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1 Introduction

When the balance between electrical supply and demand is broken, the resulting grid
damage or supply outages may affect the quality of the service. Electricity load anticipation
is therefore an important task for the transmission system operator of an electrical grid as
it helps to reduce the risk of this happening; larger prediction horizons (greater than one
year) help to anticipate the needs on production means and distribution, while shorter ones
(hours, weeks) are employed to decide the production and distribution plans. In general,
more accurate predictions result in lower production costs.

Recent years have seen a diverse array of new technologies which allow generation
of electrical energy from new renewable sources (renewables for short). This diversity
increases the complexity of the scenario to be managed by the agent or agents responsible
of the equilibrium balance on the electrical grid. Such is the case of Uruguay, whose
plan for minimizing its dependence on fossil fuel has led to a very rapid increase in power
generation from a wide array of renewables DNETN [2008]. Such complex scenario calls
for new, sophisticated methods for power management.

A comprehensive survey on traditional electricity load forecasting methods can be found
in Weron [2006]; the reader is further referred to [Cancelo et al., 2008] and [Taylor et al.,
2006] for an extensions and updates of the methods described therein. Broadly speaking,
forecasting methods employ statistical methods for capturing the salient features of the
load demand (we discuss them in Section 2), the main difference lying in the underlying
hypothesis assumed in each case for justifying and providing validity to the proposed
models. (Clearly, any systematic departure of the data from the assumed hypothesis results
in a degradation in prediction performance.) We classify these methods into four large
groups: time series analysis, pattern methods, regression analysis, and machine learning.
We elaborate on such methods below.

Time series analysis methods form their prediction by combining past load informa-
tion using linear models. Typical approaches are for example ARIMA (Auto Regressive
Integrated Moving Average, see for example Cancelo et al. [2008], Lanzilotta and Ro-
driguez [2014] or Taylor et al. [2006]. An important drawback of such methods is their
rigidity (that is, non-adaptability), leading to large prediction errors during highly unsta-
ble load demand periods. Such issues are alleviated for example by the use of heavy tailed
error models (instead of the traditional Gaussian noise assumption) Weron et al. [2001],
or allowing for adaptive linear parameters and state space models as in Dordonnat et al.
[2008].
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Pattern methods are based on self-similarity within the data, that is, they assume that
future load curves are well modeled as a combination of previously observed patterns in the
data. A typical embodiment of this idea is given in Poggi [1994], where predictions result
from the weighted mean of past loads, the weights given by a similarity measure between
the last observed time frame (e.g., the last observed daily curve) and all past daily curves in
the recorded past. In Antoniadis et al. [2012, 2014], daily curves are modeled as continuous
functions, and tools from functional theory are used to determine their similarity to past
daily curves. A variant of the previous idea is to look for similarities not in the whole past
but within a small dictionary of typical patterns which combine past curves and exogenous
covariates Mougeot et al. [2015].

Regression analysis methods predict the future load one sample at a time by decom-
posing the load curves into various explicative effects, usually driven by exogenous factors.
For instance, the predictions obtained in Bruhns et al. [2005], Cancelo et al. [2008], Soares
and Medeiros [2008] are the result of a non-linear regression involving two components:
one due to meteorological conditions and the other due to calendar structure. Predictions
obtained with this approach can be very accurate but suffer from the same rigidity issues
as those observed in time series methods. Various strategies have been proposed to al-
leviate such limitations. Examples include adaptive regression parameters Lloyd [2014],
generalized additive models [Nedellec et al., 2014], and Bayesian models [Launay et al.,
2012].

Machine learning techniques usually employ models which are generally more flexible,
albeit less interpretable, than the previously described ones. Examples include [Lloyd,
2014] which uses kernel methods combined with Gaussian processes, and [Ben Taieb and
Hyndman, 2014] which employs gradient boosting. See the aforementioned references for
the description of such techniques.

A very successful strategy derived from this field is the idea of combining the output of
several predictors, often of different type (i.e., different algorithms may be used to obtain
the different predictions), to produce the final prediction of the system [Devaine et al.,
2013]. This is known as experts aggregation; this is one of the methods we adopt in our
framework, as will be seen later.

The goal of this work is to obtain a forecasting framework that can be used to antici-
pate the load needs of the Uruguayan grid. In particular, we need to account for the fact
that meteorological data is scarce in the Uruguayan scenario. Our work is thus focused on
three models, two of which do not rely on meteorological data.

The reminder of this document is structured as follows. Section 2 describes both the
electrical and the meteorological data from the Uruguayan system. Section 3 discusses the
models we adopt. A series of experiments illustrate the resulting prediction framework in
Section 4. A short discussion in Section 5 concludes the work.

2 Data

This section explores the typical features encountered in Uruguayan demand data. The
electricity demand data was kindly provided by Administración Nacional de Usinas y
Trasmisiones Eléctricas (UTE)1; the dataset in question contains hourly electrical load

1portal.ute.com.uy/
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Figure 1: Mean (above) and standard deviation (middle) of daily load, and mean temper-
ature (bottom) for the Uruguayan electrical system; vertical lines separate years.

measurements between January 1st 2007 and 31 December 31st 2014. Meteorological data
covering the same time period, with the same sampling frequency, was kindly provided by
the Instituto Uruguayo de Meteorologia (INUMET)2.

Figure 1 aggregates the three available curves (daily load mean, daily load standard
deviation and daily mean temperature). We first focus on load demand (upper panel).
As residential electricity consumption represents a major portion of the total Uruguayan
demand, most salient features in the curves are derived from domestic human activity
patterns. First of all, a clear upwards long-term trend can be observed which is linked to
population increase and increasing use of electrical household devices, in particular high
powered ones. Them a number of cyclical components can also be observed. The annual
cycle reflects the seasonality induced by both economical activity and meteorological phe-
nomena. It is important to note that this annual pattern has gradually evolved across the
years. While the first years are characterized by one strong mode in winter, later years
show another important mode in summer, which is due largely to the recent widespread
adoption of electrical cooling systems. Note that this change has a major impact in elec-
tricity supply planning, for instance on maintenance schedules. The latter feature shows
the importance of having models capable of adapting themselves to major dynamic changes
in the structure of the demand.

Being the domestic demand a major portion of the total, and given that cooling and
2inumet.com.uy/
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Figure 2: Temperature gradients estimated at different hours. Each panel represents the
scatter of the load (in Mwh) as a function of the temperature (in Celsius degrees) at one
specific hour of the day. A smooth non parametric estimation of the link is added as a
black line.

heating devices usually require high power to operate, it is to be expected that the temper-
ature (bottom curve of Figure. 1) has a strong effect in the load curves. This dependency
is however more complex than what one might observe at a first glance. For instance, air
conditioning devices are triggered on by extreme temperatures, either low or high; this is
more evident at the daily demand scale. However, this is not a simple matter of thresholds,
and this is evidenced by the marked increase in standard deviation (middle curve of Fig. 1)
during cold seasons.

Further insight into the complex dependency between temperature and demand can be
observed when one plots the load curve as a function of the temperature. This representa-
tion allows one to estimate how much the electricity demand changes when the temperature
changes and thus it is usually called the temperature gradient. Graphics shown in Figure 2
represent a way to estimate the temperature gradient (obtained actually as a nonparamet-
ric fit of the curves not explained here). Each curve fit corresponds to a specific hour of
the day, which allows one to see how this dependency evolves inside the day presenting in
some situation very important slopes on both high and low temperatures.
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Figure 3: Three daily load curves.

Figure 3 exemplifies the variability found in daily load patterns. Despite such variabil-
ities, common features can still be identified, such as lower demands during night time,
higher ones during the day, a steady increase during the morning with a first peak in mid
afternoon. The amplitude and position of these features are important landmarks of the
load curve.

3 Methods

As mentioned in 1, the proposed framework combines the output of various models through
an experts aggregation strategy.

We now describe describe the individual models which make up the experts to be
aggregated. For clarity of presentation we separate them into exogenous models (using me-
teorological data) and endogenous models (relying only on past demand patterns). We then
present and discuss the expert aggregation strategies applied to obtain the final prediction.

3.1 Exogenous models

The following models use external information that must be available at the moment of
the prediction.

Hong’s Vanilla Benchmark (HVB) Hong et al. [2011]. This is a multiple linear
regression model that incorporates the effect of temperature on the load as a third order
polynomial; the parameters of the polynomial are indexed by calendar features such as
day, month, and hour, resulting in the following formulation

E[loadt] = β0 + β1t+ β2Dayt × Hourt + β3Montht + β4Montht × Tempt
+ β5Montht × Temp2t + β6Montht × Temp3t + β7Hourt × Tempt
+ β8Hourt × Temp2t + β9Hourt × Temp3t . (1)
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The form of (1) is simple and easy to interpret, its main feature being the thermo-
sensitivity being allowed to vary according to a given calendar hour, day and month. This
model was used as a benchmark model in the GEFCOM 2012 competition Hong et al.
[2014], hence its name and popularity. In that competition, gains of up to 40% were
obtained using more flexible models. Notice that Hong’s Benchmark is a purely mid-
term model, as it does not incorporate past load records; this may be useful such data
is not available. It does need, however, enough temperature and load data as to adjust
its parameters, something which is done using plain least squares regression. Point and
interval predictions are then obtained by simple evaluation of the model using the current
temperature and temperature forecasts respectively.

State space models (SSM). This family of models includes an inertial term in the
form of an intrinsic state α of the whole system being modeled [Durbin and Koopman,
2001]. The observed output (the demand) is a function of the state and external variables
represented in ε, and the state evolution over time is modeled as a linear equation involving
the previous state and other observed variables summarized in a vector η. The general
formulation is given by, {

yt = xtαt + εt
αt+1 = Ttαt +Rtηt

,

where yt is the target variable observed at time t, xt ∈ Rm+1 is a vector of predictors, the
state at time t is represented as αt ∈ Rm+1, Tt and Rt are known matrices, and εt and ηt
are the noise and disturbance processes usually assumed to be independent Gaussian with
zero-mean and with unknown covariance matrices.

One particular case is described in Dordonnat et al. [2008] for describing evolving
parameters on the load forecast task. The first equation, which provides the current
prediction in terms of the state and exogenous variables, is given by

loadt = Xf
t β +Xe

t γt + wt, (2)

where the time dependent parameters are included in the state γt and the fixed ones are
in β. The regressors Xe

t associated to the time evolving parameters are meteorological
variables such as as temperature which is the only meteorological information we use. To
represent the inertia of the weather, temperature is represented as 3 variables. First, the
observed temperature at each moment of the day. Second, the lowest temperature record
in the last 24 hours. Third, the highest temperature record in the last 24 hours. The last
two series are smoothed using splines. Behind this construction we follow the strategy of
capturing effects due to extreme weather which are well know by the electrical engineers in
Uruguay. Extreme observations usually arrive in clusters called respectively hot and cold
waves, that is sequences of days where weather is extreme. Keeping the information of the
extreme in important to detect these days. During winter, low highest temperatures are
an evidence of the presence of a cold wave. Reciprocally, high lowest records evidences the
presence of a hot wave.

The regressors Xf
t are associated to the fixed parameters, in this case calendar variables

such as day, month, etc..
In our implementation of this method we choose two components: a trend, which is a

linear function of the discrete time index t = 1, 2, . . . , n, and a seasonal component which
is modeled as a superposition of three pairs of sines and cosines,

j=3∑
j=1

aj sin

(
2πt

sj

)
+ bj cos

(
2πt

sj

)
,
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where the coefficients {aj , bj}k=1,2,3 are to be estimated. With respect to the model in
Dordonnat et al. [2008] this is a difference since in that work calendar effects are time-
varying. The second equation of the model, which describes the state transition function,
is given by

αt = αt−1 + ηt, (3)

that is, a multivariate random walk; the noise magnitude (the variance of ηt) is to be
estimated.

The parameters of the model are estimated using Kalman filter theory [Kalman, 1960].
Given an initial state, the following states are obtained using closed-form equations that
involve the inversion of possibly large matrices. The dimension of such matrices depends
on the respective dimensions of the state space and the observation vector. Since this is
an effective computational bottleneck, we follow Cancelo et al. [2008] and break the state
space into 24 separate SSMs which can be treated in parallel, providing a huge decrease
on the computation time.

Random Forest (RF). Originally proposed in [Breiman, 2001], a random forest is com-
prised of a set of maximal decision treeswhich involve randomness in their construction two
ways. First, each maximal tree is estimated using a bootstrap sample of the data. Second,
at each training step of a tree, which involves splitting one of its nodes, the splitting de-
cision is made on a random subset of the feature variables. These random subsamplings
help in reducing statistical dependency between the output of each tree in the ensem-
ble. Finally, whereas each maximal tree may exhibit a large variance, the aggregation of
many such hopefully independent trees yields a predictor with significantly smaller vari-
ance. This method is applied to load demand prediction in, for example, Dudek [2015],
using past loads and past temperatures as predictors for the current load. Another ex-
ample is Papadopoulos and Karakatsanis [2015] where the difference between the current
temperature and the one observed some hours ago (that is, with a given lag) is used for
prediction. In our work, we adopt the latter method using a lag of 72 hours to take into
account important changes in the meteorological conditions.

3.2 Endogenous models

The following models predict future loads based solely on past load data and calendar
information; no exogenous information is used. For these methods to work, however, very
recent load data must be readily available.

Time series benchmark (TSB). Well known in econometrics, Autoregressive Moving
Average (ARMA) models are a family of stationary linear stochastic processes given by
the following general form [Brockwell and Davis, 1991],

yt =
∑
k≤t

θkεk, (4)

where εk is a sequence of i.i.d Gaussian variables of zero mean 0 and variance σ2. The
linear coefficients {θk}k are fixed parameters which are a priori unknown.

ARMA processes can be viewed as the output of finite response filters (FIR) where
the input is white Gaussian noise. The parameters are usually estimating using the Box–
Jenkins method [Box et al., 2015]. First the empirical autocorrelation function is defined
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as ρ̂` = γ̂`/γ̂0, where ` identifies the lag and

γ̂` =
∑
t

(yt − ŷ)(yt−` − ŷ). (5)

As many real-life time series cannot be assumed to be stationary, the Box–Jenkins method
proposes a number of possible transformations for obtaining time series which fall closer to
that hypothesis. In our case, we first apply a discrete differentiation, y′t = yt− yt−`, with `
typically 1 or 2. The differentiated series y′t is then modeled as an ARMA process; we call
this process an integrated ARMA (ARIMA for short) of order `. A second differenciation
is then performed. The second transformation is a seasonal differentiation, y′′t = yt−y′t−`′ ,
which is identical in form as the first one but with a lag `′ corresponding to the period of a
given season in the data (e.g., hours in a day, days in a week, months in a year. This two
step transformation is known as a SARIMA (Season Auto-Regressive Integrated Moving
Average). The process of identification, estimation and validation of such SARIMA model
is usually done by an expert and can be quite time consuming, especially in the case of
load demand as it typically exhibits two seasonal components Instead, we propose a new
estimation scheme based on mimickingthe empirical autocorrelation function ρ̂` to the
theoretical one, ρ`, as it is done by econometrics.

For a particular SARIMA model one can write

S(θ) =

L∑
`=0

(ρ`(θ)− ρ̂`)2, (6)

where θ is a vector of unknown parameters and L is a sufficiently large lag. The estimator
θ̂ is obtained as argminθ S(θ). (In Guang-Te and Singh [1994], a similar idea is used
to estimate autoregressive models. The above estimator can be viewed as a generalized
method of moments for time dependent observations. While the theoretical properties
of the proposed estimator are not as good as those of the maximum likelihood estimator
(MLE), its computation is significantly less demanding than the latter, which makes it our
choice of estimator within our framework.

Point predictions are obtained using the last observed values of loadt and the last
prediction errors. Prediction intervals can be obtained using either a normal approximation
or bootstrap procedures.

Kernel Wavelet Functional (KWF) As discussed in Section 2, the shape of the load
curves carries valuable information about the context of the observed load (e.g. position of
the year, type of the day, meteorological conditions). Assuming that similar past conditions
induce similar future conditions, one can construct an easy-to-interpret predictor [Poggi,
1994]. A modern version of this method, which exploits the functional nature of time series
curves, is used in Antoniadis et al. [2006]. There, the predictor is written as

L̂oadn+1(τ) =
n−1∑
m=1

wm,nLoadm+1(τ), τ ∈ [0, 1]

where Loadn(τ) is the load curve for day n at instant τ ∈ [0, 1] and the weight wm,n
is proportional to the similarity between the load curves Loadm and Loadn (more on
the similarity criterion is mentioned below). Note that the curves Loadn are not observed
directly, but rather estimated from the corresponding (discrete) hourly values, For instance,
Loadn is estimated from loadt, t = (n− 1)× 24+ j, j = 1, . . . , 24.The preceding estimation
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is performed using wavelets, which also serve for computing the similarity weights wm,n in
terms of the wavelet coefficients of both curves. Non stationary patterns are treated by
means of corrections applied on the wavelet coefficients (see Antoniadis et al. [2012] for
details).

Prediction intervals can be obtained using a bootstrap strategy where the bootstrap
sampling is determined by {wm,n} the weight vector (see Antoniadis et al. [2016]).

3.3 Online mixture of experts

The general idea of mixing experts is to combine the outputs of different individual predic-
tors in order to produce a better overall prediction. If this mixture is properly implemented,
the mixed output is theoretically guaranteed to be at least as good as the best of all the
individual predictors [Devaine et al., 2013]. This carries on to practice, where significant
improvements are consistently obtained with this strategy in a wide variety of settings
beyond time series analysis. The idea is simple, and can be summarized as follows. Con-
sider the observations up to time T , y1:T = {yt, t = 1, . . . , T}, and a set of K individual
predictors (experts). For each k = 1, . . . ,K, the performance of the k-th predictor up to
time T is computed in terms of some loss function, in our case squared loss, between its
output ek,1:T = {ek,t} and the observed output,

lk,T (y1:T , ek,1:T ) =

T∑
t=1

(yt − ek,t)2.

Given lk,T , k = 1, . . . ,K, the aggregated prediction at time T + 1, ŷmix
T+1, is computed as a

weighted sum of the output of all K predictors at time T + 1,

ŷmix
T+1 =

K∑
k=1

wk,T+1ek,T+1

where the weights wk,T+1 = ω(lk,T ) with ω(·) some decreasing function. In our case we
use polynomial potential aggregation rules (ML-Poly) which computes the mixture as a
weighted average of experts using polynomial weights and allowing different learning rates
on each expert.

4 Experiments

In this section we report on a number of experiments performed in conditions which are
close to the operational ones. The goal of these experiments is to evaluate the performance
of each of the implemented predictors, as well as that of the aggregation strategy. We use
the open source R environment [R Core Team, 2017] and the package enercast3 which
was developed by the authors. This package implements the proposed individual models,
whereas the on-line mixing is done with the opera R package [Gaillard and Goude, 2016].

The performance of each model is measured through the one-day-ahead daily prediction
of load demand curves during the whole last year. That is at the end of day J we use all
the records of that day to predict the following 24 records. The only exception is the data
used as temperature predictions which is the effectively observed values of day J + 1 as it
is usual to estimate the model. Forecasting performance is measure using error measures.

3github.com/cugliari/enercast
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More specifically, we use two metrics to compare predicted against actual values. One is
the daily Mean Absolute Proportional Error (MAPE), which is given as a percentage,

MAPE(y, ŷ) =
100

24

24∑
h=1

∣∣∣∣yh − ŷhyh

∣∣∣∣ (7)

where y = (y1, ..., y24) is the effective load, and ŷ = (ŷ1, ..., ŷ23) is the daily prediction.
The other measure is the Root Mean Square Error (RMSE),

RMSE(y, ŷ) =

√√√√ 1

24

24∑
h=1

(yh − ŷh)2, (8)

which is expressed in the same units as the target variable, Megawatts per hour (MWh).
Note that this measure is more consistent with the criterion used by the sequential aggre-
gation strategy (square loss) for weighting the contribution of each expert.

Model Min. 1st Qu. Median Mean 3rd Qu. Max.

1. HVB 2.12 4.26 5.49 5.93 6.87 30.85
2. KWF 1.83 3.40 4.30 4.61 5.31 20.17
3. TSB 0.65 2.23 3.14 4.13 5.11 22.03
4. SSM 0.58 2.29 3.42 4.12 4.98 25.84
5. RF 0.76 2.09 2.97 3.66 4.34 20.30

Mixture 0.76 1.76 2.40 3.06 3.58 17.60

Table 1: Summary statistics of daily MAPE (%) over year 2014. Best results are shown in
blue, while worst are shown in red.

Model Min. 1st Qu. Median Mean 3rd Qu. Max.

1. HVB 31.83 61.05 73.38 81.27 92.32 305.30
2. KWF 25.66 48.69 60.11 65.96 74.71 278.50
3. TSB 7.75 32.94 46.37 58.92 72.94 287.60
4. SSM 11.88 32.96 46.97 57.34 68.42 288.70
5. RF 9.87 29.41 42.32 51.36 62.82 206.30

Mixture 11.19 25.19 36.08 44.35 53.08 196.04

Table 2: Summary statistics of daily RMSE (in MWh) over year 2014. Best results are
shown in blue, while worst are shown in red.

Tables 1 and 2 show summary yearly statistics for the MAPE and RMSE prediction
performances for each of the individual methods (experts) as well as that of the mixture
model which combines all of them.To begin with HVB, an exogenous model, comes out
clearly as the worst method in all the statistics, in both tables. Interestingly, the other
purely exogenous model, the Random Forest, comes out as the best individual expert in
almost all cases, the only exceptions being the minimum and maximum MAPE, and the
minimum RMSE. We also note that the performance of TSB, which is purely endogenous,
is very close to that of SSM, which also employs exogenous (temperature) information.

Finally, as can be clearly seen in both Tables 1 and 2, the mixture strategy significantly
outperforms the rest of the models in all but one of the statistics, the minimum, which
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is also arguably the less relevant one. In particular, we obtain a 15% reduction in RMSE
w.r.t the best individual model. The following discussion aims at providing more insight
into these results.

Weights associated with the experts
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Figure 4: Box plot of the empirical distribution of the weights assigned during the year
2014 to each expert.

The box plotshown in Figure 4 depicts the empirical distribution of the weights assigned
to each individual expert along the 365 days of 2014. The figure shows two clear groups
among the experts. On one side, RF, TSB and SSM exhibit a similar median weight of
about 33%. On the other side, the median weight of both KWF and HVB are sensibly
smaller, barely above 10%, and yet they both peak at values over 40%.
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Figure 5: Average square loss (left) and cumulative residuals (right) for the individual
experts and the online mixture.

Figure 5 provides more insight into the benefits of the weighting mechanism. On the
left, we show the average squared loss by predictor in increasing order, whereas the right
plot shows the cumulative prediction error across the year for each method. Here we can
see that both endogenous models, HVB and RF, exhibit strong biases during long periods,
even though RF appears to be the best single expert among the ones tested. The mixture
model however does not exhibit such bias, which shows its ability to temporarily shift its
weight to other predictors, even if they are overall worse, when such systematic deviations
occur.

4.1 A closer look at the results

TBeing a yearly summary, the performance statistics shown in tables 1 and 2 are insufficient
to characterize the appropriateness of any given individual model, as they do not reflect
the relative importance of different seasons, days (such as holidays), or specific hours of
the day, in what respects to energy generation planning. We now focus on two of these
aspects, namely, the behavior across the year (monthly performance) and across the day
(hourly performance). The first is shown in Figure 6 for the individual predictors as well
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Figure 6: Mean RMSE (left) and MAPE (right) for each expert and mixture (right).

as for the mixture. Although the mean monthly RMSE and MAPEs evolve differently for
each expert, some common elements can be observed. First we look at RMSE. Here the
worst performances occur during (Austral) summer (December, January and February);
winter (June, July and August) is generally well predicted; autumn is better predicted
than spring by all the methods except HVB. These conclusions however do not carry on
to the MAPE case, that is, when the relative error is evaluated. Here the picture is quite
different. The only similarity is winter, where again the best performance is obtained in
general. The worst season in this case appears to be autumn, peaking in May and then
March (this can be explained by the fact that May, for example, is a month with relatively
low load, thus amplifying relative errors).
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Figure 7: Mean MAPE for each expert and mixture by hours.

The hourly MAPE for all predictors is shown in Figure 7. Note that the performance of
endogenous hour-by-hour forecast methods, which can only rely on the previous day loads,
becomes worse for larger prediction horizons; this effect is superimposed to the particular
difficulties of the load pattern itself. We note that the RF and SSM curves are similar
in shape to the mixture one. The shape of these predictors reflect the higher difficulty
of predicting the morning ramp and the afternoon plateau (see Figure 3). As expected,
the performance of TSB worsens TSB for larger horizons and yet, it is the best predictor
for the first hours of the day, surpassing the performance of the mixture on the first two
hours of the day. The afternoon peak (between 18h00 and 20h00) is difficult for KWF
and HVB, but KWF has a good performance during midday, matching the mixture during
those hours.
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Figure 8 shows the contribution of the individual experts to the global prediction as
well as the weights distribution. The time axis are the same as the one on the left panel
of Figure 5. Clearly, the best three experts (RF, TSB and SSM) share the contributions
most of the time, that is, when one of the main three experts reduces its contribution,
the other two take on larger weights (cf. February, around time step 1000 where the RF
contribution is relatively small and SSM and TSB take over). However, exceptions to
this behavior are of interest. Such is the case of three periods of the year: Winter, the
month of May and Spring. During these periods, HVB and KWF have point-wise larger
participation, meaning that the other three experts are not able to follow the consumption
structure during these periods. The month of May is of particular interest because the
Uruguayan weather in this period is highly erratic and difficult to anticipate. In other
terms, the additional information provided by the temperature in the exogenous models
is of less quality. The online mixing algorithm quickly detects this phenomenon, thereby
adjusting the weigths in favour of the endogenous experts during these periods.
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Figure 8: Contribution of the individual experts to the mixture prediction (left) and weight
distribution per expert by time (right).

5 Discussion

aggregar una discussion, ideas:
- resumen tonto
- [done] impacto del uso de meteo efectiva en lugar de predicha
- uso de KWF y TSB como mas genericos

Anticipation of load demand is a crucial element to help decision taking on dispatch.
The introduction of new challenging contexts such as renewables, changes and intensifica-
tion on electronic devices usages or the increasing availability of new data sources, pushes
the domain towards the use of new automatic approaches to produce forecast. In this
work we show the construction a few very models very different in their nature. Instead of
choosing the best of them to produce the final forecast, we use a sequential prediction, that
is an ensemble method adapted to time series in order to enhance the prediction quality.

While we tried to be as close as possible to operational conditions some important
issues are to be raised. Unfortunately, forecast measurements were not available during
this work, as such information would have provided a more realistic operational scenario in
which to evaluate the different predictors. For instance, the performance of the exogenous
models (HSV, SSM, RF) has to be considered an optimistic estimation, since predictions
from these experts were obtained from the true measurements of the day being predicted
rather than from daily forecast, which introduces its own (significant) errors and biases.
Note however that he conclusions on what respects to the purely endogenous experts as well
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as the benefits of using mixtures are expected to hold in the presence of such information.
Also, the prediction obtained in our experiments are computed at midnight with all the
data of the that day available. However, in real condition one would have to predict many
hours in advance in order to be able to use this information in the decision taking procedure
for the dispatch.

A natural perspective would be to add more experts on the prediction mix. One
inexpensive way to obtain this is to create ? Two additional perspective are

N1
N1: No se
puede comen-
tar sobre la
predicción
de curvas de
temperatura
usando por ej
KWF y luego
usar eso como
pronóstico para
HVB, SSM,
RF??
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