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Introduction

In support to the implementation of risk-informed decision-making approaches, Probabilistic Safety Analysis (PSA) of modernizing Nuclear Power Plants (NPPs) demands for detailed dynamic models of digital Instrumentation and Control (I&C) systems that can adequately represent digital components failure modes and quantify their contribution to the overall risk of the NPPs [START_REF] Aldemir | Dynamic reliability modeling of digital instrumentation and control systems for nuclear reactor probabilistic risk assessments[END_REF][START_REF] Aldemir | Current State of Reliability Modeling Methodologies for Digital Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments[END_REF].

To this aim, dynamic methods are being increasingly integrated into existing PSA frameworks for digital I&C systems reliability assessment, such as: Dynamic

Flowgraph Methodology (DFM) [START_REF] Guarro | Applications of the Dynamic Flowgraph Methodology to Dynamic Modeling and Analysis[END_REF][START_REF] Aldemir | Current State of Reliability Modeling Methodologies for Digital Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments[END_REF][START_REF] Reference Aldemir | A benchmark implementation of two dynamic methodologies for the reliability modeling of digital instrumentation and control systems[END_REF], Markov/cell-to-cell mapping technique (CCMT) [START_REF] Aldemir | Current State of Reliability Modeling Methodologies for Digital Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments[END_REF][START_REF] Reference Aldemir | A benchmark implementation of two dynamic methodologies for the reliability modeling of digital instrumentation and control systems[END_REF][START_REF] Zhou | Reliability assessment of nuclear power plant digital instrumentation and control system I: Challenges and research status of reliability assessment methodology[END_REF], Petri Net [START_REF] Lee | A safety assessment methodology for a digital 30 reactor protection system[END_REF][START_REF] Kim | Reliability Analysis of Core Protection Calculator System using Petri Net[END_REF], Bayesian

Networks [START_REF] Boudali | A continuous-time Bayesian network reliability modeling, and analysis framework[END_REF][START_REF] Broy | Using Dynamic Bayesian Networks to solve a dynamic reliability problem[END_REF], Dynamic Fault Tree (DFT) [START_REF] Dehlinger | Analyzing dynamic fault trees derived from modelbased system architectures[END_REF], Dynamic Event Tree (DET) [START_REF] Bucci | Incorporation of Markov reliability models for digital instrumentation and control systems into existing PRAs[END_REF] and Fuzzy C-Means (FCM) clustering method [START_REF] Di Maio | Fuzzy C-Means Clustering of Signal Functional Principal Components for Post-Processing Dynamic Scenarios of a Nuclear Power Plant Digital Instrumentation and Control System[END_REF][START_REF] Zio | Processing Dynamic Scenarios from a Reliability Analysis of a Nuclear Power Plant Digital Instrumentation and Control System[END_REF]. On a system level, these methods can be used to tackle the twofold purpose of PSA: on one side, the identification of the system failure domain and, on the other side, the quantification of the system failure probability.

With respect to the latter, given a failure threshold 𝛾 𝑌 not to be exceeded by a safety-relevant physical variable 𝑌 during the system operation, a limit-state function G can be defined as:

𝐺 = 𝐺(𝑋 ̅ , 𝛾 𝑌 ) = 𝑌(𝑋 ̅ ) -𝛾 𝑌 (1) 
where 𝑋 ̅ = {𝑋 1 , 𝑋 2 , ⋯ , 𝑋 𝑛 } defines the system parameters and operational conditions.

This leads to the definition of a system safety domain 𝑆 = {𝑋 ̅ : 𝐺(𝑋 ̅ , 𝛾 𝑌 ) < 0} and of a system failure domain 𝐹 = {𝑋 ̅ : 𝐺(𝑋 ̅ , 𝛾 𝑌 ) > 0}, that are partitioned by a system failure boundary 𝜕𝐹 = 𝐺(𝑋 ̅ , 𝛾 𝑌 ) = 0, for a given 𝛾 𝑌 .

The identification of the failure domain F is crucial especially when the system dynamics is complex and its component reliability assessment cannot be described by a Boolean, discrete and abrupt physics of failure, but rather by a multi-valued, and continuous degradation model as it is for digital I&C systems [START_REF] Li | A multistate physics model of component degradation based on stochastic Petri nets and simulation[END_REF][START_REF] Lin | Integrating Random Shocks Into Multi-State Physics Models of Degradation Processes for Component Reliability Assessment[END_REF][START_REF] Lisnianski | Multi-State System Reliability: Assessment, Optimization and Applications[END_REF]. The biggest challenge to be overcome for devising realistic and effective degradation models consists in the collection of component reliability data that are, often, affected by multiple and competing failure modes that are difficult to be untangled and reduced to a single-lumped failure criterion analysis that would leverage the degradation modeling task. To avoid simplification and overlooking of failure interdependencies, we propose to resort to a Multi-State Physics Modeling (MSPM) approach at the component level, which can be easily upscaled for system-level degradation modeling. The MSPM approach is based on the structure of Markov (or semi-Markov) modeling for the quantification of components reliability measures [START_REF] Unwin | Multistate physics models of aging passive components in probabilistic risk assessment[END_REF][START_REF] Unwin | Reliability Models of Aging Passive Components Informed by Materials Degradation Metrics to Support Long-Term Reactor Operations[END_REF][START_REF] Rocco | Global sensitivity analysis in a Multi-state Physics Model of Component Degradation based on a hybrid State-Space Enrichment and Polynomial Chaos Expansion approach[END_REF][START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF]. Recently, the MSPM approach has been proposed for modeling nuclear component degradation by accounting for both the effects of stochastic parameters affecting the degradation and the environmental parameters with their uncertainties [START_REF] Lin | Integrating Random Shocks Into Multi-State Physics Models of Degradation Processes for Component Reliability Assessment[END_REF][START_REF] Di Maio | A Multi-State Physics Modeling approach for the reliability assessment of Nuclear Power Plants piping systems[END_REF].

In this study, a component-level MSPM model for a digital I&C system is developed by integrating in the model both the stochastic and the deterministic processes that affect component degradation. The physical variable 𝑌 to be considered for the failure domain F identification is given in Eq. ( 2) [START_REF] Kaiser | Predictive maintenance management using sensor-based degradation models[END_REF]:

𝑌 = 𝑌(𝑋 ̅ ) = 𝑓(𝑡, 𝜹 ̅ ) + 𝜀(𝑡) = 𝑓(𝑡, 𝚽 ̅ 𝑚 , 𝚯 ̅ 𝑘 , 𝑩 ̅ 𝑙 ) + 𝜀(𝑡) (2)
where t is the deterministic aging time, 𝜹 ̅ is a collection of physical parameters affecting the degradation process that can be seen as composed by 𝚽 ̅ 𝑚 = {𝜑 1 , ⋯ , 𝜑 𝑚 } which is a vector of m-dimensional manufacturing features that affect the degradation (e.g., burn-in, contamination, etc.), 𝚯 ̅ 𝑘 = {𝜃 1 , ⋯ , 𝜃 𝑘 } which is a vector of k-dimensional stochastic parameters that account for the components variability (e.g., nominal frequency stability, calibration error after maintenance, etc.), 𝑩 ̅ 𝑙 = {𝛽 1 , ⋯ , 𝛽 𝑙 } which is a vector of l-dimensional external parameters that capture the variability of timevarying operating and environmental conditions (e.g., temperature, flux, etc.), and 𝜀(𝑡)

that is an error term that captures noise and disturbances. In principle, a component response surface to any possible different setting of degradation features (stochastic and external parameters, and error terms) can be built (with infinite computational resources) such that the safety domain S can be partitioned from the failure domain F by setting a failure threshold 𝛾 𝑌 .

In this work, a Monte Carlo (MC) simulation is used to estimate the transition probabilities among the degradation states of MSPM and drive, by random walks, the stochastic process of the evolution of the air gap size in time and the deterministic evolution of the component aging on the response surface for the identification of the limit surface of the drift event of a Resistance Temperature Detector (RTD) that is embedded into a digital I&C system of a NPP.

Finally, as for traditional PSA (where system-level models are developed by combining or replacing subsystem or component models in the overall structure of a Fault Tree (FT) or an Event Tree (ET) [START_REF] Aldemir | Dynamic reliability modeling of digital instrumentation and control systems for nuclear reactor probabilistic risk assessments[END_REF][START_REF] Reference Aldemir | A benchmark implementation of two dynamic methodologies for the reliability modeling of digital instrumentation and control systems[END_REF][START_REF] Gulati | A modular approach for analyzing static and dynamic fault trees[END_REF])), the system failure probability of the digital I&C system is quantified by upscaling the component-level MSPM into a system-level model that considers the inter-system or/and inter-component dependencies and the aleatory or/and epistemic uncertainties affecting each component behavior.

The rest of paper is as follows. Section 2 presents the illustration of componentlevel MSPM for a digital I&C component (e.g., sensor, reactor trip breaker, CPU, etc.)

and the comparison of the results obtained by the Markov Chain method. Section 3

presents the system-level MSPM framework of a digital I&C system in a NPP. In section 4 conclusions are drawn.

The Component-Level MSPMs

In this study, the digital I&C System of reference, whose reliability assessment is required for the failure domain identification and the related risk quantification of a 

RTB Module

Fig. 1 A typical RPS [START_REF] Wang | Evaluation Method of Reliability Indicator of Reactor Protection System[END_REF] The system can be decomposed into modules to reduce the complexity of systemlevel modeling based on the functions the embedded components are devised for and the failure effects they produce on the system. According to the RPS scheme of Fig. 1, the RPS modules are identified:

 The BPL Module, consists of two groups of components: sensor and BPL (i.e., "S-A and BPL-A" and "S-B and BPL-B"); these components are connected in series and their failure effects on the system can be combined.

 The LCL Module consists of the two LCLs (i.e., LCL-A and LCL-B). Since the ESS is triggered only when both LCLs simultaneously receive two PTSs from the two BPLs, this module is highly dependent of the BPL module.

 The RTB Module.

Without loss of generality, let us consider and build the component-level MSPM of the module "S-A and BPL-A". It is worth mentioning that, for a comprehensive and exhaustive analysis, a component-level MSPM of each module shown in Fig. 1 should be built with great detail and embedded into the system-level MSPM, as we shall see in Section 3.

Each component-level model is a MSPM where the dynamics of component degradation is represented by transitions among a finite number M of degradation states at any time instant t and any value of the affecting parameters 𝜹 ̅ [START_REF] Li | A multistate physics model of component degradation based on stochastic Petri nets and simulation[END_REF][START_REF] Di Maio | A Multi-State Physics Modeling approach for the reliability assessment of Nuclear Power Plants piping systems[END_REF]; similarly to a Markov Chain Model (MCM), a state probability p is assigned to each degradation state, that is collectively represented by a state probability vector 𝑷 ̅ (𝑡, 𝜹 ̅ ) = {𝑝 0 (𝑡, 𝜹 ̅ ), 𝑝 1 (𝑡, 𝜹 ̅ ), ⋯ 𝑝 𝑗 (𝑡, 𝜹 ̅ ), ⋯ , 𝑝 𝑀 (𝑡, 𝜹 ̅ )} for all the M states.

 In general terms, we model each i-th component with a graph with M i +1 nodes, each of which identifies a state of the component degradation progression.

Herein, "𝐶 0 𝑖 " and "𝐶 𝑀 𝑖 " represent the "New" and "Failed" states of the i-th component in the system, whereas any other state "𝐶 𝑗 𝑖 ", 𝑗 = 1,2, ⋯ , 𝑀 𝑖 is an intermediate degradation state, where the component is partially functioning.

 State "𝐶 0 𝑖 " is selected as the initial state at time t=0, i.e., the component is "New" at t=0.

 𝜆 (𝑗,𝑘) 𝑖 (𝑡, 𝜹 ̅ ), 𝑗 = 1,2, ⋯ , 𝑀 𝑖 , 𝑘 = 1,2, ⋯ , 𝑀 𝑖 , 𝑎𝑛𝑑 𝑗 ≠ 𝑘 is the transition rate of the i-th component degradation model from state "𝐶 𝑗 𝑖 " to state "𝐶 𝑘 𝑖 ", with respect to the time and the degradation affecting factor vector 𝜹 ̅ .

 Components can be repaired even if not "Failed", i.e., repair rate 𝜇 (𝑗,𝑘) 𝑖 (𝑡, 𝜹 ̅ ), 𝑗 = 1,2, ⋯ , 𝑀 𝑖 , 𝑘 = 1,2, ⋯ , 𝑀 𝑖 , 𝑎𝑛𝑑 𝑗 ≠ 𝑘 can be foreseen between the intermediate transition states "𝐶 𝑗 𝑖 " and "𝐶 𝑘 𝑖 ".

An example of MSPM of a generic single component i is sketched in Fig. 2, below.

... ... ...
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The Sensor MSPM

Different types of sensors are employed for measuring temperatures, pressures, levels and flows in NPP safety systems, such as Resistance Temperature Detectors (RTDs) [START_REF] Montalvo | Advanced surveillance of resistance temperature detectors in nuclear power plants[END_REF][START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF][START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF], pressure transmitters [START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF], eddy current sensors [START_REF] García-Martín | Non-destructive techniques based on eddy current testing[END_REF][START_REF] Uchanin | The development of eddy current technique for WWER steam generators inspection[END_REF] and optical fiber sensors [START_REF] Ferdinand | Optical fiber sensors to improve the safety of nuclear power plants[END_REF]. Without loss of generality, we assume that the S-A and S-B of the digital I&C system of Fig. 1 are RTDs. We focus on RTDs because they are critical components, whose effectiveness in promptly detecting anomalous temperature changes greatly support plant operators in the monitoring of NPP operational conditions and guide counteracting measure to avoid system failure. This is why RTDs must properly generate accurate and timely data [START_REF] Baraldi | Comparison of data-driven reconstruction methods for fault detection[END_REF]. The NPP plant power level is, indeed, set based on the information gathered from RTDs: the better the performance of these process instrumentations in terms of measurement accuracy, the larger the power rate with enough margin from the system failure domain F (hence, the better the plant economics) [START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF].

To build the RTD-MSPM model (as sketched in Fig. 3), the sensor failure modes have to be identified (e.g., bias [START_REF] Uren | An integrated approach to sensor FDI and signal reconstruction in HTGRs-Part II: Case studies[END_REF], drift [START_REF] Uren | An integrated approach to sensor FDI and signal reconstruction in HTGRs-Part II: Case studies[END_REF][START_REF] Garvey | An adaptive distance measure for use with nonparametric models[END_REF], performance degradation [START_REF] Fernandeza | Robustness to sensor damage of a highly redundant gas sensor array[END_REF], freezing [START_REF] Boskovic | Stable adaptive multiple model-based control design for accommodation of sensor failures[END_REF], and calibration error [START_REF] Castello | Sensor Data Management, Validation, Correction, and Provenance for Building Technologies[END_REF]) and assumptions are made for the subsequent quantitative analysis:  (here j, k = 1, 2, 3, 4, 5, 6 and 𝑗 ≠ 𝑘). It is assumed that repair is just carried out from each degradation state to state 0 RTD C , with repair rate


    ,0 , RTD j t  .
 The initial state at time t=0 is sensor functioning state 0
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Fig. 3 Schematic diagram of the RTD-MSPM

The RTD-MSPM is further simplified as in Fig. 4  . This simplification is due to the experimental evidence that the main failure mode to be considered for RTDs is drift [START_REF] Balaban | Modeling, detection, and disambiguation of sensor faults for aerospace applications[END_REF]. Overtime exposure to high temperatures can cause a drift in the measurements up to several degrees per year; shock and vibration generate strain in resistive wires of the RTDs and change their characteristics. In what follows, the quantitative analysis on the RTD-MSPM is done.

    0,2 , RTD t       2,0 , RTD t   0 RTD C 2 RTD C Fig. 4 Drift case of RTD-MSPM model

Estimation of the RTD-MSPM Parameters

RTDs contain a sensing element whose resistance changes with fluid temperature.

Well-type RTDs are assembled into thermowells containing the sensing elements, sheaths and insulation materials, whereas wet-type RTDs are designed for direct immersion into the fluid [START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF]. Two types of RTDs are shown in Fig. 5 ( [START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF].

Wet-type RTD Well-type RTD The performance of RTDs is characterized by their measurement accuracy 𝜎 and response time 𝜏. The former characterizes the RTD accuracy in measuring a sudden temperature change [START_REF] Wei | Study on the influence of the response characteristics of a temperature sensor on the measurement accuracy of a waterabsorption-based high-energy laser energy meter[END_REF], whereas the latter is a pivotal indicator that measures how quickly the RTD responds to a sudden and significant temperature change [START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF]. On one hand, being 𝜏 the time the RTD needs for reaching 63.2% of a sudden temperature change, 𝜏 is also representative of 𝜎; on the other hand, since some failure modes might affect the fluid temperature and some others such as bias, freezing, loss of signal showing constant measured values even if the RTD is degraded and, thus, 𝜏 cannot be considered as performance metric, both 𝜏 and 𝜎 are to be simultaneously considered for defining the RTD failure domain.

Under normal reactor operation conditions, effects of intrinsic properties (intrinsic shape and material properties, for example) are negligible on its own performance because they cannot be altered once the RTD is manufactured, such as 𝜏 and 𝜀 [START_REF] Hashemian | Aging Characteristics of Nuclear Plant RTDs and Pressure Transmitters[END_REF]. Instead, component aging t and uncertainty of air gap size 𝛿 between the bottom of the thermowell and the RTD sensing tip due to contamination, metallurgical changes, moisture or dirt entering, mechanical shock, etc. are more likely to cause RTD drift [START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF][START_REF] Swanson | Optimal temperature sensor selection: Achieving accurate temperature measurement[END_REF].

Aging can affect RTD performance with different degradation modes; for example, the sensing element resistance increases under tensile stress and decreases with compression stress that varies with time t, resulting in off-calibration, increase in 𝜏, reduced insulation resistance, erratic output, wiring problems, etc. Among these, sensor off-calibration and 𝜏 changes are the most relevant features to be monitored [START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF].

Moreover, we assume 𝜏 to heavily depend on air gap size 𝛿 between the RTD sensing tip and the bottom of the thermowell [START_REF] Hashemian | Response time testing of temperature sensors using loop current step response method[END_REF], even though also debris, dirt, and metal shavings entering the thermowell during installation, and/or moisture entering the insulation material during operation can, also cause an off-design of air gap that prevents the RTD from reaching the very bottom of its thermowell.

Moreover, RTD movement in the thermowell due to vibration, thermal, or mechanical shock can cause the RTD sensing tip to displace away from the bottom of the thermowell [START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF] and calibration drift [START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF].

In conclusion, in what follows, 𝜏 is identified as the RTD drift physical variable Y being degrading due to t and 𝛿, as in Eq. ( 3):

𝑌 = 𝜏(𝑡, 𝛿) (3) 
Given a RTD failure threshold 𝛾 𝑌 not to be exceeded by 𝜏(𝑡, 𝛿) during operation, then, its limit-state function can be formulated as:

𝐺 = 𝑌 -𝛾 𝑌 = 𝜏(𝑡, 𝛿) -𝛾 𝑌 (4) 
To partition the RTD safety domain S from its failure domain F, we firstly build a physical mathematical relationship between 𝜏, t and 𝛿 based on the experimental data listed in Table 1 and 2 [START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF][START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF]. 0.9 3.3 4.1 5.0 2.94 5.9 6.5 3.33 7.5 3.48 3.58 Fig. 6 shows the trend of 𝜏 as long as t increases, independently from the air gap contamination (i.e., 𝛿 = 0) when data in Table 1 are used as interpolation data. Fig. 7 shows the trend of 𝜏 as a function of 𝛿, when the RTD is new and data in Table 2 are used as interpolation data (i.e., aging t=0) [START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF]. The function 𝜏(𝑡, 𝛿) as it is plotted in Fig. 8 is obtained by resorting to Eq. ( 5):

𝜏(𝑡, 𝛿) = 𝛼 𝑡 • 𝜏(𝑡 -1, 𝛿) (5) 
where 𝜏(0, 𝛿) is the curve of Fig. 7 and the factor 𝛼 𝑡 accounts for the changes of response time 𝜏 with the increase of t, by scaling the 𝜏(𝑡, 0) using the scale factor αt:

𝛼 𝑡 = 𝜏(𝑡) 𝜏(𝑡 -1) (6)
where, 𝛼 1 = 𝜏(1) 𝜏(0) ⁄ . Table 3 reports the estimate of 𝛼 𝑡 for six discrete aging times t. As mentioned in [START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF], the τ of a well-type RTD usually ranges in [4s, 8s]; hence, the RTD failure threshold 𝛾 Y is here set equal to 8s. The Cumulative Distribution Function (CDF) PS(t, δ) of the RTD new-to-drift-failure mode that can account for the stochasticity of the process and of the uncertainties affecting the degradation (for example, the initial air gap size δ0 and the noise affecting the air gap size δt due to the vibration) can be found by running NM Monte Carlo simulations, as follows (see Table 4 for the list of parameters):

 For each trial, at the initial time t=0, we sample the value of 𝛿 0 from the uniform distribution U(0,1) as initial air gap size.

 At each t that increases with the time step dt, the value dδt is sampled from a normal distribution N(0,0.025t); thus, δ = δ0 +dδt.

 At each t within the mission time [t0,tm], τ is estimated using the curve τ(t, δ) of Fig. 8. If the value of τ exceeds the threshold 𝛾 𝑌 , the RTD is assumed to fail at time t with air gap size δ. Pictorially, we can show the evolution of 𝜏(𝑡, 𝛿) for each trial, as sketched in Fig. 9: for a sampled δ0 (equal to 0.12mm), the air gap size oscillates during the RTD life around δ0 (see in Fig. 9 yr, after which it starts to level off to reach PS(t|δ) at 5.8yr. Therefore, the failure rate λS(t|δ) of Fig. 12 shows the typical infant mortality and wear out periods, and tends to be constant in the useful life, which coincides with a general bath-tub curve, but with non-constant values along life.
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Comparison with Markov Chain Model

The 

The System-Level MSPM for a Digital I&C System

In Section 2 we have shown how it is possible to resort to a MSPM framework to build a realistic model of a component/module that is embedded into a system. Now, the general framework of a MSPM approach is presented, when all the components of a Digital I&C system are considered. As shown in Fig. 15, we propose a modular scheme that integrates the component-level and/or subsystem-level models into a system-level structure [START_REF] Gulati | A modular approach for analyzing static and dynamic fault trees[END_REF][START_REF] Wang | Evaluation Method of Reliability Indicator of Reactor Protection System[END_REF]. Attention should be paid to the definition of system failure modes and to the identification of the component degradation states with their dependencies and the uncertainties, as well as on the inter-component dependencies by a qualitative and quantitative screening of the system behavior (i.e., by Failure Modes and Effects Analysis (FMEA) [START_REF] Zio | An Introduction to the Basics of Reliability and Risk Analysis[END_REF]). In this work, the components degradation process, their failure modes and the overall system behavior is modelled by implementing physics model at both component level or/and subsystem level, which consider inter-component and intra-components dependencies and uncertainties.

Component-Level Modeling: MSPMs of the single components in the Digital I&C system

System-Level Modeling: Integrated MSPMs of the overall Digital I&C system

MSPM 1 MSPM i MSPM N Dynamics of component 1 Dynamics of component i Dynamics of component N MSPM 1 MSPM i MSPM N Fig.

General framework of a component-and system-level MSPM-based approach for a digital I&C systems

With respect to the inter-component degradation physics, the following assumptions hold for each i-th component degradation MSPM. Provided that we are able to build, for each i-th component, its component-level MSPM, the system-level MSPM can be built, as shown in Fig. 16, where:

 Inter-components operating logic determines the layout of the N+1 layers, where layer "L 0 " and layer "L N " are the "System functioning (L 0 )" and "System failure (L N )" states, respectively. Any intermediate layer "L l ", 𝑙 = 1, ⋯ , 𝑁 -1 represents the module or submodule operating logic, where the component can be grouped in subsystems for similarity of task, location, characteristics, etc. (Inter-components (e.g., cascading failures) and intracomponents (e.g., components common cause failures) dependencies and uncertainties should be accounted for in detail for the sake of the model accuracy).

 𝐿 𝑚 𝑙 , 𝑚 = 1,2, ⋯ , 𝑀 𝑙 , is the system degradation state at progression level m, for the module failure mode l.

 All states 𝐿 𝑚 𝑙 are repairable states with repair rate 𝜇 𝐿 𝑚 𝑙 →𝐿 0 (𝑡, 𝜹 ̅ ) to L 0 (indicated by the dashed lines in Fig. 16) and failure rate 𝜆 𝐿 𝑚 𝑙 →𝐿 𝑛 𝜔 (𝑡, 𝜹 ̅ ), 𝑙, 𝜔 = 1, ⋯ , 𝑁 -1 , 𝑚 = 1,2, ⋯ , 𝑀 𝑙 , and 𝑛 = 1,2, ⋯ , 𝑀 𝜔 for the transition from state 𝐿 𝑚 𝑙 to any other state 𝐿 𝑛 𝜔 belonging to any layer 𝜔 ≠ 𝑙 (indicated by solid lines in Fig. 16).

 States 𝐿 𝑚 𝑙 lead to L N (i.e., system failure due to different failure modes) with failure rate 𝜆 𝐿 𝑚 𝑙 →𝐿 𝑁 (𝑡, 𝜹 ̅ ). 
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Fig. 16 The system-level MSPM degradation model

The construction of the system-level MSPM for the RPS of Fig. 1, thus, proceeds as follows:

 Identification of system modules: BPL, LCL and RTB (see section 2).

 Definition of the (N+1) = 5 layers.

The layers of the system-level MSPM of the RPS (see Fig. 17) are, therefore: a) Layer L 0 is the "RPS functioning (L 0 )" state.

b) Layer L 1 models the degradation of the system due to either the submodule "S-A and BPL-A" or the submodule "S-B and BPL-B" failure, since the two submodules perform the same function in the system and the logic of such that the system goes into failure if at least one submodule fails. Due attention has to be, therefore, paid to the modeling the logic that process the PTSs. In layer L 1 , states 𝐿 1 1 , ⋯ , 𝐿 𝑚 1 , ⋯ , 𝐿 𝑀 1 are states of the degradation of this module (shown in Fig. 17 For completeness sake, in Fig. 17, 𝜇 𝐿 𝑚 𝑙 →𝐿 0 (𝑡, 𝜹 ̅ ) (l = 1, 2, 3, 4) is the repair transition rate from the state m of the l-th layer to the "RPS functioning (L 0 )" state, as 
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Fig. 17 The system-level degradation model of the RPS digital I&C system

The objective of the system-level degradation modeling effort is the quantification of the state probability vector 𝑷 ̅ (𝑡, 𝜹 ̅ ) = {𝑝 𝐿 0 (𝑡, 𝜹 ̅ ), 𝑝 𝐿 1 1 (𝑡, 𝜹 ̅ ), ⋯ , 𝑝 𝐿 𝑚 𝑙 (𝑡, 𝜹 ̅ ), ⋯ , 𝑝 𝐿 𝑀 4 (𝑡, 𝜹 ̅ ), 𝑝 𝐿 5 (𝑡, 𝜹 ̅ )}, which can be obtained by Monte Carlo simulation to generate random walks across layers and within the MSPM describing each module, as illustrated in section 2. Without loss of generality, we will present a system-level MSPM where only the RTD-MSPM of section 2.1 is considered, whereas all the other components are assumed to obey a binary behavior (safe/failed). Therefore, the RPS system-level MSPM sketched in Fig. 19, whose states are described in The modular modeling approach proposed has been applied to develop a systemlevel MSPM model taking for a typical Reactor Protection System (RPS) as benchmark.
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The results of the illustrative application demonstrate that the proposed MSPM approach can well explain environmental conditions, aging and degradation of failure events, besides timing and sequencing which can also be solved by traditional dynamic methods (e.g., MCM).

  Six degradation states, besides the sensor functioning state ( 0 RTD C ), are set and organized into RTD-MSPM model: 1 Failure. Transitions can occur between state 0 RTD C and any of the other degradation states, with transition rate    

Fig. 5

 5 Fig. 5 Two types of RTDs[START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF] 

Fig. 6

 6 Fig. 6 𝜏(𝑡, 0)

  (a)); on the other hand, the response time τ, stochastically changes with the increase of time t (in Fig. 9(b)) and, thus, the transition between states 𝐶 0 𝑅𝑇𝐷 and 𝐶 2 𝑅𝑇𝐷 (see Fig. 4) of drift failure mode is determined when the response time τ reaches the failure threshold 𝛾 𝑌 , as shown in Fig. 9(c).

Fig. 9

 9 Fig. 9 One trial of MC simulation: (a) the stochastic path of air gap size δ changing with the aging t; (b) the evolution of response time τ with the aging t; (c) the simulated path response time τ with respect to δ and t on the safety domain of the fitting curved surface

Fig. 10

 10 Fig. 10 Conditional probability density function of RTD New-to-drift failure mode

Fig. 13

 13 Fig. 13 Schematic diagram of RTD-MCM (without repair)

Fig. 14

 14 Fig. 14 Failure state probability obtained from MSPM and MCM approaches

  ). c) Layer L 2 models the degradation of the LCL module. Due to the operational logic of this module, the system goes into failure state only if both LCL-A and LCL-B fail, namely, the LCL module goes into state L 3 models the degradation of the RTB, from which the shutdown signal is directly sent to the power supply system and to the CRDM.States 𝐿 1 3 , ⋯ , 𝐿 𝑚 3 , ⋯ , 𝐿 𝑀 3 are the states of degradation of the RTB. e) Layer L 4 is the "RPS failure (L 4 )" state. Identification of possible cascading failures affecting more than one layer/module. Identification of possible common cause failures among components belonging to different layers/modules. Quantification of the uncertainties in the probabilities of transition between states and layers/modules.

  Fig.19The RPS system-level MSPM integrating RTD New-to-drift failure mode

  

  

Table 1

 1 Experimental data for τ at fixed t and δ=0[START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF] 

	Aging Time t [yr]	0	2	4	5	6
	Response Time 𝜏 [s]	2.1	4.4	4.8	5.0	5.2
	Variance	1.67	0.77	0.72	0.77	0.67

Table 2

 2 Experimental data for τ at t=0 and fixed δ[START_REF] Hashemian | Measurement of Dynamic Temperatures and Pressures in Nuclear Power Plants[END_REF][START_REF] Yun | Modeling the Aging Effects of Nuclear Power Plant Resistance Temperature Detectors[END_REF] 

	Air gap size 𝛿 [mm]	0	0	0.2	0.4	0.5	0.6	0.8	1.0	1.0	1.5	2.0
	Response time t [s]											

Table 3

 3 Estimate of scale factors at six discrete aging times

	Aging time t [yr]	0	1	2	3	4	5	6
	Response time 𝜏 [s]	2.1040 3.5750 4.3818 4.7367 4.8525 4.9415 5.2163
	Weighting factor 𝛼 𝑡	/	1.70	1.23	1.08	1.02	1.02	1.06

Fig. 8 𝜏(𝑡, 𝛿)

Table 4

 4 Setting of Parameters for Monte Carlo Simulation

	Parameter	Description	Unit	Value	Distribution
	NM	Simulation Times	/	10 4	/
	𝛾 𝑌	Response Time Threshold	s	8	/
	dt	Time interval	yr	1/100	
	t0	Initial time	yr	0	/
	tm	Mission time	yr	6	/
	δ0	Initial Air Gap Size	mm	/	U(0, 1)
	dδt	Noise of Air Gap Size	mm	/	N(0, 0.025t)

0 : RPS functioning state L 1 : Degradation states of BPL module L 2 : Degradation states of LCL module L 3 : Degradation states of RTB module L 4 : RPS failure state

  a function of time t and of the factors 𝜹 ̅ affecting the degradation, 𝜆 𝐿 0 →𝐿 𝑚 𝑙 (𝑡, 𝜹 ̅ ) is the failure transition rate from the "RPS functioning (L 0 )" state to the state m of the l-th layer, 𝜆 𝐿 𝑚 𝑙 →𝐿 𝑛 𝜔 (𝑡, 𝜹 ̅ ) (ω = 1, 2, 3, 4) is the failure transition rate from the state m of the l-th layer to the state n of the ω-th layer, and 𝜆 𝐿 𝑀 1 →𝐿 4 (𝑡, 𝜹 ̅ ) , 𝜆 𝐿 𝐴𝑁𝐷

	2	→𝐿 4 (𝑡, 𝜹 ̅ ) , and
	𝜆 𝐿 𝑀 3 →𝐿 4 (𝑡, 𝜹 ̅ ) are failure rates from the worst degradation states of each layer/module to
	the RPS failure state L 4 .	

L

Table 5

 5 

	, can be

 State 𝐿 1 1 corresponds to the onset of the RTDs New-to-drift failure mode that may lead to system failure state 𝐿 4 when its response time exceeds the failure threshold (solid edges with transition rates represent the stochastic phenomena herein modeled).

Table 5

 5 Identification of states in RPS system-level MSPM

	State	Description
	𝐿 0	RPS functioning state.
	𝐿 1 1	Drift onset in one or the other RTD sensor.
	𝐿 2 1	Either one or the other BPL fails to send out PTSs.
	𝐿 3 1	Common cause failure of BPL-A and BPL-B.
	𝐿 1 2	Either one or the other LCL fails to produce the ESS.
	𝐿 2 2	Common cause failure of LCL-A and LCL-B.
	𝐿 𝐴𝑁𝐷 2	Both LCLs fail to produce the ESS.
	𝐿 1 3	RTB fails during operation.
	𝐿 4	RPS failure state.