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Abstract

System restoration from cascading failures is an integral part of the overall defense

against catastrophic breakdown in networked critical infrastructures. From the

outbreak of cascading failures to the system complete breakdown, actions can be

taken to prevent failure propagation through the entire network. While most analysis

efforts have been carried out before or after cascading failures, restoration during

cascading failures has been rarely studied. In this paper, we present a modeling

framework to investigate the effects of in-process restoration, which depends

strongly on the timing and strength of the restoration actions. Furthermore, in the

model we also consider additional disturbances to the system due to restoration

actions themselves. We demonstrate that the effect of restoration is also influenced

by the combination of system loading level and restoration disturbance. Our

modeling framework will help to provide insights on practical restoration from

cascading failures and guide improvements of reliability and resilience of actual

network systems.

Introduction

Cascading failure is a common mechanism of large-scale failures in complex

network systems, such as electric power transmission grids, water/gas delivery

systems, railways, etc. [1–7]. For a practical example, we can refer to the large-

scale blackouts of electric power transmission systems resulting from cascading

failures initiated by component overloads [6, 8]. Occurrences of cascading failures

are found statistically more significant than that expected by theory [6, 9]. Given

the vital societal importance of these critical infrastructures, there is a strong

interest in the studies for the design, implementation and evaluation of effective
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restoration strategies against cascading failures, which rescue systems from the

brink of collapse and avoid the amplification of their consequences [10–13].

Efforts have been carried out to study how to reduce the frequency, duration,

intensity and extent of cascading failures. There are many design measures to

avoid cascading failures, such as robust structures [14–19], capacity and structural

redundancy design [19–22] and n-1 criterion [23], by which cascading failures can

hardly be eliminated [24]. After the failure cascades, black-start [25, 26], system

reconfiguration [27, 28] and corrective restoration [29, 30] are used to bring the

system back to its normal operation conditions.

While complete prevention against cascading failures in design stage proves

impossible and post-actions only passively recover systems at a large cost, active

in-process restoration can mitigate cascading failure during its evolution, leading

the system to a stable state. The primary objective of restoration during the

process of cascading failures is to take actions to prevent failures from unfolding

to catastrophic failures and eventually to minimize the damage, e.g. minimizing

the unserved loads in an electric power transmission grid. For example, references

[31, 32] propose three different strategies based on line switching to minimize the

consequences of cascading failures on the entire system, on predetermined areas

of the system or on both within a multi-objective optimization framework.

References [33–36] introduce and analyze some restoration planning and

restoration actions. Based on the development of fast recovery technology [37], it

is possible to mitigate and rescue the system from the cascading failures through

real time restoration of network components. Going back to the example of the

electric power transmission grid, restoration against cascading failures may be

achieved in practice through real-time controlled islanding [38, 39], selective load

shedding [38, 39], wide area monitoring [40], real-time fault analysis and

validating relay operations [41], etc.

In this paper, we present a novel modeling framework for analyzing restoration

in network systems subject to cascading failures. The framework is used to study

the effects of different restoration strategies in terms of restoration timing and

strength: tr , the restoration timing in the process of the cascading failure, and pr,

the restoration strength, which is quantified by the probability of repairing a failed

component. Repair here means full, immediate recovery which can be realized in

practice by utilizing fast recovery technology. We study how different restoration

strategies described in terms of the two basic quantities (tr and pr) influence the

overall system reliability.

Description of the Restoration Model

We first consider an unweighted and fully connected network of N identical

components [42]. The loading-dependent model proposed in [43] is adopted to

describe the dynamics of cascading failures. The model is analytically tractable and

captures some essential features of the cascading failure process, which helps to

understand the mechanism of failure propagation in the network system. The
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model describes a network composed of identical components with load

distributed uniformly in [Lmin, Lmax], and the average initial component loading

L5(Lmin+Lmax)/2. An initial disturbance D is added to all components, and may

cause some components to exceed their capacity threshold Lfail51, which is

assumed identical for all the components. If component j is working and

Lj+D.Lfail, component j fails. Then, each failure of a component leads to an

additional load P.0 added to all the other functional components in the network,

which may cause further failures in a cascade.

The restoration actions will be considered once the cascading failures process

has been triggered. A typical in-process restoration procedure is comprised of

three stages [33, 34]: firstly, estimating system/component status, locating the

critical loads, and developing the strategies for rebuilding the network

connections; secondly, identifying the paths of restoration, energizing and

interconnecting subsystems; thirdly, restoring most of lost loads. Restoration

strategies differ from each other in the above aspects. Here we propose a

restoration model considering the timing and strength of restoration, which

mainly determine the effects of restoration. In the model, each failed component

is repaired with a certain probability pr at a given step tr.0 during cascading

failure. The restoration actions recover the links of the component to be repaired,

while its links to failed components remain disconnected. We assume that

restoration may cause some disturbance to the existing functional components in

the network. We model this restoration disturbance by adding a random

perturbation Dr distributed uniformly in ½Dmin
r , Dmax

r �to the load of each

functional component. The value of restoration disturbance depends on whether

the restoration action is implemented appropriately to the system, which could be

positive or negative. This means that the restoration may either reduce or increase

the loads of the functional components, depending on whether it is beneficial or

harmful.

The following algorithm is used to realize the above procedure. The details of

the algorithm are summarized as follows:

1. All N components are initially functional and loaded by quantities L1, L2, …,

Ln, which are independent random variables uniformly distributed in [Lmin,

Lmax]. Initialize the stage counter t to zero.

2. Add the initial disturbance load D to the load of each component: then, the

load of component j is Lj+D.

3. Each existing component is examined: if the current load of component j is

larger than Lfail, component j fails. We denote the number of components

failed in this single step by Mt. Add MtP to the load of each functional

component. The stage counter t is incremented by one.

4. When t reaches the restoration moment tr, i.e., t5tr, each failed component is

repaired with probability pr by reconnecting it to its adjacent functional

components. The load of each repaired component is reassigned uniformly in

[Lmin, Lmax]. Add a random disturbance Dr uniformly distributed in

½Dmin
r , Dmax

r � to the load of each functional component.
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5. Go back to step 3, unless the cascading failures stop.

Effects of Restoration Strategies

In this section, we study the effects of different restoration strategies on the system

robustness against cascading failures and the resulting system reliability. We begin

our study by evaluating the restoration effect on the total damage made by

cascading failure (the average avalanche size). Figure 1 compares different

restoration strategies in terms of restoration timing tr and strength pr by

measuring the number of failed components ES. As shown in [44], there is a

transition of ES occurring at critical point Lc50.8 without restoration (pr50).

When the value of L is below this threshold, few failures emerge. On the other

hand, for L above the threshold, there is a significant risk of cascading failures that

lead to global collapse of the system. And in-process restoration can reduce the

final damage significantly if it is implemented properly. As shown in Fig. 1,

cascading failure under restoration (pr.0) with negative Dr generates much

smaller avalanche size ES than the case without restoration (pr50). Furthermore,

for negative Dr , early restoration (e.g., tr51) ends up with more functional

components than late restoration (e.g., tr54). For positive Dr , restoration worsens

the system in terms of ES.

To investigate the effects of different restoration strategies on improving the

reliability against cascading failures, we measure the system load fluctuations

(SLF) defined as

SLF~
XT

i~1

jSL(t~i){SL(t~0)j, ð1Þ

where

SL(t~i)~
XN

j~1

Lj(t~i): ð2Þ

N is the total number of the components in the network system. Lj is the load of

component j, and we set Lj (t5i) 50 if component j is failed at the moment i.

SL(t50) is the initial system load when the system maintains its normal functional

state. SL(t5i) is the total load of system at the moment i in the cascading process,

i.e., the sum of the loads of all functional components. The parameter T is the

duration of the whole dynamical process of cascading failures.

The measure SLF reflects the system instability in the whole process of

cascading failures, considering the required balance between the supply and

demand. Figure 2 shows SLF under restoration at a given restoration timing tr as a

function of the restoration probability pr. From Figs. 2a–2d, we can see that the

restoration with negative disturbance can effectively mitigate cascading failures

and reduce system instability. Furthermore, the system can be improved by high

strength of restoration.
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Figure 1. Average avalanche size ES as a function of the system loading level L. Results for five different
restoration strategies: (1) pr50 (black diamonds); (2) tr51, pr51, Dmin

r 5661026, Dmax
r 5861026 (green

squares); (3) tr54, pr51, Dmin
r 5 661026, Dmax

r 5861026 (purple triangles); (4) tr51, pr51, Dmin
r 52861026,

Dmax
r 52661026 (red stars); (5) tr54, pr51, Dmin

r 52861026, Dmax
r 52661026 (blue circles). Each curve

corresponds to the average over twenty thousand realizations of networks with 105 components. The example
network system has no specific topology, on which the results do not depend. The initial component loading
can vary from Lmin to Lmax5Lfail51. Then, L5(Lmin+1)/2 may be increased by increasing Lmin. The initial
disturbance D 5 461026 is assumed to be the same as the load transfer amount P5461026. All the
investigated network systems without restoration satisfy the cascading condition that the cascade step is no
less than 5.

doi:10.1371/journal.pone.0112363.g001

Figure 2. System load fluctuations SLF as a function of restoration probability pr for different system loading level L. According to the proposed
modeling framework for restoration, we compare different strategies in four cases of tr51 (black squares), tr52 (red circles), tr53 (blue triangles), tr54
(magenta stars). Dmin

r 52861026, Dmax
r 52661026 for the panel above, and Dmin

r 5661026, Dmax
r 5861026 for the panel below. The other parameters are

the same as in Fig. 1.

doi:10.1371/journal.pone.0112363.g002
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The situation for positive restoration disturbance is more surprising. One may

expect that restoration would worsen the cascading failure when Dr is positive.

The corresponding results with positive Dr are complicated: restoration can still

improve the system for subcritical loading (Fig. 2e); at critical loading Lc,

restoration produces quite large SLF and induces extra instability (Fig. 2f); for

supercritical loading, restoration has almost no impact on SLF (e.g., L50.9,

Fig. 2g).

The results above can be explained as follows. The restoration effect is

dominated by two factors, restored components and the consequential restoration

disturbance. These two factors are cooperative under negative Dr so that failed

components are recovered, when the load of functional components is decreased.

This cooperative effect under negative Dr can be stronger for early restoration.

When Dr is positive, however, restoration will increase the load of functional

components when failed components are restored at the same time. The outcome

of restoration then depends on the competition between these two factors.

To further explore the effect of restoration disturbance, in Fig. 3 we analyze the

restoration effect as a function of the restoration disturbance. For L50.6 and 0.8,

restoration (pr51) significantly increases SLF as the restoration disturbance

increases (Figs. 3a and 3b). For supercritical loading, SLF increases for negative Dr

and then remains saturated for positive Dr (L50.9, Fig. 3c), while early restoration

(tr51) can improve system for both negative and positive Dr (L50.95, Fig. 3d).

Similar as the results in Fig. 2, restoration under negative Dr at an early cascade

step is beneficial for all investigated cases. When restoration disturbance Dr is

positive, restoration improves system only for certain values of system loading.

To observe the dynamical processes of restoration, we track the system

evolution under restoration in terms of system fluctuations during cascading

failure. The load fluctuation of the system at the moment t is defined as

LF(t~i)~jSL(t~i){SL(t~0)j: ð3Þ

For convenience, here we assume that LF(t)50 when t.T. Figure 4

demonstrates the system evolution process in terms of load fluctuation LF(t),

where total system load fluctuation is the corresponding area under the curve of

LF(t). Early restoration (tr51) under negative Dr is shown to reduce the load

fluctuation since the restoration moment in the process of cascading failures (

Figs. 4a–4d). However, for positive Dr , load fluctuation of restoration at L50.6 is

lower than that without restoration (Fig. 4e), while for L50.8 load fluctuation is

significantly increased (Fig. 4f). And it is not helpful to restore system late with

positive Dr for a system high loaded (Figs. 4g and 4h).

Analytical Methods

According to the proposed restoration model, n components are loaded in [Lmin,

Lmax]. We set 5(Lmin+Lmax)/2 and Lmax5Lfail51. Then component j has the load

Modeling System Restoration from Cascading Failures
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LjM[2L-1, 1] and fails when its load is larger than Lfail. An initial disturbance D is

added to each component. Each failed component transfers a fixed amount of

load P to other functional components.

Based on the literature [44], the distribution of the total number of failed

components S without restoration can be given by

P(S~r)~

n

r

� �
d(dzrp)r{1(1{d{rp)n{r, r~0,1, � � � , 1{d

p

� �

0, r~
1{d

p

� �
z1, � � � ,n{1

1{
Pn{1

s~0
P(S~s), r~n,

8>>>>>>>><
>>>>>>>>:

ð4Þ

where, [x] is the largest integer not more than x and 0ƒd~
D

2{2L
ƒ1,

p~
P

2{2L
w0,

1{d
p

� �
vn:

Figure 3. System load fluctuations SLF as a function of the average restoration disturbance Dr ~(Dmin
r zDmax

r )=2 for different system loading level L.
Results for different restoration strategies: (1) pr50 (black, straight line); (2) tr51, pr51 (red circles); (3) tr54, pr51 (blue triangles). Here we set Dmax

r {Dmin
r ~2|10{6.

The other parameters are the same as in Fig. 1. Notice that SLF in case of pr50 remains constant as SLF is independent of Dr without restoration.

doi:10.1371/journal.pone.0112363.g003
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When rpzdƒ1, n??, p?0, d?0, h~nd, l~np, the above distribution can

be approximated by a branching process with

P(S~r)<h(rlzh)r{1 e{rl{h

r!
: ð5Þ

Then we have the approximation [45] based on the property of this branching

process

P(M1~m1)~

e{h hm1

m1!
, m1~0,1, � � � ,n{1

1{e{h
Pn{1

k~0

hk

k!
, m1~n,

8>>><
>>>:

ð6Þ

and

P(Miz1~miz1jMi~mi, � � � ,M1~m1)

~

(mil)miz1

miz1!
e{mil, miz1~0,1, � � � ,n{si{1

1{
Pn{si{1

k~0

(mil)k

k!
e{mil, miz1~n{si,

8>>><
>>>:

ð7Þ

Figure 4. Load fluctuations LF(t) during cascading failures. Results for different restoration strategies: pr50 (black squares), tr51, pr51 (red circles) and
tr54, pr51 (blue triangles). Here, the x axis is the system unstable moment t based on cascade and restoration. Dmin

r ~{8|10{6, Dmax
r ~{6|10{6 for the

panel above and Dmin
r ~6|10{6, Dmax

r ~8|10{6 for the panel below. The other parameters are the same as in Fig. 1.

doi:10.1371/journal.pone.0112363.g004
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Where si~m1z � � �zmi.

As our investigated configurations satisfy the cascading condition that the

cascade step is no less than 5 (or any arbitrary number), we obtain

P(T§5)~P(M5=0)~1{P(M5~0)~p(h,l). Then the distribution of the total

number of failed components S without restoration (pr~0) is

P(S~rjM5=0)~
P(S~r,M5=0)

P(M5=0)

~
P(S~r){P(S~r,M5~0)

P(M5=0)
<

P(S~r)

P(M5=0)
(5ƒrvn):

ð8Þ

According the parameters in the text, we set l~np~
nP

2{2Lc
~1 and get the

critical loading Lc~0:8, which corresponds to the case in Fig. 1.

When the restoration strategy (tr , pr) (trw0,prw0) is taken, we assume that the

total number of components failed at restoration timing is Str~strvn. Then the

current state of the system is as follows: m failed components, str{m restored

components loaded in ½2L{1,1�, (n{str ) functional components loaded in

½2L{1zDzstr PzDr,1zMtr PzDr�, and the failed rate is
Mtr PzDr

2{2L{D{str{1 P
,

Em~(1{pr)str . Then the system may go on evolving after the restoration. And we

can clearly know the average avalanche size ES is strongly dependent on the value

and sign symbol of the restoration disturbance Dr, the restoration timing tr , the

restoration strength pr and the system loading level L.

When Mtr PzDrƒ0, restoration ends the cascading failure. Then the

distribution of the total number of components failed S with restoration is

P(S~srjM5=0)~
Xn

r1~sr

P(Str~r1jM5=0)Csr
r1

(1{pr)
sr pr

r1{sr (0ƒsrvn): ð9Þ

When Mtr PzDrw0, the state of system at tr can be replaced by m failed

components and (n2m) functional components loaded in ½2L{1,1� disturbed by

the load D’~
(Dzstr PzMtr Pz2Dr)(n{str )

2(n{m)
. Considering the cascading condition

that the cascade step is no less than 5 (or any arbitrary number) and the

restoration timing tr, the distribution of the total number of components failed S

with restoration is

Modeling System Restoration from Cascading Failures
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P(S~rjM5=0)

~
Xn

r1 ~0

P(m~r1jM5=0)P(S~rjm~r1)

~
Xn

r2 ~1

Xr2

r1 ~0

P(Str ~r2jM5=0)C
r1
r2

(1{pr)
r1 pr

r2 {r1 P1(Sr~r{r1)

<
Xn

r2 ~1

X
r2 ~m1 z���zmtr ,mi w0

Xr2

r1 ~0

P(M1~m1, � � � ,Mtr ~mtr )

P(M5=0)
C

r1
r2

(1{pr)
r1 pr

r2 {r1 P1(Sr~r{r1)(5vrvn’)

ð10Þ

And the distribution of the total number of components failed Sr after

restoration is

Figure 5. Log-log plot of distribution of number of components failed S for different system loading level L without restoration (pr50). Note the
power-law region for the critical loading L50.8. Simulation results are averaged over 100,000 realizations of the systems. The related parameters are
N510000, D5P50.00004. Note that the simulation results coincide well with theoretic analysis.

doi:10.1371/journal.pone.0112363.g005

(10)
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P1(Sr~r)~

n’

r

� �
d’(d’zrp)r{1(1{d’{rp)n’{r, r~0, � � � , 1{d’

p

� �

0, r~
1{d’

p

� �
z1, � � � ,n’{1

1{
Pn’{1

s~0
P1(Sr~s), r~n’:

8>>>>>>>><
>>>>>>>>:

ð11Þ

where n’~n{m, d’~
D’

2{2L
, p~

P
2{2L

.

Next we give the analytical results for the proposed modeling framework of

restoration. Firstly, we give the comparison between the simulation and theory in

case of pr50 in Fig. 5. The case corresponds to Eq. (8). As shown in Fig. 5,

theoretical calculation coincides well with the numerical simulations. And the

distribution behaves as a power-law at the critical loading, at which system has a

high probability of large-scale failures.

Then, we give the comparison of restoration between simulation and theory in

Fig. 6 for negative Dr and Fig. 7 for positive Dr in case of pr?0. These cases

Figure 6. Log-log plot of distribution of number of components failed S for different system loading level L with restoration (tr51, pr51).
Dmin

r ~Dmax
r ~{4|10{6 and the other parameters are the same as in Fig. 5. Note that the simulation results coincide well with theoretic analysis.

doi:10.1371/journal.pone.0112363.g006
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correspond to Eq. (10). As shown in Fig. 6 and Fig. 7, theoretical calculation

coincides well with the numerical simulations.

Model Variations

We apply our modeling framework of restoration to the western U.S. power

transmission grid [46] for the model validation. Here we present the results in

Fig. 8 and Fig. 9 on the realistic power system with more practical consideration

in the model:

Variation 1: initial load distribution. We change the distribution of initial

component loading from uniform distribution to Gaussian distribution;

Variation 2: impact of each failed component on the functional components.

Previously, each failure of a component leads to an additional load P.0 added to

all the other functional components in the network regardless of network

topology. Now each failed component leads to an additional load Q.0 only

added to its functional neighbors, which is dependent on network topology;

Variation 3: restoration disturbance Dr. We change the distribution of

restoration disturbance from uniform distribution to Gaussian distribution.

Figure 7. Log-log plot of distribution of number of components failed S for different system loading level L with restoration (tr51, pr51).
Dmin

r ~Dmax
r ~4|10{5 and the other parameters are the same as in Fig. 5. Note that the simulation results coincide well with theoretic analysis.

doi:10.1371/journal.pone.0112363.g007
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Figure 8 compares different restoration strategies in terms of restoration timing

tr and strength pr by measuring ES. There is a transition of ES occurring around

critical point Lc50.9 without restoration (pr50). As shown in Fig. 8, cascading

failure under restoration (pr.0) with negative Dr generates smaller ES than the

case without restoration (pr50). For negative Dr , early restoration (e.g., tr51)

ends up with more functional components than late restoration (e.g., tr54). For

positive Dr , restoration worsens the system in terms of ES. The results are similar

to Fig. 1.

Figure 9 further explores the effect of restoration disturbance in terms of the

system load fluctuations (SLF). We can see the effects of restoration are heavily

influenced by the restoration strategies. For subcritical loading (L50.8), SLF

increases for negative Dr and almost stays constant for positive Dr, while

restoration will worsen system for each Dr (Fig. 9b). For supercritical loading

(L50.95), SLF increases for negative Dr and decreases for positive Dr , while early

restoration (tr51) will improve system for each Dr (Fig. 9d). Restoration can

improve system only for certain values of system loading for a given Dr.

Conclusions

Proper restoration during cascading failures can actively prevent failure

propagation through the entire network. We have proposed a novel modeling

Figure 8. Average avalanche size ES as a function of the system loading level L in power grid. Results
for five different restoration strategies: (1) pr50 (black diamonds); (2) tr51, pr51, Dmin

r ~0, Dmax
r ~0:1 (green

squares); (3) tr54, pr51, Dmin
r ~0, Dmax

r ~0:1 (purple triangles); (4) tr51, pr51, Dmin
r ~{0:1, Dmax

r ~0 (red
stars); (5) tr54, pr51, Dmin

r ~{0:1, Dmax
r ~0 (blue circles). Results are averaged over 1,000 realizations. All

components are initially loaded by independent random variables L1, L2, …, Ln from Gaussian distribution
N(u1,s2

1) in [Lmin, Lmax], and Dr follows Gaussian distribution N(u2,s2
2) in ½Dmin

r ,Dmax
r �: The model parameters are

the same in all simulations: Lmax5Lfail51, u1~L~(LminzLmax)=2, s1
2~(Lmax{Lmin)2=12, D50.01, Q50.05,

u1~ Dmin
r zDmax

r

� �
=2 and s2~Dmax{Dmin.

doi:10.1371/journal.pone.0112363.g008
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framework to investigate restoration effect during cascading failures with respect

to restoration timing tr and strength pr. The model also considers additional

disturbances on the system due to the restoration actions themselves. The effects

of the restoration have been analyzed with respect to the mean number of failed

components ES and the system load fluctuations SLF. ES focuses on the final state

of the cascade-restoration process, whereas the newly introduced measure SLF

describes the dynamical behavior of the systems.

By applying the proposed modeling framework on the example system, we find

that the restoration effects also depend on the combination of system loading level

L and restoration disturbance Dr. Although the system can be improved by proper

in-process restoration, the application of restoration should be implemented

carefully considering the system loading level. Our framework and findings can

help to evaluate restoration scheme of complex systems and provide insights into

the development of optimal restoration strategy against cascading failures, which

Figure 9. System load fluctuations SLF as a function of the average restoration disturbance Dr ~u2 for different system loading level L in power
grid. Results for different restoration strategies: (1) pr50 (black, no symbols); (2) tr51, pr51 (red circles); (3) tr54, pr51 (blue triangles). Here we set
Dmax

r {Dmin
r ~2|10{3: The other parameters are the same as in Fig. 8.

doi:10.1371/journal.pone.0112363.g009
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are helpful for guiding improvements of reliability and robustness of actual

network systems.

Given the rapid development of Micro-Grid technology, it is interesting and

necessary to study the restoration for Micro-Grid against cascading failures.

Although, for now we have no data for the Micro-Grid, we will perform the

relevant study in the future based on the framework provided in this paper. Based

on our framework provided in the paper, more realistic scenario considering

system real-time status can also be studied in the near future.
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2. Kröger W, Zio E (2011) Vulnerable systems. London: Springer.

3. Lee KM, Yang JS, Kim G, Lee J, Goh KI, et al. (2011) Impact of the topology of global macroeconomic
network on the spreading of economic crises. PloS one 6: e18443.

4. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in
interdependent networks. Nature 464: 1025–1028.

5. Barrett C, Channakeshava K, Huang F, Kim J, Marathe A, et al. (2012) Human initiated cascading
failures in societal infrastructures. PloS one 7: e45406.

6. Dobson I, Carreras BA, Lynch VE, Newman DE (2007) Complex systems analysis of series of
blackouts: Cascading failure, critical points, and self-organization. Chaos 17: 026103.

7. Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, et al. (2014) The structure and
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