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Concentration inequalities for randomly permuted sums

Mélisande Albert
∗

Initially motivated by the study of the non-asymptotic properties of non-parametric

tests based on permutation methods, concentration inequalities for uniformly permuted

sums have been largely studied in the literature. Recently, Delyon et al. proved a new

Bernstein-type concentration inequality based on martingale theory. This work presents

a new proof of this inequality based on the fundamental inequalities for random permu-

tations of Talagrand. The idea is to first obtain a rough inequality for the square root of

the permuted sum, and then, iterate the previous analysis and plug this first inequality

to obtain a general concentration of permuted sums around their median. Then, concen-

tration inequalities around the mean are deduced. This method allows us to obtain the

Bernstein-type inequality up to constants, and, in particular, to recovers the Gaussian

behavior of such permuted sums under classical conditions encountered in the literature.

Then, an application to the study of the second kind error rate of permutation tests of

independence is presented.

Mathematics Subject Classification: 60E15, 60C05.

Keywords: Concentration inequalities, random permutations.

1 Introduction and motivation

This article presents concentration inequalities for randomly permuted sums defined by Zn =
∑n

i=1 ai,Πn(i), where {ai,j}1≤i,j≤n are real numbers, and Πn is a uniformly distributed ran-
dom permutation of the set {1, . . . , n}. Initially motivated by hypothesis testing in the non-
parametric framework (see [WW44] for instance), such sums have been largely studied from
an asymptotic point of view in the literature. A first combinatorial central limit theorem is
proved by Wald and Wolfowitz in [WW44], in the particular case when the real numbers ai,j
are of a product form bi × cj , under strong assumptions that have been released for instance
by Noether [Noe49]. Then, Hoeffding obtains stronger results in such product case, and gen-
eralizes those results to not necessarily product type real terms ai,j in [Hoe51]. More precisely,
he considers

di,j = ai,j −
1

n

n
∑

k=1

ak,j −
1

n

n
∑

l=1

ai,l +
1

n2

n
∑

k,l=1

ak,l. (1)

In particular, Var(Zn) =
1

n−1

∑n
i=1 d

2
i,j . Then he proves (see [Hoe51, Theorem 3]) that, if

lim
n→+∞

1
n

∑

1≤i,j≤n d
r
i,j

(

1
n

∑n
i,j=1 d

2
i,j

)r/2
= 0, for some r > 2, (2)
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then the distribution of Zn =
∑n

i=1 ai,Πn(i) is asymptotically normal, that is, for all x in R,

lim
n→+∞

P

(

Zn − E [Zn] ≤ x
√

Var(Zn)
)

=
1√
2π

∫ x

−∞
e−

y2

2 dy.

He also considers a stronger (in the sense that it implies (2)), but simpler condition in [Hoe51,
Theorem 3], precisely

max1≤i,j≤n {|di,j|}
√

1
n

∑n
i,j=1 d

2
i,j

−→
n→+∞

0, (3)

under which such an asymptotic Gaussian limit holds. Similar results have been obtained
later, for instance by Motoo [Mot56], under the following Lindeberg-type condition that is for
all ε > 0,

lim
n→+∞

∑

1≤i,j≤n

(

di,j
d

)2

1∣

∣

∣

di,j
d

∣

∣

∣
>ε

= 0, (4)

where d2 = n−1
∑

1≤i,j≤n d
2
i,j. In particular, he proves in [Mot56] that such Lindeberg-type

condition is weaker than Hoeffding’s ones in the sense that (4) is implied by (2) (and thus by
(3)). A few years later, Hájek [Háj61] proves in the product case, that the condition (4) is in
fact necessary. A simpler proof of the sufficiency of the Lindeberg-type condition is given by
Schneller [Sch88] based on Stein’s method.
Afterwards, the next step was to study the convergence of the conditional distribution when
the terms ai,j in the general case, or bi × cj in the product case, are random. Notably, Dwass
studies in [Dwa55] the limit of the randomly permuted sum in the product case, where only
the cj ’s are random, and proves that the conditional distribution given the cj’s converges
almost surely (a.s.) to a Gaussian distribution. Then, Shapiro and Hubert [SH79] gener-
alized this study to weighted U -statistics of the form

∑

i 6=j bi,jh(Xi,Xj) where the Xi’s are
independent and identically distributed (i.i.d.) random variables. In a first time, they show
some a.s. asymptotic normality of this statistic. In a second time, they complete Jogdeo’s
[Jog68] work in the deterministic case, proving asymptotic normality of permuted statistics
based on the previous weighted U -statistic. More precisely, they consider the rank statistic
∑

i 6=j bi,jh(XRi
,XRj

), where Ri is the rank of Vi in a sample V1, . . . , Vn of i.i.d. random vari-
ables with a continuous distribution function. In particular, notice that considering such rank
statistics is equivalent to considering uniformly permuted statistics. In [ABFRB15], the previ-
ous combinatorial central limit theorems is generalized to permuted sums of non-i.i.d. random
variables

∑n
i=1 Yi,Πn(i), for particular forms of random variables Yi,j.The main difference with

the previous results comes from the fact that the random variables Yi,j are not necessarily
exchangeable.
Hence, the asymptotic behavior of permuted sums have been vastly investigated in the liter-
ature, allowing to deduce good properties for permutation tests based on such statistics, like
the asymptotic size, or the power (see for instance [Rom89] or [ABFRB15]). Yet, such results
are purely asymptotic, while, in many application fields, such as neurosciences for instance as
described in [ABFRB15], few exploitable data are available. Hence, such asymptotic results
may not be sufficient. This is why a non-asymptotic approach is preferred here, leading to
concentration inequalities.

Concentration inequalities have been vastly investigated in the literature, and the interested
reader can refer to the books of Ledoux [Led05], Massart [MP07], or the more recent one
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of Boucheron, Lugosi, and Massart [BLM13] for some overall reviews. Yet in many cases,
they provide precise tail bounds for well-behaved functions or sums of independent random
variables. For instance, let us recall the classical Bernstein inequality stated for instance in
[MP07, Proposition 2.9 and Corollary 2.10].

Theorem 1.1 (Bernstein’s inequality, Massart 2007). Let X1, . . . ,Xn be independent real

valued random variables. Assume that there exists some positive numbers v and c such that

n
∑

i=1

E
[

X2
i

]

≤ v,

and for all integers k ≥ 3,
n
∑

i=1

E

[

(Xi)
k
+

]

≤ k!

2
vck−2,

where (·)+ = max{·, 0} denotes the positive part.

Let S =
∑n

i=1(Xi − E [Xi]), then for every positive x,

P

(

S ≥
√
2vx+ cx

)

≤ e−x. (5)

Moreover, for any positive x,

P(S ≥ x) ≤ exp

(

− x2

2(v + cx)

)

. (6)

Notice that both forms of Bernstein’s inequality appear in the literature. Yet, due to its form,
(5) is rather preferred in statistics, even though (6) is more classical.
The work in this article is based on the pioneering work of Talagrand (see [Tal95] for a
review) who investigates the concentration of measure phenomenon for product measures. Of
main interest here, he proved the following inequality for random permutations in [Tal95,
Theorem 5.1].

Theorem 1.2 (Talagrand, 1995). Denote by Sn the set of all permutations of {1, . . . , n}.
Define for any subset A ⊂ Sn, and permutation πn ∈ Sn,

UA(πn) = {s ∈ {0, 1}n ; ∃τ ∈ A such that ∀1 ≤ i ≤ n, si = 0 =⇒ τ(i) = πn(i)} .

Then, consider VA(πn) = ConvexHull (UA(πn)), and

f(A, πn) = min

{

n
∑

i=1

v2i ; v = (vi)1≤i≤n ∈ VA(πn)

}

.

Then, if Pn denotes the uniform distribution on Sn,

∫

Sn

e
1
16

f(A,πn)dPn(πn) ≤
1

Pn(A)
.

Therefore, by Markov’s inequality, for all t > 0,

Pn

(

πn ; f(A, πn) ≥ t2
)

≤ e−t2/16

Pn(A)
. (7)
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This result on random permutations is fundamental, and is a key point to many other
non-asymptotic works on random permutations. Among them emerges McDiarmid’s article
[McD02] in which he derives from Talagrand’s inequality, exponential concentration inequali-
ties around the median for randomly permuted functions of the observation under Lipschitz-
type conditions and applied to randomized methods for graph coloring. More recently, Adam-
czak et al. obtained in [ACW14] some concentration inequality under convex-Lipschitz con-
ditions when studying the empirical spectral distribution of random matrices. In particular,
they prove the following Theorem (precisely [ACW14, Theorem 3.1]).

Theorem 1.3 (Adamczak, Chafai and Wolff, 2014). Consider x1, . . . , xn in [0, 1] and let

ϕ : [0, 1]n → R be an L-Lipschitz convex function. Let Πn be a random uniform permutation

of the set {1, . . . , n} and denote Y = ϕ
(

xΠn(1), . . . , xΠn(n)

)

. Then, there exists some positive

absolute constant c such that, for all t > 0,

P(Y − E [Y ] ≥ t) ≤ 2 exp

(

−ct2

L2

)

.

Yet, the Lispchitz assumptions may be very restrictive and may not be satisfied by the func-
tions considered in the application fields (see Section 3.1 for instance). Hence, the idea is to
exploit the attractive form of a sum. Based on Stein’s method, initially introduced to study
the Gaussian behavior of sums of dependent random variables, Chatterjee studies permuted
sums of non-negative numbers in [Cha07]. He obtains in [Cha07, Proposition 1.1] the following
first Bernstein-type concentration inequality for non-negative terms around the mean.

Theorem 1.4 (Chatterjee, 2007). Let {ai,j}1≤i,j≤n be a collection of numbers from [0, 1].

Let Zn =
∑n

i=1 ai,Πn(i), where Πn is drawn from the uniform distribution over the set of all

permutations of {1, . . . , n}. Then, for any t ≥ 0,

P(|Zn − E [Zn]| ≥ t) ≤ 2 exp

(

− t2

4E [Zn] + 2t

)

. (8)

Notice that because of the expectation term in the right-hand side of (8), the link with Ho-
effding’s combinatorial central limit theorem (for instance) is not so clear.

In [BDR15, Theorem 4.3], this result is sharpened in the sense that this expectation term is
replaced by a variance term, allowing us to provide a non-asymptotic version of such com-
binatorial central limit theorem. This result is moreover generalized to any real numbers
(not necessarily non-negative). More precisely, based on martingale theory, they prove the
following result.

Theorem 1.5 (Bercu, Delyon and Rio, 2015). Let {ai,j}1≤i,j≤n be an array of real numbers

from [−ma,ma]. Let Zn =
∑n

i=1 ai,Πn(i), where Πn is drawn from the uniform distribution

over the set of all permutations of {1, . . . , n}. Then, for any t > 0,

P(|Zn −E [Zn]| ≥ t) ≤ 4 exp

(

− t2

16(θ 1
n

∑n
i,j=1 a

2
i,j +mat/3)

)

, (9)

where θ =
5

2
ln(3) − 2

3
.

In this work, we obtain a similar result (up to constants) but based on a completely different
approach. Moreover, this approach provides a direct proof for a concentration inequality of a
permuted sum around its median.
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The present work is organized as follows. In Section 2 are formulated the main results.
Section 2.1 is devoted to the permuted sums of non-negative numbers. Based on Talagrand’s
result, a first rough concentration inequality for the square root of permuted sum is obtained
in Lemma 2.1. Then by iterating the previous analysis and plugging this first inequality,
a general concentration of permuted sums around their median is obtained in Proposition
2.1. Finally, the concentration inequality of Proposition 2.2 around the mean is deduced.
In Section 2.2, the previous inequalities are generalized to general permuted sums of not
necessarily non-negative terms in Theorem 2.1. Section 3 presents an application to the study
of non-asymptotic properties of a permutation independence test in Statistics. In particular,
a sharp control of the critical value of the test is deduced from the main result. The proofs are
detailed in Section 4. Finally, Appendix A contains technical results for the non-asymptotic
control of the second kind error rate of the permutation test introduced in Section 3.

2 Bernstein-type concentration inequalities for permuted sums

Let us first introduce some general notation. In the sequel, denote by Sn the set of permuta-
tions of {1, 2, . . . , n}. For all collection of real numbers {ai,j}1≤i,j≤n, and for each πn in Sn,
consider the permuted sum

Zn(πn) =

n
∑

i=1

ai,πn(i).

Let Πn be a random uniform permutation in Sn, and Zn := Zn(Πn). Denote med (Zn) its
median, that is which satisfies

P(Zn ≥ med (Zn)) ≥ 1/2 and P(Zn ≤ med (Zn)) ≥ 1/2.

This study is divided in two steps. The first one is restrained to non-negative terms. The
second one extends the previous results to general terms, based on a trick involving both
non-negative and negative parts.

2.1 Concentration of permuted sums of non-negative numbers

In the present section, the collection of numbers {ai,j}1≤i,j≤n is assumed to be non-negative.
The proof of the concentration inequality around the median in Proposition 2.1 needs a pre-
liminary step which is presented in Lemma 2.1. It provides concentration inequality for the
square root of the sum. It allows us then by iterating the same argument, and plugging the

obtained inequality to the square root of the sum of the squares, namely
√

∑n
i=1 a

2
i,Πn(i)

, to

be able to sharpen Chatterjee’s concentration inequality (8).

Lemma 2.1. Let {ai,j}1≤i,j≤n be a collection of non-negative numbers, and Πn be a random

uniform permutation in Sn. Consider Zn =
∑n

i=1 ai,Πn(i). Then, for all t > 0,

P

(

√

Zn ≥
√

med (Zn) + t
√

max
1≤i,j≤n

{ai,j}
)

≤ 2e−t2/16, (10)

and

P

(

√

Zn ≤
√

med (Zn)− t
√

max
1≤i,j≤n

{ai,j}
)

≤ 2e−t2/16. (11)
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In particular, one obtains the following two-sided concentration for the square root of a ran-

domly permuted sum of non-negative numbers,

P

(

∣

∣

∣

√

Zn −
√

med (Zn)
∣

∣

∣
> t
√

max
1≤i,j≤n

{ai,j}
)

≤ 4e−t2/16.

The idea of the proof is the same that the one of Adamczak et al. in [ACW14, Theorem
3.1], but with a sum instead of a convex Lipschitz function. In a similar way, it is based on
Talagrand’s inequality for random permutations recalled in Theorem 1.2.

In the following are presented two concentration inequalities in the non-negative case; the
first one around the median, and the second one around the mean. It is well known that
both are equivalent up to constants, but here, both are detailed in order to give the order of
magnitude of the constants. The transition from the median to the mean can be obtained
thanks to Ledoux’ trick in the proof of [Led05, Proposition 1.8] allowing to reduce exponential
concentration inequalities around any constant m (corresponding in our case to med (Zn))
to similar inequalities around the mean. This trick consists in using the exponentially fast
decrease around m to upper bound the difference between m and the mean. Yet, this approach
leads to drastic multiplicative constants (of the order 8e16π as shown in [Alb15]). Better
constants can be deduced from the following lemma.

Lemma 2.2. For any real valued random variable X,

|E [X]−med (X)| ≤
√

Var(X).

In particular, we obtain the following result.

Proposition 2.1. Let {ai,j}1≤i,j≤n be a collection of non-negative numbers and Πn be a

random uniform permutation in Sn. Consider Zn =
∑n

i=1 ai,Πn(i). Then, for all x > 0,

P



|Zn −med (Zn)| >

√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

x+ x max
1≤i,j≤n

{ai,j}



 ≤ 8 exp

(−x

16

)

. (12)

Since in many applications, the concentration around the mean is more adapted, the following
proposition shows that one may obtain a similar behavior around the mean, at the cost of
higher constants.

Proposition 2.2. Let {ai,j}1≤i,j≤n be a collection of non-negative numbers, and Πn be a

random uniform permutation in Sn. Consider Zn =
∑n

i=1 ai,Πn(i).

Then, for all x > 0,

P






|Zn − E [Zn]| ≥ 2

√

√

√

√

√





1

n

n
∑

i,j=1

a2i,j



x+ max
1≤i,j≤n

{ai,j}x






≤ 8e1/16 exp

(

− x

16

)

. (13)

This concentration inequality is called a Bernstein-type inequality restricted to non-negative
sums, due to its resemblance to the standard Bernstein inequality, as recalled in Theorem
1.1. The main difference here lies in the fact that the random variables in the sum are not
independent. Moreover, this inequality implies a more popular form of Bernstein’s inequality
stated in Corollary 2.1.
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Corollary 2.1. With the same notation and assumptions as in Proposition 2.2, for all t > 0,

P(|Zn − E [Zn]| ≥ t) ≤ 8e1/16 exp





−t2

16
(

4 1
n

∑n
i,j=1 a

2
i,j + 2max1≤i,j≤n {ai,j} t

)



 . (14)

Comment: Recall Chatterjee’s result in [Cha07, Proposition 2.1], quoted in Theorem 1.4,
which can easily be rewritten with our notation, and for a collection of non-negative numbers
not necessarily in [0, 1], by

∀t > 0, P(|Zn − E [Zn]| ≥ t) ≤ 2 exp

(

−t2

4Ma
1
n

∑n
i,j=1 ai,j + 2Mat

)

,

where Ma denotes the maximum max1≤i,j≤n {ai,j}. As mentioned in [BDR15], the inequality in
(14) is sharper up to constants, thanks to the quadratic term since

∑n
i,j=1 a

2
i,j ≤ Ma

∑n
i,j=1 ai,j

always holds.

2.2 Concentration of permuted sums in the general case

In this section, the collection of numbers {ai,j}1≤i,j≤n is no longer assumed to be non-negative.
The following general concentration inequality for randomly permuted sums directly derives
from Proposition 2.2.

Theorem 2.1. Let {ai,j}1≤i,j≤n be a collection of any real numbers, and Πn be a random

uniform permutation in Sn. Consider Zn =
∑n

i=1 ai,Πn(i). Then, for all x > 0,

P






|Zn − E [Zn]| ≥ 2

√

√

√

√

√2





1

n

n
∑

i,j=1

a2i,j



x+ 2 max
1≤i,j≤n

{|ai,j|}x






≤ 16e1/16 exp

(

− x

16

)

. (15)

Once again, the obtained inequality is a Bernstein-type inequality. Moreover, it is also possible
to obtain a more popular form of Bernstein-type inequalities applying the same trick based
on the non-negative and the negative parts from Corollary 2.1.

Corollary 2.2. With the same notation as in Theorem 2.1, for all t > 0,

P(|Zn − E [Zn]| ≥ t) ≤ 16e1/16 exp

( −t2

256 (Var(Zn) + max1≤i,j≤n {|ai,j|} t)

)

.

Comments: One recovers a Gaussian behavior of the centered permuted sum obtained by
Hoeffding in [Hoe51, Theorem 3] under the same assumptions. Indeed, in the proof of Corollary
2.2, one obtains the following intermediate result (see (41)), that is

P(|Zn −E [Zn]| ≥ t) ≤ 16e1/16 exp





−t2

64
(

4 1
n

∑n
i,j=1 d

2
i,j +max1≤i,j≤n {|di,j|} t

)



 ,
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where the di,j ’s are defined in (1). Yet, Var(Zn) =
1

n−1

∑n
i,j=1 d

2
i,j (see [Hoe51, Theorem 2]).

Hence, applying this inequality to t = x
√

Var(Zn) ≥ x
√

n−1
∑n

i,j=1 d
2
i,j for x > 0 leads to

P

(

|Zn − E [Zn]| ≥ x
√

Var(Zn)
)

≤ 16e1/16 exp













−x2

256

(

1 +
max1≤i,j≤n{|di,j |}
√

1
n

∑n
i,j=1 d

2
i,j

x

)













,

Hence, under Hoeffding’s simpler condition (3), namely

lim
n→+∞

max1≤i,j≤n d
2
i,j

1
n

∑n
i,j=1 d

2
i,j

= 0,

one recovers,

lim
n→+∞

P

(

|Zn − E [Zn]| ≥ x
√

Var(Zn)
)

≤ 16e1/16e−x2/256,

which is a Gaussian tail that is, up to constants, close in spirit to the one obtained by Hoeffding
in [Hoe51, Theorem 3].

3 Application to independence testing

3.1 Statistical motivation

Let X represent a separable set. Given an i.i.d. n-sample Xn = (X1, . . . ,Xn), where each Xi

is a couple (X1
i ,X

2
i ) in X 2 with distribution P of marginals P 1 and P 2, we aim at testing

the null hypothesis (H0) "P = P 1 ⊗ P 2" against the alternative (H1) "P 6= P 1 ⊗ P 2".

The considered test statistic is defined by

Tδ(Xn) =
1

n− 1





n
∑

i=1

ϕδ(X
1
i ,X

2
i )−

1

n

n
∑

i,j=1

ϕδ(X
1
i ,X

2
j )



 , (16)

where ϕδ is a measurable real-valued function on X 2 potentially depending on some unknown
parameter δ. Denoting for any real-valued measurable function g on X 2,

EP [g] =

∫

X 2

g
(

x1, x2
)

dP
(

x1, x2
)

and E⊥⊥[g] =

∫

X 2

g
(

x1, x2
)

dP 1
(

x1
)

dP 2
(

x2
)

, (17)

one may notice that, Tδ(Xn) is an unbiased estimator of

E [Tδ(Xn)] = EP [ϕδ]− E⊥⊥[ϕδ] ,

which is equal to 0 under (H0). For more details on the choice of the test statistic, the
interested reader can refer to [ABFRB15] (motivated by synchrony detection in neuroscience
for instance). The particular case where X = [0, 1] and the ϕδ are Haar wavelets is studied in
[Alb15, Chaper 4]. Notice that in this case, the Lispchitz assumptions of Adamczak et al (see
Theorem 1.3) are not satisfied, since the Haar wavelet functions are not even continuous.
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The critical value of the test is obtained from the permutation approach, inspired by Hoeffd-
ing [Hoe52], and Romano [Rom89]. Let Πn be a uniformly distributed random permutation
of {1, . . . , n} independent of Xn and consider the permuted sample

X
Πn
n = (XΠn

1 , . . . XΠn
n ), where XΠn

i = (X1
i ,X

2
Πn(i)

) ∀1 ≤ i ≤ n,

obtained from permuting only the second coordinates. Then, under H0, the original sample
Xn and the permuted one X

Πn
n have the same distribution. Hence, the critical value of the

upper-tailed test, denoted by q1−α(Xn), is the (1−α)-quantile of the conditional distribution
of the permuted statistic Tδ(X

Πn
n ) given the sample Xn, where the permuted test statistic is

equal to

Tδ(X
Πn
n ) =

1

n− 1





n
∑

i=1

ϕδ(X
1
i ,X

2
Πn(i)

)− 1

n

n
∑

i,j=1

ϕδ(X
1
i ,X

2
j )



 ,

More precisely, given Xn, if

T
(1)
δ (Xn) ≤ T

(2)
δ (Xn) ≤ · · · ≤ T

(n!)
δ (Xn)

denote the ordered values of all the permuted test statistic Tδ(X
πn
n ), when πn describes the

set of all permutations of {1, . . . , n}, then the critical value is equal to

q1−α(Xn) = T
(n!−⌊n!α⌋)
δ (Xn). (18)

The corresponding test rejects the null hypothesis when Tδ(Xn) > q1−α(Xn), here denoted by

∆α(Xn) = 1Tδ(Xn)>q1−α(Xn). (19)

In [ABFRB15], the asymptotic properties of such test are studied. Based on a combinatorial
central limit theorem in a non-i.i.d. case, the test is proved to be, under mild conditions,
asymptotically of prescribed size, and power equal to one under any reasonable alternatives.
Yet, as explained above, such purely asymptotic properties may be insufficient when applying
these tests in neuroscience for instance. Moreover, the delicate choice of the parameter δ is a
real question, especially, in neuroscience, where it has some biological meaning, as mentioned
in [ABFRB15] and [ABFRB16]. A possible approach to overcome this issue is to aggregate
several tests for different parameters δ, and reject independence if at least one of them does.
In particular, this approach should give us information on how to choose this parameter. Yet,
to do so, non-asymptotic controls are necessary.

From a non-asymptotic point of view, since the test is non-asymptotically of prescribed
level by construction, remains the non-asymptotic control of the second kind error rate, that
is the probability of wrongly accepting the null hypothesis. In the spirit of [FLRB11, FLRB13,
STM15], the idea is to study the uniform separation rates, in order to study the optimality in
the minimax sense (see [Bar02]).
From now on, consider an alternative P satisfying (H1), and an i.i.d. sample Xn from such
distribution P . Assume moreover that the alternative satisfies EP [ϕδ ] > E⊥⊥[ϕδ], that is
E [Tδ(Xn)] > 0. The initial step is to find some condition on P guaranteeing the control of
the second kind error rate, namely P(∆α(Xn) = 0), by a prescribed value β > 0. Intuitively,
since the expectation of the test statistic E [Tδ(Xn)] is equal to zero under the null hypothesis,

9



the test should be more efficient in rejecting (H0) for large values of this expectation. So, the
aim is to find conditions of the form E [Tδ(Xn)] ≥ s for some threshold s to be determined.
Yet, one of the main difficulties here comes from the randomness of the critical value. The
idea, as in [FLRB11], is thus to introduce qα1−β/2 the (1 − β/2)-quantile of the critical value

q1−α(Xn) and deduce from Chebychev’s inequality (see Appendix A.1), that the second kind
error rate is controlled by β as soon as

E [Tδ(Xn)] ≥ qα1−β/2 +

√

2

β
Var(Tδ(Xn)). (20)

Usually, the goal in general minimax approaches is to express, for well-chosen functions ϕδ,
some distance between the alternative P and the null hypothesis (H0) thanks to E [Tδ(Xn)] for
which minimax lower-bounds are known (see for instance [FLRB11, FLRB13]). The objective
is then to control, up to a constant, such distance (and in particular each term in the right-
hand side of (20)) by the minimax rate of independence testing with respect to such distance
on well-chosen regularity subspaces of alternatives, in order to prove the optimality of the
method from a theoretical point of view. The interested reader could refer to the thesis
[Alb15, Chapter 4] for more details about this kind of development in the density case. It is
not in the scope of the present article to develop such minimax theory in the general case,
but to provide some general tools providing some sharp control of each term in the right-hand
side of (20) which consists in a very first step of this approach. Some technical computations
imply that the variance term can be upper bounded, up to a multiplicative constant, by
n−1(E

[

ϕ2
δ(X

1
1 ,X

2
1 )
]

+ E
[

ϕ2
δ(X

1
1 ,X

2
2 )
]

) (see Lemma 3.1). Hence, the challenging part relies
in the quantile term. At this point, several ideas have been explored.

3.2 Why concentration inequalities are necessary

A first idea to control the conditional quantile of the permuted test statistic is based on the
non-asymptotic control of the critical value obtained in Appendix A.3 (see equation (49)),
following Hoeffding’s idea (see [Hoe52, Theorem 2.1]), that leads to the condition

E [Tδ(Xn)] ≥
4√
α

√

2

β

E
[

ϕδ(X
1
1 ,X

2
1 )

2
]

+E
[

ϕδ(X
1
1 ,X

2
2 )

2
]

n
. (21)

The proof of this result is detailed in Appendix A.5. Yet, this result may not be sharp enough,
especially in α. Indeed, as explained above, the next step consists in aggregating several tests
for different values of the parameter δ in a purpose of adaptivity. Generally, when aggregating
tests, as in multiple testing methods, the multiplicity of the tests has to be taken into account.
In particular, the single prescribed level of each individual test should be corrected. Several
corrections exist, such as the Bonferroni one, which consists in dividing the global desired
level α by the number of tests M . Yet, for such correction, the lower-bound in (21) comes
with a cost in

√
M , which is too large to provide optimal rates. Even with more sophisticated

corrections than the Bonferroni one (see, e.g., [FLRB11, FLRB13, STM15]), the control by a
term of order α−1/2 is too large, since classically in the literature, the dependence in α should
be of the order of

√

ln(1/α). Hence, the bound ensuing from this first track being not sharp
enough, the next idea was to investigate other non-asymptotic approaches for permuted sums.
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Such approaches have also been studied in the literature. For instance, Ho and Chen [HC78]
obtain non-asymptotic Berry-Esseen type bounds in the L

p-distance between the cumulative
distribution function (c.d.f.) of the standardized permuted sum of i.i.d. random variables and
the c.d.f. of the normal distribution, based on Stein’s method. In particular, they obtain the
rate of convergence to a normal distribution in L

p-distance under Lindeberg-type conditions.
Then, Bolthausen [Bol84] considers a different approach, also based on Stein’s method allowing
to extend Ho and Chen’s results in the non-identically distributed case. More precisely, he
obtains bounds in the L

∞-distance in the non-random case. In particular, in the deterministic
case (which can easily be generalized to random cases), considering the notation introduced
above, he obtains the following non-asymptotic bound:

sup
x∈R

∣

∣

∣
P

(

Zn − E [Zn] ≤ x
√

Var(Zn)
)

− Φ0,1(x)
∣

∣

∣
≤ C

n
√

Var(Zn)
3

n
∑

i,j=1

|di,j |3 ,

where C is an absolute constant, and Φ0,1 denotes the standard normal distribution function.
In particular, when applying this result to answer our motivation by considering random
variables ϕδ(X

1
i ,X

2
j ) instead of the deterministic terms ai,j, and working conditionally on the

sample Xn, the permuted statistic Tδ(X
Πn
n ) corresponds to (n−1)−1(Zn−E [Zn]). Therefore,

the previous inequality implies that, for all t in R,

P
(

Tδ

(

X
Πn
n

)

> t
∣

∣Xn

)

≤









1−Φ0,1









t
√

Var
(

Tδ

(

X
Πn
n

)∣

∣

∣
Xn

)

















+
C

n(n− 1)2/3
√

Var
(

Tδ

(

X
Πn
n

)∣

∣

∣
Xn

)

3

∑

i,j

|Di,j |3 , (22)

where Di,j denotes

ϕδ(X
1
i ,X

2
j )−

1

n

n
∑

l=1

ϕδ(X
1
i ,X

2
l )−

1

n

n
∑

k=1

ϕδ(X
1
k ,X

2
j ) +

1

n2

n
∑

k,l=1

ϕδ(X
1
k ,X

2
l ).

Yet, by definition of conditional quantiles, the critical value q1−α(Xn) is the smallest value of t
such that P(Tδ(Xn) > t|Xn) ≤ α. Hence, considering (22), one can easily make the first term
of the sum in the right-hand side of the inequality as small as one wants by choosing t large
enough. However, the second term being fixed, nothing guarantees that the upper-bound in
(22) can be constrained to be smaller than α. Thus, this result cannot be applied in order
to control non-asymptotically the critical value. Concentration inequalities seem thus to be
adequate here, as they provide sharp non-asymptotic results, with usually exponentially small
controls which leads to the desired logarithmic dependency in α, as mentioned above.

3.3 A sharp control of the conditional quantile and a new condition guar-

anteeing a control of the second kind error rate

Sharp controls of the quantiles are provided in the following proposition.
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Proposition 3.1. Consider the same notation as in Section 3.1 and let qα1−β/2 be the (1 −
β/2)-quantile of the conditional quantile q1−α(Xn). Then, there exists two universal positive

constants C ′ and c0 such that

q1−α(Xn) ≤
C ′

n− 1







√

√

√

√

1

n

n
∑

i,j=1

ϕ2
δ(X

1
i ,X

2
j )

√

ln
(c0
α

)

+ ‖ϕδ‖∞ ln
(c0
α

)







. (23)

As a consequence, there exists a universal positive constants C such that

qα1−β/2 ≤ C







√

2

β
ln
(c0
α

)





√

EP

[

ϕ2
δ

]

n
+

√

E⊥⊥

[

ϕ2
δ

]

√
n



+
‖ϕδ‖∞

n
ln
(c0
α

)







. (24)

Moreover, a control of the variance term is obtained in the following lemma based on the
Cauchy-Schwartz inequality.

Lemma 3.1. Let n ≥ 4 and Xn be a sample of n i.i.d. random variables with distribution P
and marginals P 1 and P 2. Let Tδ be the test statistic defined in (16), and EP [·] and E⊥⊥[·] be

notation introduced in (17). Then, if both EP

[

ϕ2
δ

]

< +∞ and E⊥⊥

[

ϕ2
δ

]

< +∞,

Var(Tδ(Xn)) ≤
1

n

(

√

EP

[

ϕ2
δ

]

+ 2
√

E⊥⊥

[

ϕ2
δ

]

)2

.

Proposition 3.1 and Lemma 3.1 both imply that the right-hand side of (20) is upper bounded
by

C ′′







√

2

β

[

ln
(c0
α

)

+ 1
]

(

EP

[

ϕ2
δ

]

+ E⊥⊥

[

ϕ2
δ

])

n
+

‖ϕδ‖∞
n

ln
(c0
α

)







, (25)

where C ′′ is a universal constant.
Indeed, the control of qα1−β/2 is implied by (24) combined with the concavity property of the
square-root function. Lemma 3.1 directly implies that the variance term satisfies

Var(Tδ(Xn)) ≤
8

n

(

EP

[

ϕ2
δ

]

+ E⊥⊥

[

ϕ2
δ

])

,

Finally, if E [Tδ(Xn)] is larger than the quantity in (25), then condition (20) is satisfied which
directly provides that P(∆δ,α(Xn) = 0) ≤ β, that is the second kind error rate of the test ∆δ,α

is less than or equal to the prescribed value β. One may notice that this time, the dependence
in α is, as expected, of the order of

√

ln(1/α).

4 Proofs

4.1 Proof of Lemma 2.1

Sketch of proof. From now on, fix t > 0. Recall the notation introduced by Talagrand
in Theorem 1.2. The main purpose of these notation is to introduce some notion of distance
between a permutation πn in Sn and a subset A of Sn. To do so, the idea is to reduce the
set of interest to a simpler one, that is [0, 1]n, by considering

UA(πn) = {s ∈ {0, 1}n ; ∃τ ∈ A such that ∀1 ≤ i ≤ n, si = 0 =⇒ τ(i) = πn(i)} .
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One may notice that the permutation πn belongs to A if and only if 0 belongs to the set
UA(πn). Hence, the corresponding distance between the permutation πn and the set A is
coded by the distance between 0 and the set UA(πn) and thus defined by

f(A, πn) = min

{

n
∑

i=1

v2i ; v = (vi)1≤i≤n ∈ VA(πn)

}

,

where VA(πn) = ConvexHull (UA(πn)). One may notice in particular that A contains πn if
and only if the distance f(A, πn) = 0.
The global frame of the proof of Lemma 2.1 (and also Proposition 2.1) relies on the following
steps. The first step consists in proving that

P

(

√
Z ≥

√

CA + t
√

max
1≤i,j≤n

{ai,j}
)

≤ e−t2/16

P(Z ∈ A)
, (26)

for some subset A of Sn of the shape A = {τ ∈ Sn;Z(τ) ≤ CA} for some constant CA to
be chosen later. For this purpose, since Talagrand’s inequality for random permutations (see
Theorem 1.2) provides that

P
(

f(A,Πn) ≥ t2
)

≤ e−t2/16

P(Πn ∈ A)
,

it is sufficient to prove that

P
(

f(A,Πn) ≥ t2
)

≥ P

(

√
Z ≥

√

CA + t
√

max
1≤i,j≤n

{ai,j}
)

,

to obtain (26). To do so, the idea, as in [ACW14], is to show that the assertion f(A,Πn) < t2

implies that
√
Z <

√
CA + t

√

max1≤i,j≤n {ai,j}, and to conclude by contraposition.
Then, the two following steps consist in choosing appropriate constants CA in (26) depending

on the median of Z, such that both P

(√
Z ≥

√
CA + t

√

max1≤i,j≤n {ai,j}
)

and P(Z ∈ A) are

greater than 1/2, in order to control both probabilities

P

(

√
Z ≥

√

med (Z) + t
√

max
1≤i,j≤n

{ai,j}
)

and P

(

√
Z ≤

√

med (Z)− t
√

max
1≤i,j≤n

{ai,j}
)

respectively in (10) and (11).

First step: preliminary study. Assume f(A,Πn) < t2. Then, by definition of the distance
f , there exists some s1, . . . , sm in UA(Πn), and some non-negative weights p1, . . . , pm satisfying
∑m

j=1 pj = 1 such that

n
∑

i=1









m
∑

j=1

pjs
j
i





2

 < t2.

For each 1 ≤ j ≤ m, since sj belongs to UA(Πn), one may consider a permutation τj in A

associated to sj (that is satisfying sji = 0 =⇒ τj(i) = Πn(i)). Then, since the ai,j are
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non-negative, and from the Cauchy-Schwartz inequality,

Z −
m
∑

j=1

pjZ(τj) =
n
∑

i=1

m
∑

j=1

pj

(

ai,Πn(i) − ai,τj(i)

)

=

n
∑

i=1

m
∑

j=1

pj

(

ai,Πn(i) − ai,τj(i)

)

sji

≤
n
∑

i=1









m
∑

j=1

pjs
j
i



 ai,Πn(i)





≤

√

√

√

√

√

n
∑

i=1





m
∑

j=1

pjs
j
i





2√
√

√

√

n
∑

i=1

a2i,Πn(i)

< t
√

max
1≤i,j≤n

{ai,j}
√
Z.

Thus, as the τj are in A = {τ ;Z(τ) ≤ CA},

Z < CA + t
√

max
1≤i,j≤n

{ai,j}
√
Z.

Therefore, by solving the second-order polynomial in
√
Z above, one obtains

√
Z <

t
√

max1≤i,j≤n {ai,j}+
√

t2max1≤i,j≤n {ai,j}+ 4CA

2
≤ t
√

max
1≤i,j≤n

{ai,j}+
√

CA.

Finally, by contraposition,

P

(

√
Z ≥

√

CA + t
√

max
1≤i,j≤n

{ai,j}
)

≤ P
(

f(A,Πn) ≥ t2
)

,

which, combined with (7) of Theorem 1.2 provides (26).

Second step: proof of (10). Taking CA = med (Z) guarantees P(Z ∈ A) ≥ 1/2 and thus,
(26) provides (10).

Third step: proof of (11). Taking CA =
(

√

med (Z)− t
√

max1≤i,j≤n {ai,j}
)2

implies

P

(

√
Z ≥

√

CA + t
√

max
1≤i,j≤n

{ai,j}
)

= P

(√
Z ≥

√

med (Z)
)

= P(Z ≥ med (Z)) ≥ 1

2
.

So finally, again by (26),

P

(

√
Z ≤

√

med (Z)− t
√

max
1≤i,j≤n

{ai,j}
)

= P(Z ∈ A)

≤ e−t2/16

P

(√
Z ≥

√
CA + t

√

max1≤i,j≤n {ai,j}
)

≤ 2e−t2/16,
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which ends the proof of the Lemma.

4.2 Proof of Proposition 2.1

From now on, fix x > 0, and consider t = x2. This proof is again based on Talagrand’s
inequality for random permutations, combined with (10) in Lemma 2.1. It follows exactly the
same progression as in the proof of Lemma 2.1; the preliminary step consists in working with
subsets A ⊂ Sn of the form A = {τ ∈ Sn ; Z(τ) ≤ CA} for some constant CA, in order to
obtain for all v > 0,

P



Z ≥ CA + t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ v max
1≤i,j≤n

{ai,j}







 ≤ e−t2/16

P(Z ∈ A)
+ 2e−v2/16. (27)

The second and third step consist in picking up a well-chosen constant CA and a well-chosen
v > 0 in order to obtain respectively

P



Z ≥ med (Z) + t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ (t ∨ C0) max
1≤i,j≤n

{ai,j}







 ≤ 4e−t2/16, (28)

and

P



Z ≤ med (Z)− t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ (t ∨ C0) max
1≤i,j≤n

{ai,j}







 ≤ 4e−t2/16, (29)

where C0 = 4
√

ln(8). The final step combines (28) and (29) in order to prove (12).

First step: preliminary study. Let A = {τ ∈ Sn ; Z(τ) ≤ CA} with CA a general con-
stant, and fix v > 0. Assume, this time, that both

f(A,Πn) < t2 and

√

√

√

√

n
∑

i=1

a2i,Πn(i)
<

√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ v max
1≤i,j≤n

{ai,j} . (30)

Then, as in the preliminary study of the proof of Lemma 2.1, from the first assumption in (30),
there exists some s1, . . . , sm in UA(Πn), and some non-negative weights p1, . . . , pm satisfying
∑m

j=1 pj = 1 such that

n
∑

i=1









m
∑

j=1

pjs
j
i





2

 < t2.

For each 1 ≤ j ≤ m, consider τj in A associated to sj, that is a permutation τj in A satisfying

sji = 0 =⇒ τj(i) = Πn(i). Then, combining the Cauchy-Shwartz inequality with the second
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assumption in (30) leads to

Z −
m
∑

j=1

pjZ(τj) =
n
∑

i=1

m
∑

j=1

pj

(

ai,Πn(i) − ai,τj(i)

)

sji

≤
n
∑

i=1









m
∑

j=1

pjs
j
i



 ai,Πn(i)





≤

√

√

√

√

√

n
∑

i=1





m
∑

j=1

pjs
j
i





2√
√

√

√

n
∑

i=1

a2i,Πn(i)

< t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ v max
1≤i,j≤n

{ai,j}



 .

Notice that here, the reasoning begins exactly as in the proof of Lemma 2.1. Yet, the second
assumption in (30), which can be controlled thanks to that lemma, allows us to sharpen the
inequality. Thus, as the τj are in A = {τ ;Z(τ) ≤ CA},

Z < CA + t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ v max
1≤i,j≤n

{ai,j}



 . (31)

Hence, by contraposition of (30) =⇒ (31), one obtains

P



Z ≥ CA + t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ v max
1≤i,j≤n

{ai,j}









≤ P
(

f(A,Πn) ≥ t2
)

+ P





√

√

√

√

n
∑

i=1

a2i,Πn(i)
≥

√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ v max
1≤i,j≤n

{ai,j}



 ,

and (27) follows from Theorem 1.2 and (10) in Lemma 2.1.

Second step: proof of (28). Consider CA = med (Z) so that P(Z ∈ A) ≥ 1/2. Thus, if
v = t in (27)

P

(

Z ≥ med (Z) + t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ (t ∨ C0) max
1≤i,j≤n

{ai,j}





)

≤ P



Z ≥ med (Z) + t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ t max
1≤i,j≤n

{ai,j}









≤ 4e−t2/16

Notice that the maximum with the constant in (t ∨ C0) is not necessary in the case only a
control of the right-tail is wanted.
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Third step: proof of (29). Consider now

CA = med (Z)− t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ v max
1≤i,j≤n

{ai,j}



 ,

so that

P



Z ≥ CA + t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ v max
1≤i,j≤n

{ai,j}







 = P(Z ≥ med (Z)) ≥ 1

2
.

Hence, on the one hand, from (27),

P(Z ∈ A) ≤ e−t2/16

(

1
2 − 2e−v2/16

) .

Thus, if v = C0 = 4
√

ln(8), then
(

1
2 − 2e−v2/16

)

= 1
4 , and P(Z ∈ A) ≤ 4e−t2/16.

On the other hand, as (t ∨ C0) ≥ C0 = v,

P(Z ∈ A) ≥ P



Z ≤ med (Z)− t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ (t ∨ C0) max
1≤i,j≤n

{ai,j}







 ,

which ends the proof of (29).

Fourth step: proof of (12). Both (28) and (29) lead to

P



|Z −med (Z)| > t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ (t ∨C0) max
1≤i,j≤n

{ai,j}







 ≤ 8e−t2/16.

Thus, on the one hand, if t ≥ C0, that is t ∨C0 = t, and (12) holds.
On the other hand, if t < C0,

P



|Z −med (Z)| > t





√

√

√

√med

(

n
∑

i=1

a2i,Πn(i)

)

+ t max
1≤i,j≤n

{ai,j}







 ≤ 1

≤ eC
2
0/16−t2/16 = 8e−t2/16,

which ends the proof of the Proposition by taking x =
√
t.

4.3 Proof of Lemma 2.2

Let X be any real random variable. Recall that

med (X) ∈ argmin
m∈R

E [|X −m|] .
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In particular, thanks to Jensen’s inequality,

|E [X]−med (X)| ≤ E [|X −med (X)|]
≤ E [|X − E [X]|]

≤
√

E

[

(X − E [X])2
]

≤
√

Var(X). (32)

4.4 Proof of Proposition 2.2

First, for a better readability, let

M = max
1≤i,j≤n

{ai,j} and V = E

[

n
∑

i=1

a2i,Πn(i)

]

=
1

n

n
∑

i,j=1

a2i,j.

Then, med
(

∑n
i=1 a

2
i,Πn(i)

)

≤ 2V since by Markov’s inequality, for all non-negative random

variable X, med (X) ≤ 2E [X]. Indeed,

1

2
≤ P(X ≥ med (X)) ≤ E [X]

med (X)
.

Thus, by Proposition 2.1, one obtains that, for all x > 0,

P

(

|Z −med (Z)| ≥
√
2V x+Mx

)

≤ 8e−x/16. (33)

The following is based on Lemma 2.2, and provides an upper-bound of the difference between
the expectation and the median of Z.

Lemma 4.1. With the notation defined above,

|E [Z]−med (Z)| ≤
√
2V .

Proof of Lemma 4.1. Lemma 2.2 implies that

|E [Z]−med (Z)| ≤
√

Var(Z).

Let us prove that
Var(Z) ≤ 2V. (34)

Indeed,

Var(Z) = E









n
∑

i=1

ai,Πn(i) −
1

n

n
∑

i,j=1

ai,j





2



= E









n
∑

i,j=1

ai,j

(

1Πn(i)=j −
1

n

)





2



=

n
∑

i,j=1

n
∑

k,l=1

ai,jak,lEi,j,k,l,
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where

Ei,j,k,l = E

[(

1Πn(i)=j −
1

n

)(

1Πn(k)=l −
1

n

)]

= E
[

1Πn(i)=j1Πn(k)=l

]

− 1

n2
.

In particular,

Ei,j,k,l =







































1

n
− 1

n2
≤ 1

n
if i = k and j = l,

−1

n2
≤ 0 if i = k and j 6= l or i 6= k and j = l,

1

n(n− 1)
− 1

n2
=

1

n2(n− 1)
if i 6= k and j 6= l.

Therefore, from the Cauchy-Schwarz inequality applied to the second sum bellow (of n2(n−1)2

terms), one obtains

Var(Z) ≤ 1

n

n
∑

i,j=1

a2i,j +
1

n2(n− 1)

∑

i 6=k

∑

j 6=l

ai,jak,l

≤ V +

√

n2(n− 1)2

n2(n− 1)

√

∑

i 6=k

∑

j 6=l

a2i,ja
2
k,l

≤ V +
1

n

√

∑

i,j

a2i,j

∑

k,l

a2k,l

= 2V.

Finally, combining (32) and (34) ends the proof of Lemma 4.1.

Therefore, one deduces from Lemma 4.1 and Equation (33) that for all x > 0,

P

(

|Z − E [Z]| ≥
√
2V +

√
2V x+Mx

)

≤ 8e−x/16. (35)

Now, as in [BLM13, Corollary 2.11], introduce h1 : u ∈ R
+ 7→ 1 + u −

√
1 + 2u. Then, in

particular, h1 is non-decreasing, convex, one to one function on R
+ with inverse function

h−1
1 : v ∈ R

+ 7→ v +
√
2v. Indeed,

h1
(

h−1
1 (v)

)

= 1 + v +
√
2v −

√

1 + 2v + 2
√
2v

= 1 + v +
√
2v −

√

(

1 +
√
2v
)2

= v,

and

h−1
1 (h1(u)) = 1 + u−

√
1 + 2u+

√

2 + 2u− 2
√
1 + 2u

= u+ 1−
√
1 + 2u+

√

1− 2
√
1 + 2u+ 1 + 2u

= 1 + u−
√
1 + 2u+

√

(

1−
√
1 + 2u

)2
= u.
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Consider a and c defined by a = V/M and c = M2/V , such that ac = M and a
2
c = V and

thus √
2V x+Mx = ah−1

1 (cx).

Then, from (35),

P

(

|Z − E [Z]| ≥
√
2a2c+ ah−1

1 (cx)
)

≤ 8e−x/16.

Let t > 0, and consider the two following cases.

1st case: if t ≥
√
2V =

√
2a2c, then define x =

1

c
h1

(

t

a
−

√
2c

)

such that t =
√
2a2c +

ah−1
1 (cx). Then,

P(|Z − E [Z]| ≥ t) ≤ 8 exp

(

− 1

16c
h1

(

t

a
−

√
2c

))

.

Yet, by convexity of h1,

h1

(

t

a
−

√
2c

)

≥ 2h1

(

t

2a

)

− h1

(√
2c
)

.

Hence,

P(|Z − E [Z]| ≥ t) ≤ 8 exp

(

1

16c
h1

(√
2c
)

)

exp

(

− 1

8c
h1

(

t

2a

))

.

Moreover,
√
2c ≤ c+

√
2c = h−1

1 (c) , hence

1

16c
h1

(√
2c
)

≤ 1

16
.

So finally in this case,

P(|Z − E [Z]| ≥ t) ≤ 8e1/16 exp

(

− 1

8c
h1

(

t

2a

))

. (36)

2nd case: if t <
√
2V =

√
2a2c,

P(|Z − E [Z]| ≥ t) ≤ 1 = exp

(

1

8c
h1

(

t

2a

))

exp

(

− 1

8c
h1

(

t

2a

))

Moreover, in this case, since
√
2c/2 ≤ h−1

1 (c/4), hence

1

8c
h1

(

t

2a

)

≤ 1

8c
h1

(√
2c

2

)

≤ 1

32
,

and thus

P(|Z −E [Z]| ≥ t) ≤ e1/32 exp

(

− 1

8c
h1

(

t

2a

))

. (37)
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Finally, combining (36) and (37) leads, in all cases, to

P(|Z − E [Z]| ≥ t) ≤ 8e1/16 exp

(

− 1

8c
h1

(

t

2a

))

. (38)

Now, in order to obtain the Bernstein-type inequality, let x =
2

c
h1

(

t

2a

)

, then

t = 2ah−1
1

(

cx

2

)

= acx+ 2
√
a2cx = 2

√
V x+Mx,

and thus for all x > 0,

P

(

|Z − E [Z]| ≥ 2
√
V x+Mx

)

≤ 8e1/16 exp
(

− x

16

)

, (39)

which ends the proof of the Proposition.

4.5 Proof of Corollary 2.1

Consider the same notation as in both Proposition 2.2 and its proof. This proof follows the
one of [MP07, Corollary 2.10]. Notice that for all u ≥ 0,

h1(u) ≥
u2

2(1 + u)
.

Hence, from (38) in the proof of Proposition 2.2, for all t ≥ 0,

P(|Z −E [Z]| ≥ t) ≤ 8e1/16 exp

(

− 1

8c
h1

(

t

2a

))

≤ 8e1/16 exp

(

− t2

64a2c (1 + t/2a)

)

= 8e1/16 exp

(

− t2

32 (2a2c+ act)

)

= 8e1/16 exp

(

− t2

32 (V +Mt)

)

.

which ends the proof of the Corollary.

4.6 Proof of Theorem 2.1

For a better readability, introduce a+i,j = ai,j1ai,j≥0 (respectively a−i,j = −ai,j1ai,j<0), and

denote Z+ =
∑n

i=1 a
+
i,Πn(i)

(respectively Z− =
∑n

i=1 a
−
i,Πn(i)

). Then

Z =

n
∑

i=1

ai,Πn(i) = Z+ − Z−.

Moreover, if v (respectively v+ and v−) denotes 1
n

∑n
i,j=1 a

2
i,j (respectively 1

n

∑n
i,j=1(a

+
i,j)

2

and 1
n

∑n
i,j=1(a

−
i,j)

2), then v = v+ + v− and, from the concavity property of the square root
function, √

2v ≥
√
v+ +

√
v−.
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Furthermore, if M+ (respectively M−) denotes max1≤i,j≤n{a+i,j} (respectively max1≤i,j≤n{a−i,j}),
then 2M = 2max1≤i,j≤n {|ai,j |} ≥ M+ +M−.
Finally, applying Proposition 2.2 to Z+ and Z− which are both sums of non-negative numbers
leads to

P

(

|Z − E [Z] | ≥ 2
√
2vx + 2Mx

)

≤ P

(

∣

∣Z+ − E
[

Z+
]∣

∣+
∣

∣Z− − E
[

Z−
]∣

∣ ≥ 2
√
v+x+M+x+ 2

√
v−x+M−x

)

≤ P

(

∣

∣Z+ − E
[

Z+
]∣

∣ ≥ 2
√
v+x+M+x

)

+ P

(

∣

∣Z− − E
[

Z−
]∣

∣ ≥ 2
√
v−x+M−x

)

≤ 16e1/16 exp
(

− x

16

)

,

which ends the proof of the Theorem.

4.7 Proof of Corollary 2.2

Consider the same notation as in the proof of Theorem 2.1, and let t > 0. Let M denote the
maximum max1≤i,j≤n {|ai,j|}. On the one hand, M+ ≤ M and M− ≤ M , and on the other
hand, v+ ≤ v and v− ≤ v. Therefore, applying Corollary 2.1, one obtains

P(|Z − E [Z]| ≥ t) ≤ P
(∣

∣Z+ − E
[

Z+
]∣

∣+
∣

∣Z− − E
[

Z−
]∣

∣ ≥ t
)

≤ P
(∣

∣Z+ − E
[

Z+
]∣

∣ ≥ t/2
)

+ P
(∣

∣Z− − E
[

Z−
]∣

∣ ≥ t/2
)

≤ 8e1/16 exp

( −(t/2)2

16 (4v+ + 2M+t/2)

)

+ 8e1/16 exp

( −(t/2)2

16 (4v− + 2M−t/2)

)

≤ 16e1/16 exp

( −t2

64 (4v +Mt)

)

,

which leads to the following intermediate result

P(|Z − E [Z]| ≥ t) ≤ 16e1/16 exp





−t2

64
(

4 1
n

∑n
i,j=1 a

2
i,j +max1≤i,j≤n {|ai,j|} t

)



 . (40)

In order to make the variance appear, consider Hoeffding’s centering trick recalled in (1) and
introduce

di,j = ai,j −
1

n

n
∑

k=1

ak,j −
1

n

n
∑

l=1

ai,l +
1

n2

n
∑

k,l=1

ak,l =
1

n2

n
∑

k,l=1

(ai,j − ak,j − ai,l + ak,l) .

One may easily verify that for all i0 and j0,
∑n

i=1 di,j0 =
∑n

j=1 di0,j = 0. Moreover,

n
∑

i=1

di,Πn(i) =

n
∑

i=1

ai,Πn(i) −
1

n

n
∑

i,j=1

ai,j = Z − E [Z] and E

[

n
∑

i=1

di,Πn(i)

]

=
1

n

n
∑

i,j=1

di,j = 0.

In particular, applying equation (40) to the permuted sum of the di,j ’s leads to

P(|Z − E [Z]| ≥ t) ≤ 16e1/16 exp





−t2

64
(

4 1
n

∑n
i,j=1 d

2
i,j +max1≤i,j≤n {|di,j |} t

)



 . (41)
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Then, it is sufficient to notice that, on the one hand, from [Hoe51, Theorem 2],

Var(Z) = (n− 1)−1
n
∑

i,j=1

d2i,j ≥ n−1
n
∑

i,j=1

d2i,j,

and on the other hand,
max

1≤i,j≤n
{|di,j|} ≤ 4 max

1≤i,j≤n
{|ai,j|} ,

to end the proof of Corollary 2.2.

4.8 Proof of Proposition 3.1

The proof of Proof of Proposition 3.1 is divided into two steps. The first step consists in
controlling the conditional quantile q1−α(Xn) and the second step provides an upper-bound
for qα1−β/2.

1st step. Let us prove (23), that is

q1−α(Xn) ≤
C ′

n− 1







√

√

√

√

1

n

n
∑

i,j=1

ϕ2
δ(X

1
i ,X

2
j )

√

ln
(c0
α

)

+ ‖ϕδ‖∞ ln
(c0
α

)







.

Introduce Z̃(Xn) =
∑n

i=1 ϕδ(X
1
i ,X

2
Πn(i)

). Then, notice that

TΠn

δ (Xn) =
1

n− 1

(

Z̃(Xn)− E

[

Z̃(Xn)
∣

∣

∣Xn

])

. (42)

Therefore, applying Theorem 2.1 to the conditional probability given Xn, one obtains
that there exist universal positive constants c0 and c1 such that, for all x > 0,

P







∣

∣

∣Z̃(Xn)− E

[

Z̃(Xn)
∣

∣

∣Xn

]∣

∣

∣ ≥ 2

√

√

√

√

√2





1

n

n
∑

i,j=1

ϕ2
δ(X

1
i ,X

2
j )



x+ 2‖ϕδ‖∞x

∣

∣

∣

∣

∣

∣

∣

Xn







≤ c0 exp (−c1x) .

In particular, from (42), one obtains

P







∣

∣Tδ(X
Πn
n )
∣

∣ ≥ 2

n− 1







√

√

√

√

√2





1

n

n
∑

i,j=1

ϕ2
δ(X

1
i ,X

2
j )



x+ ‖ϕδ‖∞x







∣

∣

∣

∣

∣

∣

∣

Xn







≤ c0 exp (−c1x) .

Yet, by definition of the quantile, q1−α(Xn) is the smallest u such that

P
(∣

∣Tδ(X
Πn
n )
∣

∣ ≥ u
∣

∣Xn

)

≤ α.

Thus taking x such that c0 exp (−c1x) = α , that is x = c−1
1 ln (c0/α), one obtains (23)

with C ′ = 2max
{

√

2/c1, 1/c1

}

which is a universal positive constant.
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2nd step. Let us now control the quantile qα1−β/2. Since (23) is always true, by definition of

qα1−β/2, one has that qα1−β/2 is upper bounded by the (1−β/2)-quantile of the right-hand

side of (23). Yet, the only randomness left in the right-hand side of (23) comes from
the randomness of 1

n

∑n
i,j=1ϕ

2
δ(X

1
i ,X

2
j ), and thus it is sufficient to control its (1−β/2)-

quantile.

Besides, applying Markov’s inequality, one obtains for all x > 0,

P





1

n

n
∑

i,j=1

ϕ2
δ(X

1
i ,X

2
j ) ≥ x



 ≤
E

[

1
n

∑n
i,j=1 ϕ

2
δ(X

1
i ,X

2
j )
]

x
,

with E

[

1
n

∑n
i,j=1 ϕ

2
δ(X

1
i ,X

2
j )
]

= EP

[

ϕ2
δ

]

+ (n− 1)E⊥⊥

[

ϕ2
δ

]

, and thus, taking

x =
2

β

(

EP

[

ϕ2
δ

]

+ (n− 1)E⊥⊥

[

ϕ2
δ

])

,

one has that the (1− β/2)-quantile of 1
n

∑n
i,j=1ϕ

2
δ(X

1
i ,X

2
j ) is upper bounded by x, and

thus, the (1− β/2)-quantile of
√

1
n

∑n
i,j=1ϕ

2
δ(X

1
i ,X

2
j ) is itself upper bounded by

√

2

β

(

√

EP

[

ϕ2
δ

]

+
√
n
√

E⊥⊥

[

ϕ2
δ

]

)

.

Finally,

qα1−β/2 ≤ 2C ′

n

{
√

2

β

(

√

EP

[

ϕ2
δ

]

+
√
n
√

E⊥⊥

[

ϕ2
δ

]

)
√

ln
(c0
α

)

+ ‖ϕδ‖∞ ln
(c0
α

)

}

.

which is exactly (24) for any constant C ≥ 2C ′.

5 Proof of Lemma 3.1

Let us now prove Lemma 3.1. Let n ≥ 4 and Xn be an i.i.d. sample with distribution P .
First notice that one can write

Tδ(Xn) =
1

n(n− 1)

∑

i 6=j

(

ϕδ(X
1
i ,X

2
i )− ϕδ(X

1
i ,X

2
j )
)

.

In particular, one recovers that E [Tδ(Xn)] = EP [ϕδ]−E⊥⊥[ϕδ ].
For a better readability, let us introduce for all i 6= j in {1, 2, . . . , n},

Yi = ϕδ(X
1
i ,X

2
i )−EP [ϕδ ] and Zi,j = ϕδ(X

1
i ,X

2
j )− E⊥⊥[ϕδ] .

Then,

E [Yi] = E [Zi,j] = 0, and

{

E
[

Y 2
i

]

= VarP (ϕδ) ≤ EP

[

ϕ2
δ

]

,

E
[

Z2
i,j

]

= Var⊥⊥(ϕδ) ≤ E⊥⊥

[

ϕ2
δ

]

.
(43)

One can write

Tδ(Xn)−E [Tδ(Xn)] =
1

n(n− 1)

∑

i 6=j

(Yi − Zi,j) ,
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and thus,

Var(Tδ(Xn)) = E









1

n(n− 1)

∑

i 6=j

(Yi − Zi,j)





2



=
1

n2(n− 1)2

∑

i 6=j

∑

k 6=l

E [(Yi − Zi,j) (Yk − Zk,l)]

= An − 2Bn + Cn,

with

An =
1

n2

n
∑

i,k=1

E [YiYk] ,

Bn =
1

n2(n− 1)

n
∑

i=1

∑

k 6=l

E [YiZk,l] ,

Cn =
1

n2(n− 1)2

∑

i 6=j

∑

k 6=l

E [Zi,jZk,l] ,

where each sum is taken for indexes contained in {1, 2, . . . , n}. In particular, since just an
upper-bound of the variance is needed, it is sufficient to write

Var(Tδ(Xn)) ≤ |An|+ 2|Bn|+ |Cn|, (44)

and to study each term separately.

Study of An. Since by construction, the Yi’s are centered, and independent (as the Xi’s
are),

An =
1

n2





∑

i

E
[

Y 2
i

]

+
∑

i 6=k

E [Yi]E [Yk]





=
1

n
E
[

Y 2
1

]

,

and in particular, from (43),

|An| ≤
1

n
EP

[

ϕ2
δ

]

. (45)

Study of Bn. If i, k and l are all different, using once again the independence of the Xi’s
and a centering argument, then E [YiZk,l] = E [Yi]E [Zk,l] = 0. Thus

Bn =
1

n2(n− 1)

∑

i 6=k

(E [YiZi,k] + E [YiZk,i])

=
1

n
(E [Y1Z1,2] + E [Y1Z2,1]) .

In particular, applying the Cauchy-Schwartz inequality, and from (43), one obtains

|Bn| ≤
2

n

√

E
[

Y 2
1

]

E

[

Z2
1,2

]

≤ 2

n

√

EP

[

ϕ2
δ

]

E⊥⊥

[

ϕ2
δ

]

. (46)
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Study of Cn. Still by an independence and a centering argument, if i, j, k and l are all

different, E [Zi,jZk,l] = E [Zi,j]E [Zk,l] = 0. Thus, if I
[3]
n denotes the set of triplets (i, j, k) in

{1, . . . , n}3 which are all different, one obtains

Cn =
1

n2(n− 1)2

{

∑

(i,j,k)∈I
[3]
n

(

E [Zi,jZi,k] + 2E [Zi,jZk,i] + E [Zj,iZk,i]
)

+
∑

i 6=j

(

E
[

Z2
i,j

]

+ E [Zi,jZj,i]
)

}

=
n− 2

n(n− 1)
(E [Z1,2Z1,3] + 2E [Z1,2Z3,1] +E [Z2,1Z3,1])

+
1

n(n− 1)

(

E
[

Z2
1,2

]

+ E [Z1,2Z2,1]
)

.

In particular, applying the Cauchy-Schwartz inequality, and using (43), each expectation in
the previous equation satisfies E [Zi,jZk,l] ≤ E

[

Z2
1,2

]

≤ E⊥⊥

[

ϕ2
δ

]

, and thus

|Cn| ≤
(

4(n − 2)

n(n− 1)
+

2

n(n− 1)

)

E⊥⊥

[

ϕ2
δ

]

≤ 4

n
E⊥⊥

[

ϕ2
δ

]

. (47)

Finally, combining (44), (45), (46), and (47) leads to

Var(Tδ(Xn)) ≤
1

n

(

√

EP

[

ϕ2
δ

]

+ 2
√

E⊥⊥

[

ϕ2
δ

]

)2

,

which ends the proof of the Lemma.

A A non-asymptotic control of the second kind error rates

Consider the notation from Section 3. Since this section focuses on the study of the second
kind error rate of the test, in all the sequel, the observation is assumed to satisfy the alternative
(H1). Let thus P be an alternative, that is P 6= P 1 ⊗ P 2, n ≥ 4 and Xn = (Xi, . . . ,Xn) be
an i.i.d. sample from distribution P . Fix α and β be two fixed values in (0, 1). Consider Tδ

the test statistic introduced in (16), the (random) critical value q1−α(Xn) defined in (18), and
the corresponding permutation test defined in (19) by

∆α(Xn) = 1Tδ(Xn)>q1−α(Xn),

which precisely rejects independence when Tδ(Xn) > q1−α(Xn). Notice that this test is exactly
the upper-tailed test by permutation introduced in [ABFRB15].

The aim of this section is to provide different conditions on the alternative P ensuring a
control of the second kind error rate by a fixed value β > 0, that is P(∆α(Xn) = 0) ≤ β.
The following steps constitute the first steps of a general study of the separation rates for the
previous independence test, and is worked through in the specific case of continuous real-valued
random variables in [Alb15, Chapter 4].
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Recall the notation introduced in (17) for a better readability. For all real-valued measurable
function g on X 2, denote respectively

EP [g] = E
[

g(X1
1 ,X

2
1 )
]

and E⊥⊥[g] = E
[

g(X1
1 ,X

2
2 )
]

,

the expectations of g(X) under the alternative P (meaning that X ∼ P ) and under the null
hypothesis (H0) (meaning that X ∼ P 1 ⊗ P 2).

Assume the following moment assumption holds, that is

(AMmt,2) both EP

[

ϕ2
δ

]

< +∞ and E⊥⊥

[

ϕ2
δ

]

< +∞,

so that all variance and second-order moments exist. Then, the following statements hold.

1. By Chebychev’s inequality, one has P(∆α(Xn) = 0) ≤ β as soon as Condition (20) is
satisfied, that is

E [Tδ(Xn)] ≥ qα1−β/2 +

√

2

β
Var(Tδ(Xn)).

2. On the one hand,

Var(Tδ(Xn)) ≤
8

n

(

EP

[

ϕ2
δ

]

+ E⊥⊥

[

ϕ2
δ

])

, (48)

3. On the other hand, in order to control the quantile qα1−β/2, let us first upper bound
the conditional quantile, following Hoeffding’s approach based on the Cauchy-Schwarz
inequality, by

q1−α(Xn) ≤
√

1− α

α
Var
(

Tδ

(

X
Πn
n

)∣

∣

∣
Xn

)

. (49)

4. Markov’s inequality allows us to deduce the following bound for the quantile:

qα1−β/2 ≤ 2

√

1− α

α

√

2

β

(

E⊥⊥

[

ϕ2
δ

]

+ EP

[

ϕ2
δ

])

n
. (50)

5. Finally, combining (20), (48) and (50) ensures that P(∆α(Xn) = 0) ≤ β as soon as
Condition (21) is satisfied, that is

E [Tδ(Xn)] ≥
4√
α

√

2

β

E
[

ϕδ(X
1
1 ,X

2
1 )

2
]

+ E
[

ϕδ(X
1
1 ,X

2
2 )

2
]

n
.

This section is divided in five subsections, each one of them respectively proving a point
stated above. The first one proves the sufficiency of Condition (20) in order to control the
second kind error rate. The second, third and fourth ones provide respectively upper-bounds
of the variance term, the critical value and the quantile qα1−β/2. Finally, the fifth one provides

the sufficiency of Condition (21).
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A.1 A first condition ensuing from Chebychev’s inequality

In this section, we prove the sufficiency of a first simple condition, derived from Chebychev’s
inequality in order to control the second error rate. Assume that (20) is satisfied, that is

E [Tδ(Xn)] ≥ qα1−β/2 +

√

2

β
Var(Tδ(Xn)).

Then,

P(∆α(Xn) = 0) = P(Tδ(Xn) ≤ q1−α(Xn)) (51)

= P

(

{Tδ(Xn) ≤ q1−α(Xn)} ∩
{

q1−α(Xn) ≤ qα1−β/2

})

+ P

(

{Tδ(Xn) ≤ q1−α(Xn)} ∩
{

q1−α(Xn) > qα1−β/2

})

≤ P

(

Tδ(Xn) ≤ qα1−β/2

)

+P

(

q1−α(Xn) > qα1−β/2

)

≤ P

(

Tδ(Xn) ≤ qα1−β/2

)

+
β

2
, (52)

by definition of the quantile qα1−β/2. Yet, from (20) one obtains from Chebychev’s inequality
that

P

(

Tδ(Xn) ≤ qα1−β/2

)

≤ P

(

Tδ(Xn) ≤ E [Tδ(Xn)]−
√

2

β
Var(Tδ(Xn))

)

≤ P

(

|Tδ(Xn)− E [Tδ(Xn)]| ≥
√

2

β
Var(Tδ(Xn))

)

≤ β

2
. (53)

Finally, both (52) and (53) lead to the desired control P(∆α(Xn) = 0) ≤ β which ends the
proof.

A.2 Control of the variance in the general case

To upper bound the variance term, we apply Lemma 3.1 which directly implies that

Var(Tδ(Xn)) ≤
2

n

(

EP

[

ϕ2
δ

]

+ 4E⊥⊥

[

ϕ2
δ

])

,

which directly leads to (48).

A.3 Control of the critical value based on Hoeffding’s approach

This section is devoted to the proof the inequality (49), namely

q1−α(Xn) ≤
√

1− α

α
Var
(

Tδ

(

X
Πn
n

)∣

∣

∣Xn

)

.

The proof of this upper-bound follows Hoeffding’s approach in [Hoe52], and relies on a normal-
izing trick, and the Cauchy-Schwarz inequality. From now on, for a better readability, denote
respectively E

∗[·] and Var∗(·) the conditional expectation and variance given the sample Xn.
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As in Hoeffding [Hoe52], the first step is to center and normalize the permuted test statistic.
Yet, by construction the permuted test statistic is automatically centered, that is E∗

[

Tδ

(

X
Πn
n

)]

=
0, as one can notice that

Tδ

(

X
Πn
n

)

=
1

n− 1

(

n
∑

i=1

ϕδ

(

X1
i ,X

2
Πn(i)

)

− E
∗

[

n
∑

i=1

ϕδ

(

X1
i ,X

2
Πn(i)

)

])

.

Therefore, just consider the normalizing term

νn(Xn) = Var∗
(

Tδ

(

X
Πn
n

))

= E
∗
[

Tδ

(

X
Πn
n

)2
]

=
1

n!

∑

πn∈Sn

(Tδ (X
πn
n ))2 .

Two cases appear: either νn(Xn) = 0 or not.

In the first case, the nullity of the conditional variance implies that all the permutations of
the test statistic are equal. Hence, for all permutation πn of {1, . . . , n}, one has Tδ(X

πn
n ) =

Tδ(Xn). Since the centering term E
∗
[

∑n
i=1 ϕδ

(

X1
i ,X

2
Πn(i)

)]

= n−1
∑n

i,j=1 ϕδ(X
1
i ,X

2
j ) is per-

mutation invariant, one obtains the equality of the permuted sums, that is

n
∑

i=1

ϕδ

(

X1
i ,X

2
πn(i)

)

=

n
∑

i=1

ϕδ

(

X1
i ,X

2
i

)

,

and this for all permutation πn. In particular, the centering term is also equal to
∑n

i=1 ϕδ

(

X1
i ,X

2
i

)

.
Indeed, by invariance of the sum (applied in the third equality below),

1

n

n
∑

i,j=1

ϕδ

(

X1
i ,X

2
j

)

=
1

n

n
∑

i,j=1

ϕδ

(

X1
i ,X

2
j

)

[

1

(n− 1)!

∑

πn∈Sn

1πn(i)=j

]

=
1

n!

∑

πn∈Sn

n
∑

i=1

ϕδ

(

X1
i ,X

2
πn(i)

)





n
∑

j=1

1πn(i)=j





=
1

n!

∑

πn∈Sn

(

n
∑

i=1

ϕδ

(

X1
i ,X

2
i

)

)

=

n
∑

i=1

ϕδ

(

X1
i ,X

2
i

)

.

Therefore, Tδ(Xn) is equal to zero, and thus, so is q1−α(Xn). Finally, inequality (55) is
satisfied since

q1−α(Xn) = 0 ≤ 0 =

√

1− α

α
Var
(

Tδ

(

X
Πn
n

)∣

∣

∣
Xn

)

.

Consider now the second case, and assume νn (Xn) > 0. Let us introduce the (centered
and) normalized statistic

T ′
δ (Xn) =

1
√

νn(Xn)
(Tδ(Xn)) .
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In particular, the new statistic T ′
δ (Xn) satisfies

E
∗
[

T ′
δ

(

X
Πn
n

)]

= 0 and Var∗
(

T ′
δ

(

X
Πn
n

))

≤ 1.

One may moreover notice that the normalizing term νn(Xn) is permutation invariant, that is,
for all permutations πn and πn

′ in Sn,

νn (X
πn
n ) = νn (Xn) = νn

(

X
πn

′

n

)

.

In particular, since νn (Xn) > 0,

Tδ (X
πn
n ) ≤ Tδ

(

X
πn

′

n

)

⇔ T ′
δ (X

πn
n ) ≤ T ′

δ

(

X
πn

′

n

)

.

Therefore, as the test ∆α depends only on the comparison of the {Tδ (X
πn
n )}πn∈Sn

, the test
statistic Tδ can be replaced by T ′

δ, and the new critical value becomes

q′1−α(Xn) = T
′(n!−⌊n!α⌋)
δ (Xn) =

T
(n!−⌊n!α⌋)
δ (Xn)

νn(Xn)
=

q1−α(Xn)

νn(Xn)
. (54)

Moreover, following the proof of Theorem 2.1. of Hoeffding [Hoe52], one can show (as below)
that

q′1−α(Xn) ≤
√

1− α

α
. (55)

Hence, combining (55) with (54) leads straightforwardly to (49).

Finally, remains the proof of (55). There are two cases:

1st case: If q′1−α(Xn) ≤ 0, then (55) is satisfied.

2nd case: If q′1−α(Xn) > 0, then introduce Y = q′1−α(Xn)− T ′
δ

(

X
Πn
n

)

.

First, since by construction, E∗
[

T ′
δ

(

X
Πn
n

)]

= 0, one directly obtains E
∗[Y ] = q′1−α(Xn).

Hence,
0 < q′1−α(Xn) = E

∗[Y ] ≤ E
∗[Y 1Y >0] ,

and by the Cauchy-Schwarz inequality,

(

q′1−α(Xn)
)2 ≤ (E∗[Y 1Y >0])

2 ≤ E
∗
[

Y 2
]

E
∗[1Y >0] ,

Yet, on one hand,

E
∗
[

Y 2
]

= E
∗
[

(

q′1−α(Xn)− T ′
δ

(

X
Πn
n

))2
]

=
(

q′1−α(Xn)
)2

+ E
∗
[

(

T ′
δ

(

X
Πn
n

))2
]

− 2q′1−α(Xn)E
∗
[

T ′
δ

(

X
Πn
n

)]

=
(

q′1−α(Xn)
)2

+Var∗
(

T ′
δ

(

X
Πn
n

))

≤
(

q′1−α(Xn)
)2

+ 1,

since by the normalizing initial step, Var∗
(

T ′
δ

(

X
Πn
n

))

≤ 1.
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And, on the other hand,

E
∗[1Y >0] = E

∗
[

1
T ′
δ(X

Πn
n )<q′1−α(Xn)

]

=
#
{

πn ∈ Sn ; T ′
δ (X

πn
n ) < T

′(n!−⌊n!α⌋)
δ (Xn)

}

n!

≤ (n!− ⌊n!α⌋) − 1

n!
= 1− ⌊n!α⌋ + 1

n!

< 1− n!α

n!
= 1− α.

So finally,
(

q′1−α(Xn)
)2 ≤ (1− α)

(

(

q′1−α(Xn)
)2

+ 1
)

,

which is equivalent to
(

q′1−α(Xn)
)2 ≤ (1− α)/α, and thus ends the proof of (55).

A.4 Control of the quantile of the critical value

The control of the conditional quantile allows us to upper bound its own quantile qα1−β/2 as

stated in (50), that is

qα1−β/2 ≤ 2

√

1− α

α

√

2

β

(

E⊥⊥

[

ϕ2
δ

]

+EP

[

ϕ2
δ

])

n
.

Indeed, (49) ensures that

q1−α(Xn) ≤
√

1− α

α

√

E

[

Tδ

(

X
Πn
n

)2
∣

∣

∣

∣

Xn

]

,

and in particular, the (1− β/2)-quantile of q1−α(Xn) satisfies

qα1−β/2 ≤
√

1− α

α

√

ζ1−β/2, (56)

where ζ1−β/2 is the (1 − β/2)-quantile of E
[

Tδ

(

X
Πn
n

)2
∣

∣

∣
Xn

]

. Yet, from Markov’s inequality,

for all positive x,

P

(

E

[

Tδ

(

X
Πn
n

)2
∣

∣

∣
Xn

]

≥ x
)

≤
E

[

Tδ

(

X
Πn
n

)2
]

x
.

In particular, the choice of x = 2E
[

Tδ

(

X
Πn
n

)2
]

/β leads to the control of the quantile

ζ1−β/2 ≤
2E
[

Tδ

(

X
Πn
n

)2
]

β
. (57)

Moreover, noticing that one can write

Tδ

(

X
Πn
n

)

=
1

n− 1

n
∑

i,j=1

(

1Πn(i)=j −
1

n

)

ϕδ(X
1
i ,X

2
j ),
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the second-order moment in (57) can be rewritten

E

[

Tδ

(

X
Πn
n

)2
]

=
1

(n− 1)2
E









n
∑

i,j=1

(

1Πn(i)=j −
1

n

)

ϕδ(X
1
i ,X

2
j )





2



=
1

(n− 1)2

n
∑

i,j=1

n
∑

k,l=1

Ei,j,k,l × E
[

ϕδ(X
1
i ,X

2
j )ϕδ(X

1
k ,X

2
l )
]

,

by independence between Πn and Xn, where

Ei,j,k,l = E

[(

1Πn(i)=j −
1

n

)(

1Πn(k)=l −
1

n

)]

= E
[

1Πn(i)=j1Πn(k)=l

]

− 1

n2
.

On the one hand, for all 1 ≤ i, j, k, l ≤ n, the Cauchy-Schwarz inequality always ensures

E
[

ϕδ(X
1
i ,X

2
j )ϕδ(X

1
k ,X

2
l )
]

≤
√

E

[

ϕ2
δ(X

1
i ,X

2
j )
]

E
[

ϕ2
δ(X

1
k ,X

2
l )
]

≤ E⊥⊥

[

ϕ2
δ

]

+ EP

[

ϕ2
δ

]

, (58)

since for all 1 ≤ i, j ≤ n, E
[

ϕ2
δ(X

1
i ,X

2
j )
]

≤ E⊥⊥

[

ϕ2
δ

]

+ EP

[

ϕ2
δ

]

.

On the other hand, remains to control the sum (n − 1)−2
∑n

i,j=1

∑n
k,l=1Ei,j,k,l. Three cases

appear.

1st case: If i 6= k and j 6= l (occurring [n(n− 1)]2 times), then

Ei,j,k,l =
1

n(n− 1)
− 1

n2
=

1

n2(n− 1)
.

2nd case: If [i 6= k and j = l] or [i = k and j 6= l], then Ei,j,k,l = 0− 1/n2 ≤ 0.

3rd case: If i = k and j = l (occurring n(n− 1) times), then

Ei,j,k,l =
1

n
− 1

n2
=

n− 1

n2
≤ 1

n
.

Therefore,

1

(n− 1)2

n
∑

i,j=1

n
∑

k,l=1

Ei,j,k,l ≤ 1

(n− 1)2

(

[n(n− 1)]2 × 1

n2(n− 1)
+ n(n− 1)× 1

n

)

≤ 2

n− 1

≤ 4

n
. (59)

Finally, both (58) and (59) imply that

E

[

Tδ

(

X
Πn
n

)2
]

≤ 4

n

(

E⊥⊥

[

ϕ2
δ

]

+ EP

[

ϕ2
δ

])

, (60)

Therefore, combining (56), (57) and (60) ends the proof of (50).
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A.5 A first condition ensuing from Hoeffding’s approach

Back to the condition (20) derived from Chebychev’s inequality, both (48) and (50) imply that

qα1−β/2 +

√

2

β
Var(Tδ(Xn)) ≤

√

2

β

(

EP

[

ϕ2
δ

]

+ E⊥⊥

[

ϕ2
δ

])

n

(

2

√

1− α

α
+

√
8

)

,

with 2
√

(1 − α)/α +
√
8 ≤ 4/

√
α, since

√
1− α +

√
α ≤

√
2. Finally, the right-hand side of

condition (20) being upper bounded by

4√
α

√

2

β

(

EP

[

ϕ2
δ

]

+ E⊥⊥

[

ϕ2
δ

])

n
,

which is exactly the right-hand side of (21), this ensures the sufficiency of condition 21 to
control the second kind error rate by β.
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