
HAL Id: hal-01787036
https://hal.science/hal-01787036

Submitted on 14 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Security in the Cloud: when Traceability
meets Access Control

Clara Bertolissi, Omar Boucelma, Worachet Uttha

To cite this version:
Clara Bertolissi, Omar Boucelma, Worachet Uttha. Enhancing Security in the Cloud: when Trace-
ability meets Access Control. The 12th International Conference for Internet Technology and Secured
Transactions ICITST 2017, Dec 2017, Cambridge, United Kingdom. �hal-01787036�

https://hal.science/hal-01787036
https://hal.archives-ouvertes.fr


Enhancing Security in the Cloud: when Traceability
meets Access Control

Clara Bertolissi
Aix-Marseille Univ, CNRS,

Marseille, France,

Omar Boulcema
Aix-Marseille Univ, CNRS,

Marseille, France

Worachet Uttha
Nakhon Pathom Rajabhat University,

Thailand

Abstract—Cloud Computing technology is gaining momentum,
however security concerns remain one of the top barrier to cloud
projects. We propose a framework that ensures data control
and privacy in the cloud by using traceability (aka Provenance)
combined with expressive access control policies based on user
categorization.

I. INTRODUCTION

In a cloud environment, provenance may bring an added
value to cloud providers. Simply stated, provenance consists in
recording entities and activities involved in producing or trans-
forming an object. Provenance may help answering questions
such as: Who created this data ? What was the process used to
create it ? When was it modified and by whom? Behind these
questions, security issues such as data integrity, privacy, access
control arise. In a distributed context, components/activities
used during each step can locate on different sites each
applying specific management policies.Because access control
models and policies are the most known approaches to enforce
protection on data and resources in a system, combining
provenance with access controls may lead to an efficient
system for enforcing trust in the cloud.

II. FRAMEWORK DESCRIPTION

We propose a solution combining access control features
and systems’ provenance data. For defining provenance, we
adopt the PROV Data Model (PROV-DM [7]), a W3C Rec-
ommendation for provenance expression. It allows to represent
objects and their dependencies as a directed acyclic graph
composed of three vertice or object types (entity, activity,
agent) and several types of edges, representing dependencies
such as an activity used an entity, an entity was generated
by an activity, etc (see Fig.1 for an example). For defining
acces policies, in the aim of defining a framework as gen-
eral as possible, we have chosen to adopt the CBAC meta-
model[2] which has been shown to be expressive enough to
accommodate a range of different access control models. We
provide a set of rules that are checked each time a process
(e.g.; data alteration) is invoked in a given system. These rules
use provenance data and restrictions/authorization of users
depending on the category they belong to. A category is a
notion of grouping based on the attributes a user owns. We
also consider dynamic categorization: the memberships of a
user to a certain category (and thus her/his privileges), may be
affected and change dynamically as a consequence of her/his

actions. For instance, privileges can be automatically revoked
depending on the number of refusals of (a specific) activity
execution a user has received.

More precisely, in our framework, entities are denoted by
constants in a many sorted domain including: a set agents,
a set of named atomic activities, a set of entity identifiers, a
set of categories. The core axiom of the model is as follows:
belongs to(agent, categ, entity)∧permission(categ, activity, entity)

⇔ allow(agent, activity, entity).

The idea is that the first relation, belongs to, specifies the
”qualification” of the agent with respect to the attributes she/he
has and the past (relevant) actions she/he has accomplished.
The relation permissions specifies whether the requested
action can be performed against the object according to a
certain level of qualification, i.e. a category. Notice that this
relation is not dependent from the agent. It is used to model
action validations by the system and it does not directly make
use of user access privileges. This separation in an agent-
dependent relation and a system-dependent relation easies the
updates and maintenance operations of the policy. If the agent
has a sufficient qualification level for belonging to a category
to which the activity is permitted on the requested entity, then
the access request allow(agent,activity,entity) is granted.

III. RELATED RESEARCH

There are several research works that attempted to mix
traceability with access control. Park et al [9] proposed PBAC,
a model where the notion of object dependency lists, derived
from process execution traces, are used for access requests
evaluation. In [10], provenance-aware access control policies
are discussed. An abstract provenance model TPM (Type
Provenance Model) is proposed.TPM allows the expression of
complex dependencies using regular expressions in a similar
way as it is done in PBAC with object dependency lists. In [1],
a provenance model (cProv) and a policy language are pro-
posed. Their rules are generic and some of them are activity-
oriented, very close to the an RBAC model, which can be
expressed in CBAC. In [6] authors propose a formal model that
assigns a trust degree (evaluated from provenance data) to each
entity. The approach we propose provides strict authorization
rules, instead of trust values granted to a particular type of
activity per user. From our perspective, one the main ideas
of our work is to come up with a tight integration of PROV
and CBAC. The concept of category of users (or agents) has



no direct correspondence in the PROV-DM model, even with
extended structures such as collections, which apply only to
entities. The membership of an agent to a group can only be
expressed in the past since a PROV document reflects only past
and final facts. Even in PROV-O [5], the PROV Ontology, no
relationships for the belonging of an agent to a group exist.

IV. FRAMEWORK VALIDATION ON AN EXAMPLE

We choose Datalog programming for evaluation and testing
of our model, since provenance data in PROV-N notation [8]
can be easily expressed in Datalog and declarative policy rules
are very similar to Datalog rules. 1

In our example, we consider an academic course. The
teacher asks students to submit 2 tasks via the University
web application. Each task will be integrated incrementally
by the web application on one student-specific file so that the
teacher can view all one’s work in one file. We assume that
students can submit a task only after they have been graded
on the previous one. Students cannot re-submit a task once
the teacher has rated it. As all subject belonging to the same
category will have the same privileges, in order to distinguish
students having already uploaded some tasks, we may refine
the category student by adding two categories uploadedT1,
uploadedT2. These categories are used for grouping students
who have already uploaded the task 1 or 2, respectively, and
may be defined as follows:

belong_to(Agent,uploadedT1,Entity):-
attribute(Agent, registered_student),
wasGeneratedBy(Entity, uploadTask1),
wasAssociatedWith(uploadTask1, Agent).

This rule means that agents qualified as registered students
(as recorded in the University database) and having executed
the action UploadTask1 on the resource entity (as recorded in
the dependency path of the corresponding provenance graph)
are assigned to the category uploadedT1. In order to have
information such as ”how many times an entity was used”?,
we may need to perform a computation on the provenance
graph for calculating how many dependencies of each type
an entity has. These will produce new predicates that may be
used in the Datalog program.

permission(student, uploadTask1, Entity):-
wasUsedBy_count(Entity, rateTask1, 0).

The rules above means that a student is allowed to re-upload
the same assignment if it has not been rated by the teacher.

Let us consider the scenario reported in Fig.1 with two
students, Bob and Mike. By playing access queries we can
simulate the system and verify the correctness of the access
response. The termination of Datalog queries is guaranteed,
see [3]. If we want to know whether Bob is allowed to upload
his task 1 or not, we can ask to the Datalog engine the query

?- allow(mike, uploadTask1, taskMike).
false.

1The full Datalog specification is made available at
http://home.npru.ac.th/wuttha/research/PROV-CBAC

UploadTask1	

RateTask1	

TaskMike	

UploadTask1	

TaskBob	

15/20	

RateTask1	

17/20	

wasGeneratedBy	 wasGeneratedBy	

wasAssociatedWith	used	 used	

wasGeneratedBy	

wasAssociatedWith	 wasAssociatedWith	

Fig. 1. Example: Excerpt of the Provenance Graph

We can also ask more general question by including vari-
ables in the query:
%% The only activity Mike can perform is upload task2
?- allow(mike, Activity, taskMike).
Activity = uploadTask2.

%% Mike is the only one who can upload his task2.
?- allow(Agent, uploadTask2, taskMike).
Agent = mike.

%% Mike is allowed to upload only his task.
?- allow(mike, uploadTask2, Entity).
Entity = taskMike.

This kind of simulation can help the policy designer or
administrator to detect possible inconsistencies in the policy
definition. Assuming the translation to Datalog is correct, the
engine will compute a positive answer only if Bob is allowed
to perform the access according to the specified policy.

V. CONCLUSION

We have described a framework that ensures trust in a
distributed computing environment by means of data secu-
rity enforcement. The framework combines Provenance and
Category-based Access Control policies. We already have an
implementation that accommodates RBAC policies [4] and we
are planning to extend it with CBAC.

REFERENCES

[1] M. Ali and L. Moreau. A Provenance-Aware Policy Language (cProvl)
and a Data Traceability Model (cProv) for the Cloud. In In Proc. of
GreenCom’13, p. 479–486, IEEE, 2013.

[2] Steve Barker. The Next 700 Access Control Models or a Unifying
Meta-model? In Proc. of SACMAT ’09, p. 187–196, 2009. ACM.

[3] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General
Logic Programs. J. ACM, 43(1):20–74, January 1996.

[4] J. Lacroix and O. Boucelma. Design and Implementation of a Trust
Service for the Cloud. In Proc. of OTM ’15, p. 620–638. LNCS, 2015.

[5] T. Lebo, S. Sahoo, and D. McGuinness. PROV-O: The PROV Ontology,
2013.

[6] G. Lin, Y. Bie, and M. Lei. Trust Based Access Control Policy in
Multi-domain of Cloud Computing. J. of Computers, 8(5), May 2013.

[7] L. Moreau and P. Missier. PROV-DM: The PROV Data Model, 2013.
[8] L.Moreau and P.Missier. PROV-N: The Provenance Notation, 2013.
[9] J. Park, D. Nguyen, and R. Sandhu. A provenance-based access control

model. In Proc. of PST’12, p. 137–144, IEEE, 2012.
[10] L. Sun, J. Park, and R. Sandhu. Engineering Access Control Policies

for Provenance-aware Systems. In Proc. of CODASPY ’13, p.285–292,
2013. ACM.


