a graph. De-
maine et al. [19] studied such optimization problems for multiple identical agents
and provided approximation algorithms and inapproximability results. Similar
problems have been studied for agents moving in the visibility graphs of simple110

polygons; optimizing either the total energy consumed or the maximum energy
consumed per agent can be hard to approximate even in this setting, as shown
by Bilo et al. [20]. For the case where the graph is a continuous line, Czyzowicz
et al. [21] studied the barrier coverage problem, where sensors, represented by
individual intervals, have to be moved so that they collectively cover a given in-115

terval. They showed that the maximum movement can be minimized efficiently.
Dobrev et al. [22] later studied the more general problem for mobile sensors in
a plane with several intervals to cover.

A recent paper studies energy-efficient delivery of multiple packages by het-
erogeneous agents, which have different rates of energy consumption (but no120

constraints on the amount of energy they can use) [23, 24]. This setting also al-
lows for the design of truthful mechansims [25], in a game-theoretic model, where
the rate of energy consumption is information private to each agent. Anaya et
al. [2] studied centralized and distributed algorithms for the information ex-
change by energy-constrained agents, in particular the problem of transferring125

information from one agent to all others (Broadcast) and from all agents to one
agent (Convergecast). For both problems, they provided hardness results for
trees and approximation algorithms for arbitrary graphs. The budgeted deliv-
ery problem was studied by Chalopin et al. [3] who presented hardness results
for general graphs as well as resource-augmented algorithms. For the simpler130

case of lines, [4] proved that the problem is weakly NP-hard and presented a
quasi-pseudo-polynomial time algorithm. Czyzowicz et al. [26] recently showed
that the problems of budgeted delivery, broadcast and convergecast remain NP-
hard for general graphs even if the agents are allowed to exchange energy when
they meet.135

Our Contribution. This is the first paper to study the Returning version of
BudgetedDelivery. We first show that this problem can be solved in O(n+
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k log k) time for lines and trees (Section 2). This is in sharp contrast to the Non-
Returning version which was shown to be weakly NP-hard [4] even on lines. In
Section 4, we prove that Returning BudgetedDelivery is NP-hard even for140

planar graphs. For arbitrary graphs with arbitrary values of agent budgets, we
present a 2-resource-augmented algorithm and we prove that this is the best
possible, as there exists no (2−ε)-resource-augmented algorithm unless P = NP
(Section 5). We show that this bound can be broken when the agents have the
same energy budget and we present a (2− 2/k)-resource-augmented algorithm145

for this case.
For the Non-Returning version of the BudgetedDelivery, we close the

gaps left open by previous research [3, 4]. In particular we prove that this
variant of the problem is also strongly NP-hard on planar graphs, while it was
known to be strongly NP-hard for general graphs and weakly NP-hard on trees.150

We also show tightness of the 3-resource-augmented algorithm for the problem,
presented in [3]. Finally, in Section 6, we investigate the source of hardness for
BudgetedDelivery and show that the problem becomes easy when the order
in which the agents pick up the package is known in advance.

2. Returning BudgetedDelivery on the Tree155

We study the Returning BudgetedDelivery on a tree and show that it
can be solved in polynomial time. We immediately observe that this problem is
reducible to the Returning BudgetedDelivery on a path: There is a unique
s-t path on a tree and we can move each agent from her starting position to
the nearest node on this s-t path while subtracting from her budget twice the160

distance traveled. The path problem now has an equivalent geometric repre-
sentation on the line: the source node s, the target node t, and the starting
positions of the agents pi are coordinates of the real line. We assume s < t, i.e.,
the package needs to be delivered from left to right.

Without loss of generality, we consider schedules in which every agent i that165

moves uses all its budget Bi. Because every agent needs to return to its starting
position, an agent i can carry the package on any interval of size Bi/2 that
contains the starting position pi. For every agent i, let li = pi − Bi/2 denote
the leftmost point where she can pick up a package, and let ri = pi + Bi/2
be the rightmost point to where she can deliver the package. The Returning170

BudgetedDelivery on a line now becomes the following covering problem:
Can we choose, for every i, an interval Ii of size Bi/2 that lies completely
within the region [li, ri] such that the segment [s, t] is covered by the chosen
intervals, i.e., such that [s, t] ⊆ ⋃i Ii?

The following greedy algorithm solves the covering problem. The algorithm175

works iteratively in rounds r = 1, 2, . . .. We initially set s1 = s. We stop the
algorithm whenever sr ≥ t, and return true. In round r, we pick i∗ having
the smallest ri∗ among all not yet used agents i with li ≤ sr < ri, and set
sr+1 = min{ri∗ , sr + Bi∗/2} and Ii∗ = (sr+1 − Bi∗/2, sr+1), and continue with
the next round r+ 1. If we cannot choose i∗, we stop the algorithm and return180

false.
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Theorem 1. There is an O(n + k log k)-time algorithm for Returning Bud-
getedDelivery on a tree.

Proof. The reduction from a tree to a path takes O(n) time using breadth-first
search from s and the algorithm greedy can be implemented in time O(k log k)185

using a priority queue. For the correctness, we now show that greedy returns a
solution to the covering problem if and only if there exists one.

Greedy can be seen as advancing the cover of [s, t] from left to right by
adding intervals Ii. Whenever it decides upon Ii, it will set sr to the respective
endpoint of Ii, and never ever consider i again or change the placement of Ii190

within the boundaries [li, ri]. Thus, whenever sr ≥ t, the intervals Ii form a
cover of [s, t].

We now show that if a cover exists, greedy finds one. Observe first that a
cover can be given by a subset of the agents {i1, . . . , it}, t ≤ k, and by their
ordering (i1, i2, . . .), according to the right endpoints of their intervals Iij , since195

we can reconstruct a covering by always placing the respective interval Iij at
the rightmost possible position.

Suppose, for contradiction, that greedy fails. Let (i∗1, i
∗
2, . . .) be a minimal

cover of [s, t] that agrees with the greedy schedule (i1, i2, . . .) in the maximum
number of first agents i1, . . . , ij . Hence, j + 1 is the first position such that200

i∗j+1 6= ij+1. The left endpoints of I∗j+1 and Ij+1 correspond to sr+1 in our
algorithm. If agent ij+1 does not appear in the solution (i∗1, i

∗
2, . . .), adding ij+1

to that solution and deleting (if the solution is not a minimal cover) some of the
subsequent ones results in a minimal cover that agrees on the first j+ 1 agents,
a contradiction.205

If agent ij+1 appears in the solution (i∗1, i
∗
2, . . .), say, as agent i∗j+δ, for some

δ ≥ 2, then we modify this cover by swapping i∗j+1 with i∗j+δ. We claim that the
new solution still covers [s, t]. To see this, let us first show that δ = 2. Recall that
both the agent ij+1 = i∗j+δ and the agent i∗j+1 can extend the covering beyond
sr+1. By the greedy choice, it follows that rij+1

= ri∗j+δ ≤ ri∗j+1
. Since every210

agent i covers with its interval Ii half of its region [li, ri], it follows that in the
solution (i∗1, i

∗
2, . . .) agents i∗j+1 and i∗j+δ together cover the region [sr+1, ri∗j+δ ]

(both agents can place an interval at sr+1, and both agents’ intervals have
length at least half of the length of the region [sr+1, ri∗j+δ ]). By the minimality
of the solution (i∗1, i

∗
2, . . .), it follows that i∗j+δ = i∗j+2. Obviously, the two agents215

do not cover more than this region (because agent i∗j+δ’s righmost endpoint of
its interval is ri∗j+δ). Now, since δ = 2, and because of the fact that agents
i∗j+1 and i∗j+δ can place their intervals within the region [sr+1, ri∗j+δ ], it follows

sr+1 s∗r+2 s∗r+3 sr+1 sr+2 sr+3

pi∗j+δ pi∗j+1

pi∗j+δ pi∗j+1

ri∗j+δli∗j+δ li∗j+1
ri∗j+1

li∗j+δ li∗j+1
ri∗j+1

ri∗j+δ

swapping
i∗j+1 and i∗j+δ

Figure 1: Changing the order of agents i∗j+1 and i∗j+δ in the schedule.
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that exchanging the order of the two agents produces a solution where the
region [sr+1, ri∗j+δ ] will be still covered (and perhaps even more), and the agents220

i∗j+3, i
∗
j+4, . . . can place the intervals in the very same way. See Figure 1 for

illustration of the situation.

3. Resource Augmentation Algorithms

We now look at general graphs G = (V,E). As we will see in the next
section, BudgetedDelivery is NP-hard, hence we augment the budget of225

each agent by a factor γ > 1 to allow for polynomial-time solutions. For
non-returning agents, a min

{
3, 1 + max Bi

Bj

}
-resource-augmented algorithm was

given by Chalopin et. al. [3]. We first provide a 2-resource-augmented algorithm
for Returning BudgetedDelivery. This is tight as there is no polynomial-time
(2− ε)-resource-augmented algorithm, unless P = NP (Section 5). If, however,230

the budgets of the agents are similar, we can go below the 2-barrier: In this
case, we present a

(
1 + k−2

k max Bi
Bj

)
-resource-augmented algorithm. Through-

out this section, we assume that there is no feasible schedule with a single agent,
which we can easily verify.

Preliminaries. We denote by d(u, v) the distance of two points u, v ∈ G. As-235

sume an agent i with budget Bi starts in u and moves first to v. Which
locations in the graph (vertices and positions on the edges) are still reach-
able by i so that he has sufficient energy left to move back to u? We define
the ellipsoid E(u, v,Bi) = {p ∈ G | d(u, v) + d(v, p) + d(p, u) ≤ Bi} and the ball
B(u, Bi2 ) = E(u, u,Bi). It is easy to see that E(u, v,Bi) can be (i) computed240

in polynomial time by running Dijkstra’s shortest path algorithm from both u
and v and (ii) represented in linear space: We store all vertices p ∈ V with
p ∈ E(u, v,Bi), and for each edge (p, q) ∈ E with p ∈ E(u, v,Bi), q /∈ E(u, v,Bi)
we store the furthest point of (p, q) still reachable by i.

Theorem 2 (2-resource-augmentation). There is a polynomial-time 2-resource-245

augmented algorithm for Returning BudgetedDelivery.

Proof. Denote by pi the starting position of agent i. We consider the balls
Bi := B(pi,

Bi
2 ) around all agents, as well as the balls B(s, 0) and B(t, 0) of

radius 0 around s and t. We compute the intersection graph GI of the balls,
which can be done in polynomial time. If there is a feasible schedule, then there250

must be a path from B(s, 0) to B(t, 0) in GI (for example the path given by the
balls around the agents in the feasible schedule).

If there is no path from B(s, 0) to B(t, 0), then the algorithm outputs that
there is no feasible schedule with non-augmented budgets. Otherwise we can get
a 2-resource-augmentation as follows: Pick a shortest path from B(s, 0) to B(t, 0)255

in GI and denote by ` ≤ k the number of agents on this path, labeled without
loss of generality 1, 2, . . . , `. For each edge on the shortest path, we specify a
handover point hi ∈ Bi ∩ Bi+1 in G (where we set h0 = s and h` = t). Then
each agent i, i = 1, . . . , ` walks from its starting position pi to the handover
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point hi−1 to pick up the package, goes on to the handover point hi to drop the260

package there, and returns home to pi. Since hi−1, hi ∈ B(pi,
Bi
2 ), the budget

needed by agent i to do so is at most B̂i = d(pi, hi−1) +d(hi−1, hi) +d(hi, pi) ≤
Bi
2 + 2 · Bi2 + Bi

2 = 2 ·Bi.

Theorem 3. There is a polynomial-time
(
1 + k−2

k max
Bj
Bi

)
-resource-augmented

algorithm for Returning BudgetedDelivery.265

Proof. We first “guess” the first agent a and the last agent b of the feasible sched-
ule (by trying all

(
k
2

)
pairs). In contrast to Theorem 2, we can in this way get a

2-resource-augmented solution in which a and b only need their original budgets.
Intuitively, we can evenly redistribute the remaining part of B̂a and B̂b among
all k agents, such that for each agent i we have B̂i ≤ Bi+ k−2

k maxBj . Without270

loss of generality, we assume that agent a walks from its starting position on a
shortest path to s to pick up the package, and that agent b walks home directly
after dropping the package at t. Hence consider the ellipsoids Ba := E(pa, s, Ba)
and Bb := E(pb, t, Bb) as well as the balls Bi := B(pi,

Bi
2 ) around the starting

positions of all other agents and compute their intersection graph GI .275

We denote by i = 1, . . . , ` the agents on a shortest path from Ba to Bb in
GI (if any), where a = 1, b = ` ≤ k and specify the following points: h0 = s,
hi ∈ Bi ∩ Bi+1, and h` = t. If the agents handover the package at the locations
hi, we get a 2-resource-augmentation where the agents 1 and ` use only their
original budget. Instead we let them help their neighbours 2 and `−1 by `−2

` B2280

and `−2
` B`−1, respectively. Those agents further propagate the surplus towards

the agent(s) in the middle, see Figure 2 (right). Specifically, we let the agents
move as follows:

Agent 1 goes to h0 to pick up the package and then goes on to h1. Then
he moves towards p2 along the shortest path from h1 to p2 by a `−2

` -fraction285

of d(h1, p2), drops off the package and returns home. Since d(h1, p2) ≤ B2

2 ,
the budget needed to do so is at most d(p1, h0) + d(h0, h1) + 2 `−2` d(h1, p2) +

d(h1, p1) ≤ B1 + `−2
` B2. Agents i = 2, . . . , b `2c get help from their preceding

agent and thus can help the following agent: Agent i walks from its starting
position pi by a 2(i−1)

` -fraction towards hi−1 to pick up the package and then290

returns home. Then i goes on to the point hi and from there on by a `−2i
` -

fraction towards pi+1 to drop off the package. Finally, agent i returns home
to pi. Since hi−1, hi ∈ Bi and hi ∈ Bi+1, the budget needed by agent i to

s

p1 p7

t

p1 p7
p2

p3

p4

p5

p6

h3

h1

s = h0 t = h7

Figure 2: (left) Feasible schedule. (right) Schedule with
(
1 + 5

7
max

Bj
Bi

)
-resource-

augmentation.
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do so is at most 2 2(i−1)
` d(pi, hi−1) + 2d(pi, hi) + 2 `−2i` d(hi, pi+1) ≤ 2(i−1)

` Bi +

Bi + `−2i
` Bi+1 ≤ Bi + `−2

` max {Bi, Bi+1}. Agents i = d `+2
2 e, . . . , ` help in the295

same way their preceding agent, hence they need a budget of at most Bi +
`−2
` max {Bi−1, Bi}. If ` is odd there is an additional middle agent i = `+1

2 who
needs a budget of at most 2 `−1` d(pi, hi−1)+2 `−1` d(pi, hi+1) ≤ 1+ `−2

` Bi. Hence
we achieve a resource augmentation of 1 + `−2

` max
Bj
Bi
≤ 1 + k−2

k max
Bj
Bi

.

4. Hardness for Planar Graphs300

In this section, we show that BudgetedDelivery in a planar graph is
strongly NP-hard, both for the Returning version and the Non-Returning ver-
sion. Both proofs are based on the same reduction from Planar3SAT.

Planar 3SAT. Let F be a conjunctive normal form 3CNF with a set of vari-
ables V = {v1, . . . , vx} and a set of clauses C = {c1, . . . , cy}. Each clause305

is a disjunction of at most three literals `(vi) ∨ `(vj) ∨ `(vk), where `(vi) ∈
{vi, vi}. We can represent F by a graph H(F ) = (C ∪ V,A1 ∪ A2) which
we build as follows: We start with a bipartite graph with the node set N
consisting of all clauses and all variables and an edge set A1 which contains
an edge between each clause c and variable v if and only if v or v is con-310

tained in c, A1 = {{ci, vj} | vj ∈ ci or vj ∈ ci}. To this graph we add a cy-
cle A2 consisting of edges between all pairs of consecutive variables, A2 =
{{vj , vj+1} | 1 ≤ j < x} ∪ {vx, v1} . We call F planar if there is a plane em-
bedding of H(F ) which at each variable node has all paths representing positive
literals on one side of the cycle A2 and all paths representing negative literals on315

the other side of A2. The decision problem Planar3SAT of finding whether
a given planar 3CNF F is satisfiable or not is NP-complete, a result due to
Lichtenstein [27]. We assume without loss of generality that every clause con-
tains at most one literal per variable. For an example of such an embedding,
see Figure 3 (left).320

Building the Delivery Graph. We first describe how to turn a plane embedding
of a planar 3CNF graph H(F ) into a delivery graph G(F ), see Figure 3. Only
later we will define edge weights, the agents’ starting positions and their energy
budgets. We will focus on Returning BudgetedDelivery; the only difference

v1 ∨ v2 v2 ∨ v3 ∨ v4

v1 ∨ v2 ∨ v4 v2 ∨ v3 ∨ v4

v1 v2 v3

v4

v4 s t
true

false

true

false true

false

true

false

v2v1 v3 v4

c2,3 c3,4

l2,c l3,c l4,c

Figure 3: (left) A plane embedding of a 3CNF F which is satisfied by (v1, v2, v3, v4) =
(true, false, false, true). (right) Its transformation to the corresponding delivery graph.
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for non-returning agents lies in their budgets, we provide adapted values for325

non-returning agents in footnotes.
We transform the graph in four sequential steps: First we dissolve the edge

{vx, v1} and replace it by an edge {vx, vx+1}. Secondly, denote by degH(F ),A1
(v)

the total number of positive literal edges and negative literal edges adjacent to v.
Then we can “disconnect” and “reconnect” each variable node vi (1 ≤ i ≤ n) from330

all of its adjacent clause nodes as follows: We delete all edges {{vi, c}} ⊆ A1

and split {vi, vi+1} into two paths pi,true and pi,false, on which we place a total
of degH(F ),A1

(v) internal literal nodes li,c: If vi is contained in a clause c –
and thus we previously deleted {vi, c} – we place li,c on pi,false and “reconnect”
the variable by adding an edge between li,c and the clause node c. Else if vi335

is contained in c we proceed similarly (putting the node li,c on pi,true instead).
As a third step, depending on the number of literals of each clause c, we may
modify its node: If c contains only a single literal, we delete the c node (but we
keep its literal node li,c). If c contains two literals `(vi), `(vj), we rename the
node to ci,j . If c is a disjunction of three literals `(vi), `(vj), `(vk), we split it into340

two nodes ci,j (connected to li,c, lj,c) and cj,k (connected to lj,c, lk,c). Finally,
we place the package on the first variable node s := v1 and set its destination
to t := vx+1.

We remark that all four steps can be implemented such that the resulting
delivery graph G(F ) is still planar, as illustrated in Figure 3 (in each path tuple345

(pi,true, pi,false) the order of the internal nodes follows the original circular order
of adjacent edges of vi, and for each clause c = `(vi) ∨ `(vj) ∨ `(vk) the nodes
ci,j and cj,k are placed close to each other).

Reduction Idea. We show that the package can’t be delivered via any of the
clause nodes. Thus the package has to be routed in each path pair (pi,true, pi,false)350

through exactly one of the two paths. If the package is routed via the path pi,true,
we interpret this as setting vi = true and hence we can read from the package
trajectory a satisfiable assignment for F .

Agent Placement and Budgets. We will use Greek letters ζ, δ for weights that
depend on each other or on the input. We place three kinds of agents on G:355

1. Variable agents: x agents which are assigned to the variable nodes v1, . . . , vx.
These agents will have to decide whether the package is delivered via pi,true
or via pi,false, thus setting the corresponding variable to true or to false.
We give all of them a budget of 2ζ.1

2. Clause agents: One agent per created clause node, e.g. a clause c contain-360

ing three literals gets two agents, one in each of the two clause nodes. We
think of these agents as follows: If in c = `(vi) ∨ `(vj) ∨ `(vk) the literal
`(vj) is false, then clause c needs to send one of its agents down to the
corresponding path node lj,c to help transporting the package over the

1In the Non-Returning version we want agents to have the same “range”, hence we set their
budget to ζ.
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Figure 4: (left) Two examples of δ-tubes for both versions of BudgetedDelivery.
(right) Agent placement and edge weights on G(F ); agents are depicted by squares

adjacent “gap” of size ζ (depicted blue in Figures 3 (right), 4). A 3CNF365

F will be satisfiable, if and only if no clause needs to spend more agents
than are actually assigned to it respectively its node(s) in G(F ). We give
all clause agents a budget of 2 · (1 + ζ).2

3. Separating agents: These will be placed in-between the agents defined
above, to ensure that the variable and clause agents actually need to solve370

the task intended for them (they should not be able to deviate and help
out somewhere else – not even their own kind). The separating agents will
be placed in pairs inside δ-tubes, which we define below.

Remark 4. Strictly speaking, a reduction without variable agents works as well.
In terms of clarity, we like to think of variable agents as the ones setting the375

variables to true or false.

δ-Tubes. We call a line segment a δ-tube if it satisfies the following four prop-
erties: (i) It has a length of δ. (ii) It contains exactly two agents which both
have budget at most δ. (iii) Neither agent has enough energy to leave the line
segment on the left or on the right by more than a distance of δ3 . (iv) The agents380

can collectively transport a package through the line segment from left to right.
δ-tubes exist for both BudgetedDelivery versions, examples are given in Fig-
ure 4 (left). The reader may think of these examples, whenever we talk about
δ-tubes.

Edge Weights. We define edge weights on our graph G(F ) as follows: All edges385

between clause nodes and internal path nodes get weight 1 (in particular this
means that if a clause agent walks to the path, it has a remaining range of
ζ). Each path consists of alternating pieces of length ζ and of δ-tubes. We
choose δ := 4ζ

3 > ζ. This means that neither variable nor clause agents can
cross a δ-tube (because their budget is not sufficiently large). Furthermore the390

distance any separating agent can move outside of its residential tube is at
most δ

3 = 4ζ
9 < ζ

2 . In particular separating agents are not able to collectively
transport the package over a ζ-segment, since from both sides they are not able
to reach the middle of the segment to handover the package. At last, ζ := 1

8 .

2In the Non-Returning version we assign a budget of (1 + ζ) to clause agents.
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Equivalence of planar 3SAT and planar BudgetedDelivery. In the following we395

show that solving BudgetedDelivery on G(F ) is at least as hard as solving
the underlying planar 3SAT instance. We first establish three key properties
(Propositions 1–3):

Proposition 1. If a planar 3CNF F is satisfiable, then in the corresponding
delivery graph G(F ), the agents can collectively deliver the package from s to t400

and return to their respective starting positions.

Proof. Assume that there is a satisfiable assignment for F . Then the agents’
actions are straightforward: Each variable agent placed on vi moves according
to the variable assignment to vi by a ζ-distance into either the true-path pi,true
or the false-path pi,false. For the package to be delivered to the next variable405

agent, it needs to be handed across δ-tubes and ζ-segments. The former can
always be done by the respective separating agents residing inside the δ-tube.
It remains to be shown that the latter can be done by clause agents. To this
end, consider a clause c which consists of |c| literals.

If |c| = 1 respectively c = `(vj) for some j, then there is no clause node410

in G(F ) at all (see the top right clause in Figure 4). No agent can reach the
ζ-segment adjacent to lj,c, but this does not cause a problem, since by our
assumption the literal `(vj) is satisfied and thus the variable agent at vj chose
to deliver the package via the opposite path pj,`(vj ).

If |c| = 2, then there is one clause agent on a single clause node ci,j which415

is connected to the internal path nodes li,c and lj,c (see the top left clause
in Figure 4). Both have adjacent ζ-segments which correspond to the literals
`(vi), `(vj). By assumption, at least one literal – without loss of generality
`(vj) – is satisfied, and since the variable agent choosing the assignment for
vj thus takes the “opposite” path pj,`(vj ), the ζ-segment corresponding to `(vj)420

does not need to be crossed while delivering the package. If the other literal is
not satisfied, then the clause agent is needed at the corresponding ζ-segment,
otherwise it can stay at its place of origin.

If |c| = 3, we have three literals/ζ-segments and we have two clause nodes
with one agent each (see the top center clause in Figure 4). One is connected425

to the first and the second ζ-segment, the other to the second and third. Col-
lectively the two agents can reach every possible pair of segments out of the
three ζ-segments. At least one literal `(vj) is satisfied. To each of the remaining
ζ-segments we can therefore send one agent. Moving to the path needs 1 unit of
energy (and so does returning to the clause node). Hence the agent can cover a430

remaining distance of ζ, which is sufficient to transport the package to the next
δ-tube.

Proposition 2. It is not possible to deliver a package from s to t via any clause
node of the delivery graph G(F ).

Proof. For the sake of contradiction assume that the package is transported via a435

clause node ci,j which connects to the internal path nodes li,c and lj,c. Except for
the clause agent stationed at ci,j , no other agent can move further than ζ = 1

8
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into each of the two edges {li,c, ci,j} and {lj,c, ci,j}. Hence the clause agent
stationed at ci,j needs to cover in each edge a distance of 2(1−ζ) (to go back and
forth), hence for both edges it needs an energy of at least 2 ·2(1−ζ) = 4 · 78 = 7

2 .440

However, the agent has a budget of only 2(1 + ζ) = 2 · 9
8 < 7

2 , yielding a
contradiction to the package being transported over the clause node.3

Proposition 3. To deliver the package over a ζ-segment adjacent to a variable
node vi, we need the variable agent with starting position vi. To deliver the
package over a ζ-segment adjacent to a literal node lj,c, we need a clause agent445

with starting position ci,j or cj,k.

Proof. Recall that δ = 4ζ
3 . Separating agents inside δ-tubes can neither single-

handedly nor collectively (starting from both sides) transport the package over
a ζ-segment, since they can move outside of their residential tube by at most
δ
3 <

ζ
2 . Furthermore variable agents and clause agents can move on a true- or450

false-path inside an interval of size at most ζ < δ, hence they can’t cross a δ-tube.
Thus to transport the package over a ζ-segment adjacent to a variable node vj ,
we need the variable agent placed on vj . On the other hand, transporting the
package over a ζ-segment adjacent to the internal path node lj,c needs a clause
agent of clause c. If c has two clause nodes ci,j , cj,k, either of the two clause455

agents will do.

Lemma 1 (Returning BudgetedDelivery). A planar 3CNF F is satisfiable if
and only if it is possible to deliver a package from s to t in the corresponding
delivery graph G(F ), such that all agents are still able to return to their starting
points in the end.460

Proof. “⇒” This direction has been shown in Proposition 1.
“⇐” Assume that the package can be delivered from s to t. From Proposi-

tion 2 it follows that the package has to be transported through the true- and
false-paths. Without loss of generality, the package must move monotonously
through the paths pi,true or pi,false. By Proposition 3 we know that for each465

ζ-segment that the package is delivered over, we need either the corresponding
variable agent or the corresponding clause agent. It remains to show that we
have enough clause agents for the task:

Each clause with |c| literals “owns” only |c| − 1 clause agents and thus must
have at least one satisfied literal (otherwise the |c| − 1 clause agents would not470

be sufficient to help in all corresponding ζ-segments). Hence we can read a
satisfiable variable assignment for the Planar3SAT instance directly from the
choice of the variable agents (which each pick the adjacent true- or the adjacent
false-path).

3Non-returning agents need to cover only one of the edges twice (to go back and forth),
hence they need an energy of at least 3(1− ζ) = 21

8
versus a budget of 1 + ζ = 9

8
, yielding a

contradiction as well.
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It is easy to see that the same arguments work for Non-Returning Budgeted-475

Delivery as well, hence we immediately get the same statement for the Non-
Returning version.

Corollary 1 (Non-Returning BudgetedDelivery). A planar 3CNF F is satisfi-
able if and only if it is possible to deliver a package in the corresponding delivery
graph.480

Recall that a delivery graph G(F ) created from a planar 3CNF F is pla-
nar. Furthermore the size of G(F ), as well as the number of agents we use, is
polynomial in the number of clauses and variables. The agents’ budgets and
the edge weights are polynomial in ζ, δ and thus constant. Thus Lemma 1
shows NP-hardness of BudgetedDelivery on planar graphs. Finally, note485

that hardness also holds for a uniform budget B: One can simply add an edge
of length (B − Bi)/2 to the starting location of each agent i and relocate i to
the end of this edge.4

Theorem 5 (Hardness of BudgetedDelivery). Both versions of Budgeted-
Delivery are strongly NP-hard on planar graphs, even for uniform budgets.490

5. Hardness of Resource Augmentation

Main Ideas. We show that for all ε > 0, there is no polynomial-time (2 − ε)-
resource-augmented algorithm for Returning BudgetedDelivery, unless P =
NP. The same holds for (3 − ε)-resource-augmentation for the Non-Returning495

version. Intuitively, an algorithm which finds out how to deliver the package
with resource-augmented agents will at the same time solve 3SAT. We start by
taking the reduction from Planar3SAT from Section 4. However, in addition
to the previous delivery graph construction G(F ), we need to replace the δ-tubes
and ζ-segments in order to take care of three potential pitfalls. We illustrate500

the modification into the new graph G′(F ) in Figure 6:

1. In a resource-augmented setting, δ-tubes are no longer able to separate
the clause and variable agents: These agents might be able to cross the
δ-tube, or the separating agents residing inside the δ-tube can help out in
the ζ-segments (there is no value for δ to prevent both). We will tackle505

this issue below by replacing δ-tubes by a chain of logarithmically many
tubes with exponentially increasing and decreasing δ-values.

2. In the reduction for the original decision version of BudgetedDelivery,
a clause c with three literals gave rise to two clause nodes ci,j , cj,k that
were adjacent to the same path node lj,c. Hence the agent on ci,j , now510

with resource-augmented budget, could pick up the package at lj,c and
bring it close to the second resource-augmented agent stationed at cj,k.

4We relocate a non-returning agent by adding an edge of length (B −Bi).
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Figure 5: L-δ-chains consist of blocks of 6 tubes of exponentially increasing and decreasing
size.

This agent then might transport the package via its own clause node to
the distant literal node lk,c. To avoid this, we replace every ζ-segment
adjacent to such a “doubly” reachable path node lj,c by two small parallel515

arcs. Both arcs contain exactly one ζ-segment, reachable from only one
clause node (the package can then go over either arc), as well as a chain
of tubes to provide the necessary separation.

3. A single clause agent stationed at ci,j might retrieve the package from
the first literal node li,c, walk back to its origin and then on to the sec-520

ond literal lj,c, thus transporting the package over a clause node. This
can always be done by 2-resource-augmented agents; however for (2− ε)-
resource-augmentation we can prevent this by carefully tuning the weights
of the ζ-segments, e.g. such that (2− ε) · (1 + ζ)� 2.5

We now give a more formal description of the ideas mentioned above. Recall525

that a δ-tube had length δ and contained two agents with budget at most δ each.
If these agents are now γ-resource-augmented, γ < 3, they can move strictly less
than 3δ to the right or to the left of the δ-tube. In the following we want to
uncouple the length of the line segment from the range the agents have left to
move on the outside of the line segment.530

L-δ-Chains. We call a line segment an L-δ-chain if it satisfies the following
three properties: (i) Its length is at least L (a constant). (ii) No γ-resource-
augmented agent (1 ≤ γ < 3) contained in the chain has enough energy to
leave the line segment by 3δ or more. (iii) The agents contained in the chain
can collectively transport a package through the line segment from left to right535

(already with their original budget).
We can create L-δ-chains for both BudgetedDelivery versions simply by
using the respective δ-tubes as a black box: We start our line segment by adding
a block of six δ-tubes next to each other, followed by a block of six 2δ-tubes,
a block of six 4δ-tubes and so on until we get a block of length at least 6 ·540

2blogL/δc · δ > L. The same way we continue to add blocks of six tubes with
lengths decreasing by powers of 2, see Figure 5. Obviously properties (i) and
(iii) are satisfied. To see (ii), note that any agent contained in the first or last
block of δ-tubes cannot leave its tube (and thus the L-δ-chain) by 3δ or more.
On the other hand, none of the inner blocks’ agents is able to even cross the545

5Non-returning clause agents can do this if they are 3-resource-augmented; and we can
prevent it for (3 − ε)-resource-augmentation by setting ζ such that (3 − ε) · (1 + ζ) � 3 (in
fact the value of ζ will be the same as for Returning BudgetedDelivery, but we will use
different bounds in the proof).
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Figure 6: (top-to-bottom) We replace δ-tubes in G(F ) by L-δ-chains in G′(F ).
(left-to-right) We replace each ζ-segment connected to two clause agents by two parallel arcs.

preceding or the following block of six tubes, since their total length is larger
than its budget.

Arc Replacement of ζ-Segments. Next we decouple any pair of clause agents
(stationed at nodes ci,j , cj,k) that can directly go to the same literal node lj,c
(so as not to allow them to transport the package via clause node with their550

augmented budgets, depicted in red in Figure 6 (left)). We replace the adja-
cent ζ-segment by two small arcs which represent alternative ways over which
the package can be transported. Each arc consists of one L-δ-chain and of one
ζ-segment, see Figure 6.
The inner arc begins with the ζ-segment – whose beginning lij,c can be reached555

through an edge of length 1 by the first clause agent (stationed at ci,j) – and
ends with the L-δ-chain. The outer arc first has the L-δ-chain and then the
ζ-segment. The node in between these two parts, denoted by lkj,c, is connected
via an edge of length 1 to the second clause agent’s starting position cj,k.

560

We conclude the replacement with three remarks: Firstly, it is easy to see
that the described operation respects the planarity of the graph. Secondly, we
are able to give values for L and δ in the next paragraph such that a single
clause agent is still both necessary and (together with agents inside the newly
created adjacent L-δ-chain) sufficient to transport a package over one of the565

parallel arcs from left to right. Finally, the clause agent starting at ci,j is no
longer able to meet the clause agent starting at cj,k.

Budgets and Edge Weights. Recall that our agents have the following budgets:
separating agents have a budget according to their position in the L-δ-chain,
variable agents a budget of 2ζ and clause agents a budget of 2(1 + ζ).6 Now570

these budgets are γ-resource-augmented, with γ < 3. We would like to prevent
clause and variable agents from crossing L-δ-chains or even meeting inside of
them, hence we set L := 9, which shall exceed the augmented budget of every
agent by a factor of more than 2. Furthermore we don’t want separating agents
to help out too much outside of their residential chain, hence we set δ := ζ

9 .575

6In the Non-Returning version, variable agents have a budget of ζ and clause agents a
budget of 1 + ζ.
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A resource-augmented separating agent can thus walk only as far as 3δ = ζ
3 to

the outside of the chain. In particular, separating agents cannot transport the
package over a ζ-segment. At the same time, if the agents were able to deliver
the package in G(F ), then they can do so in G′(F ):

Proposition 4. If a planar 3CNF F is satisfiable, then in the corresponding580

delivery graph G′(F ), the agents can collectively deliver the package from s to t
and return to their respective starting positions.

Proof. In Proposition 1 we have seen how the package can be transported in the
original delivery graph G(F ). In the modified delivery graph G′(F ), variable
agents and clause agents do exactly the same as their counterparts in G(F ),585

and separating agents help wherever needed.

Next we choose ζ such that an augmented clause agent stationed at a clause
node ci,j is not able to transport the package from li,c to lj,c, not even in
collaboration with the separating agents that can reach the two literal nodes.
We set ζ := ε

6−ε . The edges {ci,j , li,c} , {ci,j , lj,c} have length 1. In each edge,590

separating agents can help by at most 3δ = ζ
3 , leaving at least a distance of

1 − ζ
3 for the clause agent to cover. First note that for 0 < ε < 1, we have

ζ = ε
6−ε <

ε
5 <

2ε
3 and (6− ε) > 3(2− ε). Hence a γ-resource-augmented clause

agent has a budget of only γ · 2(1 + ζ) = 2(2− ε)(1 + ζ) = 2(2− ε+ (2−ε)ε
6−ε ) <

2(2 − 2ε
3 ) < 2(2 − ζ) < 4 · (1 − ζ

3 ), and thus cannot transport the package via595

its clause node and return home in the end.7 We get:

Proposition 5. It is not possible for (2− ε)-resource-augmented agents to de-
liver the package from s to t via any clause node of the delivery graph G′(F ).8

Finally, we need to show that – as in Proposition 3 – a transport over a
ζ-segment needs the corresponding variable or clause agent. Additionally, any600

feasible schedule with augmented budgets should correspond to a feasible sched-
ule with original budgets.

Proposition 6. Assume that there is a schedule in which γ-resource-augmented
agents (γ < 3) collectively deliver the package from s to t in the delivery graph
G′(F ). Then in each ζ-segment that the package is delivered over, the sched-605

ule uses the corresponding variable agent or the corresponding clause agent.
Furthermore the schedule can be transformed into a feasible schedule with the
original budgets.

Proof. By Proposition 5 we know that the package cannot be transported over
any of the clause nodes. Recall that γ-resource-augmented separating agents610

7For non-returning agents we use (for ε < 2) the inequalities: ζ = ε
6−ε < ε

4
< ε

2
and

(6− ε) > 2(3− ε). Hence a non-returning γ-resource-augmented clause agent has a budget of
γ(1 + ζ) = (3 − ε)(1 + ζ) = 3 − ε +

(3−ε)ε
6−ε < 3 − ε

2
< 3 − ζ = 3 · (1 − ζ

3
), and thus cannot

transport the package via its clause node.
8For the Non-Returning setting the proposition holds for (3−ε)-resource-augmented agents.
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inside δ-tubes can neither single-handedly nor collectively (starting from both
sides) transport the package over a ζ-segment, since they can move outside of
their residential L-δ-chain by at most 3δ = ζ

3 . Furthermore, clause agents and
variable agents are not able to meet each other anywhere in the graph, since
they are pairwise separated by at least one L-δ-chain and do not have enough615

energy (even with the resource-augmented budgets) to reach the middle point
of one of these chains.

In conclusion, we know that the package needs to be transported along
the true- and false-paths and without loss of generality we assume that this
happens in a strictly monotone movement. Now in each ζ-segment the package620

is transported across in the schedule with (2 − ε)-resource-augmented budget,
a variable agent or a clause agent is necessary. Since these agents cannot meet
each other, such an agent must pick up the package from a separating agent of
the preceding L-δ-chain and hand it over to a separating agent of the following
L-δ-chain. Even with a non-augmented budget, said agent would be able to625

pick up and hand over the package at the end and the start of these chains.
Additionally, separating agents are able to transport the package from left to
right across their L-δ-chain without a resource augmentation of their budgets.
Together this yields a solution for delivery on G′(F ) without any resource-
augmented budgets.630

Lemma 2 (Resource-augmented Returning BudgetedDelivery). A planar 3CNF
F is satisfiable if and only if it is possible to deliver a package with (2 − ε)-
resource-augmented agents from s to t in the corresponding delivery graph G′(F ),
such that the agents are still able to reach their starting point in the end.

Proof. “⇒” This direction has been shown in Proposition 4.635

“⇐” Assume that the package can be delivered from s to t. From Proposi-
tion 5 it follows that the package has to be transported through the true- and
false-paths. By Proposition 6 we know that the schedule thus can be trans-
formed into a schedule of agents with non-augmented budgets, where in each
ζ-segment that the package is delivered over, the corresponding variable agent640

or the corresponding clause agent is used.
We show that there is a bijective mapping into a feasible schedule in the

original graph G(F ), which by Lemma 1 gives us a satisfiable assignment for F .
Consider the movement of the individual agents: First of all, we let every vari-
able agent in G(F ) do the same work as its counterpart in G′(F ) and vice versa.645

Now consider the separating agents of any δ-tube in G(F ) which corresponds
to a L-δ-chain in G′(G). We let these agents collectively transport the package
from left to right over their δ-tube in G(F ) if and only if the agents in the corre-
sponding chain in G′(F ) transport the package over their L-δ-chain. Finally, we
let corresponding clause agents in both graphs go to the same ζ-segment (both650

to their first segment, both to their second segment, or both to neither). Hence
agents in G(F ) can just “copy” the movements of their respective counterparts
in G′(F ).
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It is easy to see that the same arguments work for Non-Returning Budgeted-
Delivery as well: In the proof, we simply replace the use of Lemma 1 by re-655

ferring to Corollary 1 and replace the estimations in the proof of Proposition 5
with the corresponding estimations for non-returning (3−ε)-resource-augmented
agents, given in Footnote 7.

Corollary 2 (Resource-augmented Non-Returning BudgetedDelivery). A pla-
nar 3CNF F is satisfiable if and only if it is possible to deliver a package with660

(3−ε)-resource-augmented agents from s to t in the corresponding delivery graph
G′(F ).

Compare the new delivery graph G′(F ) with the original graph G(F ). The
only topological changes we introduced with our replacements were the parallel
arcs replacing the ζ-segments reachable by two clause nodes. We have already665

seen that this change respected the planarity of the delivery graph. Relevant
changes to the edge weights and agent numbers, on the other hand, were added
by replacing δ-tubes with L-δ-chains: Each chain consists of blocks of six δ-
tubes of exponentially increasing size, hence we need a logarithmic number of
tubes per chain, namely O

(
log L

δ

)
many. We have fixed the values of L and670

δ to L = 9 and δ = ζ
9 . With ζ−1 = 9

ε − 1 ∈ Θ(ε−1) we get O
(
log L

δ

)
=

O(log(ζ−1)) = O(log(ε−1)) many agents per chain. The number of chains is
clearly polynomially bounded by the number of variables and clauses and the
edge weights depend on ε only as well. Hence we conclude:

Theorem 6 (Inexistence of a better resource augmentation for BudgetedDe-675

livery). There is no polynomial-time (2 − ε)-resource-augmented algorithm for
Returning BudgetedDelivery and no (3 − ε)-resource-augmented algorithm
for Non-Returning BudgetedDelivery, unless P = NP.

6. Discussion

We gave a polynomial time algorithm for the returning variant of the problem680

on trees, as well as a best-possible resource-augmented algorithm for general
graphs. On the other hand, we have shown that BudgetedDelivery (both
the returning and non-returning version) is NP-hard, even on planar graphs, or
even if we allow “small” resource augmentation. Our hardness bounds on the
required resource augmentation are tight and complement the previously known685

algorithm [3] for the non-returning case.
Our results show that the returning version of BudgetedDelivery be-

comes hard when transitioning from trees to planar graphs. Naturally, it is
interesting to investigate, from the graph topology point of view, when exactly
the transition from easy to hard happens. At the same time, it is not only the690

topology that makes the problem hard. In the following we have a light look at
various aspects that make the problem easy or hard.
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Intermediate graph classes. We have seen that the Returning BudgetedDe-
livery is solvable in polynomial time on trees. Here, we extend this positive
result to graphs, which correspond to the union of internally vertex-disjoint s-t-695

paths. Observe that a special case of such a graph is a ring (also called a cycle),
which is one of the simplest connected planar graphs that is not a tree.

Theorem 7. There is an O(n + k log k)-time algorithm for Returning Bud-
getedDelivery on graphs consisting of internally vertex-disjoint s-t-paths.

Proof. Denote by P1, . . . , Pl the internally vertex-disjoint s-t-paths of the input700

graph G. Observe that if there is a solution to the given instance, then the
packet travels from s to t along exactly one of the l paths. Let us call such a
path a delivery path. Hence, we can try each of the l paths, and check whether
the agents can deliver the packet along the path. This problem is quite similar to
BudgetedDelivery on the line, with the exception that now the agents that705

are not on the path (along which the delivery happens) can enter the path from
two vertices – from s and from t. Observe that when searching for a solution,
we can assume that there is always at most one agent that is not on the delivery
path and that enters the path via s. If there were two or more such agents, then
we could simply keep, among all such agents, only the agent that reaches the710

farthest vertex from s along the path. By similar arguments, we can assume
that at most one agent enters the delivery path via t. We can thus enumerate
all possible agents that can help to deliver the package along the delivery path.
In detail, this can be done as follows.

As in the case of trees, we can find the distances from all agents’ start-715

ing positions to s and t in time O(n) using breadth-first search from both s
and t. Hence, for each agent we know whether it can reach s and whether
it can reach t, and we also know how much budget the agent has left, once
it reaches, respectively, s and t. For any path Pi, we denote by ki the num-
ber of agents with starting position pj on Pi and keep track of the two agents720

as,i,1, as,i,2 with the two highest remaining budgets after moving to s, i.e. we
take as,i,1 := arg maxj {Bj − d(s, pj) | pj ∈ Pi and d(s, pj) ≤ Bj} and similarly
as,i,2 := arg maxj {Bj − d(s, pj) | pj ∈ Pi and d(s, pj) ≤ Bj and j 6= as,i,1}. In
the same way, we store the two agents at,i,1, at,i,2 with the highest remaining
budget after moving to t. Note that the two latter are not necessarily disjoint725

from the former, and these agents may not exist at all (if this is the case, we
simply discard them from the following discussion). Finally, among all agents
as,i,1, as,i,2, i = 1, . . . , l we keep the set of the four agents with the highest
remaining budget after they reach s, which we denote by As. We do the same
at t to get At, the set of agents with the highest remaining budget at t.730

Assume that we are interested in whether the package can be delivered from
s to t along the path Pi: Applying the result for trees and lines (Theorem 1),
it is clear how to solve the decision problem for Pi – by only using agents with
starting position on Pi – in time O(ki log ki). However, the package might get
advanced from s towards t on Pi by some external agent j originating from735

another path (i.e. an agent with pj /∈ Pi); the package might also be picked up
by such an external agent and taken to t. Without loss of generality, this will
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be done – if at all – by the external agent as,j,1, j 6= i which has the highest
remaining budget at s, or if this agent is also the agent which has the highest
remaining budget at t, by the external agent as,j,2, j 6= i with the second highest740

remaining budget (and the same observation holds for t).
Clearly, these candidates are from the sets As and At, and testing all pairwise

combinations yields a running time of O(|As||At|ki log ki) = O(ki log ki). Hence
we can simply go over all paths Pi in time O (

∑l
i=1 ki log ki) ⊆ O(k log k), and

check whether the package can be delivered along Pi.745

This positive result raises the question of whether BudgetedDelivery is
polynomial-time solvable for other subclasses of planar graphs such as series-
parallel graphs or outerplanar graphs. So far, this remains an intriguing open
problem.

Fixed agent order. Chalopin et al. [3] gave a polynomial algorithm for the Non-750

Returning version under the assumptions that (i) the order in which the agents
move is fixed and (ii) the package can only be handed over at vertices. Using
a dynamic program, we are able to drop assumption (ii), allowing handovers
within edges. Our result holds for both versions of BudgetedDelivery.

Theorem 8. BudgetedDelivery is solvable in time O(k(n+m)(n log n+m))755

if the agents are restricted to a fixed order in which they move.

Proof. If there is a feasible schedule, we can compute it in a breadth-first search-
like fashion where we proceed agent by agent and update reachable regions of
the graph on-the-fly: Each agent can either not help in the schedule or it can
transport the package from a pickup location to a drop-off location. We show760

that we can restrict drop-offs to meaningful places such that for each agent the
set of all possible pickup locations is bounded by n+m. This limitation to only
one of the potentially infinitely many handover points inside each edge allows
us to use dynamic programming and to proceed by induction:

Denote the agents in the schedule order by a1, . . . , a`. The first agent a1 can765

pick up the package at s only, hence there is only one possible pick-up location.
If a1 wants to drop off the package at a vertex, there are at most n choices of
where to do so. We mark all the vertices which a1 can reach from s while still
being able to return home. Now assume a1 wants to drop off the package inside
an edge e = {u, v}. This means that e can be reached by a1, hence without loss770

of generality the vertex u is marked. If v is marked as well, then a1 should not
drop the package inside e, since the package has to be picked up later, which
could just as well be done at either u or v. Otherwise a1 should bring the
package as far as possible into the edge (since if a later agent ai wants to pick
up the package, it can pick it up at u or come in via v). We mark this point775

inside the edge and store its distance from u. We now restrict ourselves to these
at most n+m described drop-off locations.

An agent ai, i > 1 can pick up the package at s or at any previous drop-off
location. By induction there are at most n + m many such locations. Now we
first check whether ai can pick up the package somewhere and deliver it to any780
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not yet marked vertex. If so, we mark this vertex (and the number of marked
vertices stays at most n). Next we check whether ai can bring the package into
an edge e = {u, v} for which (without loss of generality) u is marked and v is
not. Check whether the point inside the edge which is furthest from u – and
still can be reached by ai – has larger distance to u than a previously marked785

point. If so, delete the old point (if any) and mark the new point and store its
distance from u. The number of marked edges stays at most m.

If at some point we mark the vertex t, we are done. Since each agent i has
at most n+m pick-up locations to consider, we can compute all new marks by
computing the ellipsoid E(pi, l, Bi) for every old mark l, which we can do by790

running Dijkstra’s shortest path algorithm once from pi and once from each old
mark. Hence we require time O((n+m) · (n log n+m)) per agent.

Corollary 3. For a constant number of agents k, BudgetedDelivery is solv-
able in time O(poly(n,m)) by brute forcing the order of the agents.

Future work. An interesting open problem is to understand collaborative deliv-795

ery of multiple packages at once. For example, the complexity of the problem
on paths remains open. In this setting, it may be reasonable to constrain the
number of agents, the number of packages, or the ability of transporting multi-
ple packages at once, in order to allow for efficient algorithms. Also, in general
graphs, the problem may not become easy if the order in which agents move is800

fixed.
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