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Crouzeix-Raviart approximation of the total
variation on simplicial meshes.∗

Antonin Chambolle† Thomas Pock‡
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We propose an adaptive implementation of a Crouzeix-Raviart based dis-
cretization of the total variation, which has the property of approximating
from below the total variation, with metrication errors only depending on
the local curvature, rather than on the orientation as is usual for other ap-
proaches.
keywords: Image processing, total variation, nonconforming P1 (Crouzeix-
Raviart) finite elements, error estimates.
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1. Introduction

Since [46], the total variation has been widely used in imaging as a basic denoising
tool and a regularizer for inverse problems, obviously as it is one of the few convex
regularizing energies which preserve discontinuities [18]. Classically, it is defined for a
(here, to simplify, scalar) function u : Ω → R defined on a domain Ω ⊂ Rd (d = 2 or
3 for most imaging applications) as the (total) varation of the distributional derivative,
Du, which is assumed to be a measure. An equivalent definition, by duality, is simply

|Du|(Ω) = sup

{
−
ˆ

Ω
u(x)divϕ(x)dx : ϕ ∈ C∞c (Ω;Rd), ‖ϕ(x)‖ ≤ 1∀x ∈ Ω

}
, (1)

see for instance [3], and a function u ∈ L1(Ω) is said to have bounded variation if and
only if this quantity is finite. The space of such functions is usually denoted BV (Ω).
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Clearly, such a definition allows for discontinuous functions, as it is obvious that the
characteristic function of a sufficiently regular set is a BV function.

For this reason, it is not trivial to correctly discretize the functional |Du|(Ω). An
obvious discretization, assuming to simplify Ω = [0, 1]2, N is an integer, h = 1/N > 0
would be, given the discrete function uh = (uhi,j)0≤i,j≤N ,

Jh(uh) = h
∑

i<N,j<N

√
(uhi+1,j − uhi,j)2 + (uhi,j+1 − uhi,j)2

+ h

N−1∑
i=1

|uhi+1,N − uhi,N |+ h

N−1∑
j=1

|uhN,j+1 − uhj,N |. (2)

The scaling h is the volume of the elementary “pixel” hd (here d = 2) divided by the
scale h which appears in the discrete gradients. Naively, this discretization appears to be
wrong, as for instance the measure of a characteristic function (uhi,j ∈ {0, 1}) will always
be exaggerated, more or less strongly depending on the orientation of the boundary, see
Fig. 1.

Jh ∼ 2

Jh ∼
√

2

√
2

√
2

1 1

1 1

Figure 1: How Jh would measure a sharp slanted edge in a 1× 1 square: on the left, we

get the correct measure, on the right the result is biased by a factor
√

2 (the
numbers show the contribution of a triple of pixels (i, j), (i + 1, j), (i, j + 1)
to the energy), while a smoothed edge in the same direction can have a much
lower energy. This explains why minimizers of this discrete approximation will
have sharp edges in some orientation, and smoother edges in other.

However, this analysis is not really correct: as we are in practice interested in mini-
mization problems involving Jh, the right question should be wether minimizers of such
problems will approximate correctly the minimizer of some related continuous problem.
This is expressed by the fact that Jh, as h → 0, actually “Γ-converges” [12, 29] to
|Du|(Ω) (the proof is more or less trivial, for instance see [15, 26] for examples of sim-
ilar proofs for variants of Jh). But this result suffers from a slight drawback: since the
measure of characteristic functions with Jh is wrong, it means that in this process, such
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a function in the limit will not, in general, be approximated by discrete characteristic
functions. In practice, it is easy to see that it suffices to slightly smooth the limiting
function u to obtain after discretization an image uh with Jh(uh) ≈ |Du|(Ω). (Rigorous
error estimates can be found for instance in [47, 40, 39], see also some references below
for P1 finite elements error estimates.) This means that sharp discontinuities will ex-
ceptionally appear in minimizers of energies involving Jh (see [27] for many interesting
examples). In a work in preparation [16], we will show that the order of approximation,
as h→ 0, for a denoising problem based on the discretization Jh is actually worse when
denoising a slanted edge oriented as in Fig. 1, right, than for an edge oriented as on the
left (O(h2/3) vs. O(h) for the energy).

This issue has been addressed many times in the imaging literature, in many contexts:
finite differences [21, 24, 27], graph-based total variations [45, 11] (these references can
by no means be exhaustive), more complex grids [38]... Others have advocated for
finite elements discretizations [33, 34, 32], obtaining in particular very good results with
adaptive meshes [5, 7, 6, 8, 9]. An obvious issue with P1 elements is the following:
again, if one wants to approximate a discontinous function, then the gradient in some
elements should be very large, and its orientation will be mostly determined by the
directions of the edges of the element. This leads again to an exaggeration of the total
variation of characteristic functions, and as a result, to a smoothing of the discrete
variational solutions, unless adaption is (well) implemented. It is difficult to expect this
to improve using higher order approximations [37], as difficulties precisely arise when
one needs to approximate discontinuous functions. One direction to improve this is
suggested in [44], which proposes to use discontinuous P1 finite elements. There, again,
the discretization is conforming in the sense that the jump energy is actually taken into
account in the discretized functional. A notable interest here should be a much more
precise discretization of the discontinuities, however, once again, in case the edges of the
mesh are not parallel to a jump, its measure will be exaggerated and a smoothing will
be necessary in order to better approximate the energy.

In this paper, we discuss the merits of a finite elements discretization of the total
variation based on nonconforming P1 elements, also known as “Crouzeix-Raviart” finite
elements since they were introduced in [28] (see also [13]). Contrarily to [44], the dis-
cretizations we consider will be truly nonconforming, in the sense that the jump part
across edges of the mesh are not part of the energy.

It has been observed many times that such elements can be useful to discretize some
nonlinear variational problems such as Cavitation and Fracture [35, 48], Nonlinear Elas-
ticity and Stokes’s equation [31] (where it is extended to non-triangular meshes, which
should also be interesting for total variation-based energies), Nonlinear Elasticity with
mesh adaption [42, 41], Topology Optimization [17] — see [13] for a general overview of
the use of this discretization over the years.

It turns out that indeed these elements enjoy some very nice properties: in particular,
the direction of the gradient in an element is entirely free and not determined by the
shape of the element itself. This makes them particularly desirable to approximate
functions with discontinuities, without altering the total measure of the singularity (see
the quite elementary Prop 3.3 below). On the other hand, minimizers of a Crouzeix-
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Raviart-based total variation can be quite diffusive, for reasons different than the ones
pointed out before, so that the need for adaptivity is not totally eliminated by this choice.
We can propose, on square grids, a particular adaptive strategy which automatically
derives the best way to cut elementary squares into two triangles in order to find the
best approximation of a given image, from the point of view of diffusivity.

Throughout the paper we will mostly focus on the following “denoising” problem [46]:

min
u∈BV (Ω)

|Du|(Ω) +
1

2τ

ˆ
Ω

(u− g)2dx. (3)

Here, g ∈ L2(Ω) is the original signal (in [46], a noisy image), u its regularized version,
and τ > 0 a parameter (which obviously controls the degree of smoothing).

The main reason for focusing on this problem is that its solution corresponds to
evaluating the “proximity operator” of the total variation at g, and can be used as a
basic brick in many minimization algorithms involving the same functional (see [25] for
an overview). Additionally, since we will focus mostly on the discretization of the first
term in this problem, our study will apply with little or no change to many other second
terms (and simple variants of the first).

The paper is organized as follows: in the next Section 2 we discuss the issues of
approximating the gradient of BV functions and introduce the Crouzeix-Raviart finite
elements, discussing their most useful properties in our context. Then, in Section 3,
we define the Crouzeix-Raviart total variation and analyse some properties. We show
in particular that straight lines (more precisely, step functions with straight jump) are
measured perfectly by this energy, independently of the mesh. On the other hand, we
can also build diffusive approximations to step functions. In Section 4 we introduce a
simple adaptive strategy, in 2D, to overcome this issue. We discuss error bounds for the
minimization of (3) in Section 5; then we show numerical experiments, and comparison
with other discretizations, in Section 6. Eventually, we propose in Section B a variant of
our adaptive Crouzeix-Raviart discretization for 2D images, which has only one degree
of freedom per pixel.
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2. Crouzeix-Raviart approximation of BV functions

2.1. Discretization of the gradient of a BV function u

Consider u ∈ BV (Ω), Ω ⊂ R2, a function with bounded variation and T h = {Ti : i =
1, . . . , N} a triangular mesh1 of a polygonal approximation Ωh ⊂ Ω of Ω. Here h > 0,
is the maximal size of an edge of a triangle Ti, i = 1, . . . , N , moreover one assumes
dist (Ωh,R2 \ Ω) ≤ h. Let for each triangle Ti,

pi :=
1

|Ti|

ˆ
Ti

Du. (4)

Remark 2.1. Since Du is a measure, unless |Du|(
⋃N
i=1(∂Ti)) = 0 one needs to be more

precise when defining pi as above. Our analysis will be rigorous for general BV functions
provided we first arbitrarily assign each facet of the Ti to one of the adjacent elements it
belongs to: that is, for instance, replace T1 with T 1, T2 with T 2\T 1, Ti with T i\

⋃
j<i T j,

etc. In this case, given a facet F = ∂T ∩ ∂T ′ and assuming F ⊂ T , the restriction u|F
should be understood as the trace of u|T ′, which might differ from the trace of u|T̊ in

case |Du|(F ) 6= 0. To simplify, we will not stress this point in each of our statements,
however this is how they should be understood in general.

Based on the vectors pi, we define, for x ∈ Ωh the piecewise constant function

ph(x) =
∑
i

piχTi(x), (5)

where χTi denotes the characteristic function of the triangle Ti. By construction, obvi-
ously (thanks to Jensen’s inequality),

ˆ
Ωh
|ph(x)|dx ≤ |Du|(Ωh) ≤ |Du|(Ω). (6)

More precisely, if we introduce νh(x) = ph(x)/|ph(x)| (if pi = 0 for some triangle Ti, we
can either choose arbitrarily νh(x) in Ti, or let νh(x) = 0), we can derive the following
estimate:

Lemma 2.2. Let u ∈ BV (Ωh) be a function with bounded variation and let ph(x) be
defined as in (5). Then,

|Du|(Ωh) =

ˆ
Ωh
|ph(x)|dx+

1

2

ˆ
Ωh
|νu(x)− νh(x)|2|Du|. (7)

1For simplicity, most of our results are stated in two dimensions, however unless otherwise specified,
they trivially extend to higher dimension up to Section 3.3 (included) and in Section 5, replacing
triangles by simplices, etc., and possibly changing some constants as in Remark 2.3.
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Proof. By direct calculation,

|Du|(Ωh) =

ˆ
Ωh
|Du| =

ˆ
Ωh
νu(x) ·Du

=

N∑
i=1

ˆ
Ti

νh(x) ·Du+

ˆ
Ωh

(νu(x)− νh(x)) ·Du

=
N∑
i=1

|pi||Ti|+
ˆ

Ωh
|Du| − νh(x) · νu(x)|Du|

=

ˆ
Ωh
|ph(x)|dx+

ˆ
Ωh

(1− νh(x) · νu(x))|Du|

=

ˆ
Ωh
|ph(x)|dx+

1

2

ˆ
Ωh

(|νu(x)|2 + |νh(x)|2 − 2νh(x) · νu(x))|Du|,

and the final estimate follows.

The error estimate shows that the approximation will be better if the gradient direction
νu = Du/|Du| does not oscillate too much in each triangle. In particular if u is the
characteristic of a half-space, then the value of the discrete variation is exact.

Remark 2.3. Interestingly, it is easy to deduce that if u = χE is the characteristic func-
tion of a C1,1 set E which satisfies both a R-inner and outer ball condition2 everywhere
on ∂E, then if h ≤ R,(

1− π2

18

(
h

R

)2
)
|DχE(Ωh)| ≤

ˆ
Ωh
|ph(x)|dx ≤ |DχE(Ωh)|. (8)

Indeed, if h ≤ R then, thanks to the ball condition, for any triangle T ∈ T h, ∂E ∩ T is
the intersection of T with a small piece of C1,1 curve of length at most πh/3. Denoting
by θ the angle of the normal vector of this curve with respect to e1 and θ̄ the angle of νh,
obviously |ν(x)− νh| ≤ |θ(x)− θ̄|. Observing that there must be a point on the piece of
curve where νh = ν(x̄) (as νh is in the cone generated by ν(x) for x on the curve), one
has (using that θ is (1/R)-Lipschitz, and denoting dist the distance along the curve)

|ν(x)− νh| ≤ |θ(x)− θ̄| ≤ 1

R
dist (x, x̄) ≤ πh

3R
.

Hence, ˆ
T
|ν(x)− νh|2|Du| ≤ π2h2

9R2
H1(∂E ∩ T )

and (8) follows from (7). (Under the very strong inner and outer ball conditions, this
can be extended to any dimension, with a different constant.) A natural question is
whether a similar estimate would hold, in 2D, for u ∈ BV (Ω) such that there exists
z ∈ L∞(Ω;B(0, 1)) (or maybe continuous) with div z ∈ L∞(Ω) and z ·Du = |Du|.
2that is, for any x ∈ ∂E, there are balls B(y,R) ⊂ E, B(z,R) ⊂ E{, with {x} = ∂B(y,R) ∩ ∂B(z,R);

in particular |κ∂E | ≤ 1/R.
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2.2. Approximation of u

Now an important question is whether ph can be considered as the discrete gradient of
some discretized function uh. It is in fact well known that it is the case, with the function
uh defined in a space of nonconforming finite elements interpolation called “Crouzeix-
Raviart” (CR) finite elements [28, 13].

For the readers’ convenience we give here shortly simple arguments which explain this
fact (which are known, see for instance [42, Lemma 2]). Although CR elements are
defined in any dimension, let us first expose basic arguments in 2D.

We first claim that in a discrete sense, curlph = 0. The precise sense is (obviously)
as follows: For any continuous and piecewise linear (P1) function ϕ : T h 7→ R one has

ˆ
Ωh

ph · (∇ϕ)⊥dx = 0, (9)

where we denoted (a, b)⊥ := (−b, a), for (a, b) ∈ R2 a counter-clock rotation by 90
degrees. Indeed, by definition, ∇ϕ is constant in each triangle Ti and will denote its
value by (∇ϕ)i. Clearly, ph is also constant on each triangle (with value pi), and
therefore (9) becomes

N∑
i=1

|Ti|pi · (∇ϕ)⊥i =

N∑
i=1

(ˆ
Ti

Du

)
· (∇ϕ)⊥i =

ˆ
Ω

(∇ϕ)⊥ ·Du = 0.

as curlDu = 0. To prove this rigorously, if |Du|(
⋃N
i=1(∂Ti)) = 0 one can first ap-

proximate u with smooth functions, for which the integral is trivially zero, and pass
to the limit, if not, one can first approximate the mesh and ϕ with a slightly per-
turbed mesh T ′ = {T ′i : i = 1, . . . , N} and ϕ′ such that |Du|(

⋃N
i=1(∂T ′i )) = 0 and´

Ω(∇ϕ′)⊥ ·Du ≈
´

Ω(∇ϕ)⊥ ·Du = 0 and pass to the limit.
Let us now show that one can integrate back any discrete field ph satisfying (9) into

a function uh, which is, if ph was obtained from (4), an approximation of u. In Figure 2
we consider a vertex v̄ which is common to a set of ordered triangles Ti, i = 1, ..., N
of a triangulation T h, defined via the triplets (vi, vi+1, v̄) and vN+1 = v1 Moreover, we
consider for ϕ in (9) a function equal to 1 in the vertex v̄ and zero in all other vertices
v1, ..., vN+1. The rotated gradients (∇ϕ)⊥i in the triangles are given by

(∇ϕ)⊥i =
vi+1 − vi

hi|vi+1 − vi|
=
vi+1 − vi
|Ti|

,

where hi denotes the height of the triangle relative to the edge (vi, vi+1). Then, (9)
becomes

ˆ
Ωh

ph · (∇ϕ)⊥dx =

N∑
i=1

|Ti|pi · (∇ϕ)⊥i =

N∑
i=1

pi · (vi+1 − vi) = 0

that is, the circulation of ph around the loop v1, ..., vN+1 vanishes. In particular, the
circulation of ph also vanishes for all loops passing the points αvi+(1−α)v̄ for α ∈ [0, 1].
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v̄
v1

v2

v3

v4

v5

T1

T2

T3

T4
T5

Figure 2: A set of ordered triangles Ti, i = 1, ..., 5 defined through the triplets (vi, vi+1, v̄)
with a common vertex v̄ in the middle. In the background, we show the P1
function ϕ which is one at v̄ and zero at the other vertices. In red we show the
loop of vectors originating by the rotated and scaled gradients of the function
φ passing through the middle of each edge.

The most interesting case is α = 1
2 since it yields points in the middle of the edges which

are also part of neighboring loops. It follows that one can assign a (unique up to a global
constant) values ue in the middle of each edge e of the whole triangulation (at least if
the domain is simply connected). We will soon see a more global characterization of ph

which allows to consider it as a discrete gradient in arbitrary domains (and dimension),
see Lemma 2.4.

Actually, if ph is obtained through (4), one checks easily that in addition, the correct
value to assign in the middle of an edge is the average of u on the edge. Indeed, Figure 3
shows a triangle T = (v1, v2, v3) ∈ T h, where we have chose the normalized edge direction
e = (v3− v2)/|v3− v2|. Then, one has (assuming |Du|(∂T ) = 0, else taking into account
Remark 2.1)

ˆ
T
e ·Du =

ˆ
∂T
u(x)e · νTdH1 = sin(θ3)

ˆ
[v1,v3]

udx− sin(θ2)

ˆ
[v1,v2]

udx.

Denoting h1 the height from v1, one has h1 = |v2 − v1| sin(θ2) = |v3 − v1| sin(θ3) and
|T | = h1|v3 − v2|/2, so that we have

ph · e =
1

|T |

ˆ
T
e ·Du =

2

|v3 − v2|

( 
[v1,v3]

udx−
 

[v1,v2]
udx

)
.

The right-hand side is exactly the gradient, in the direction e, of the affine function
which is equal in the middle of each edge [vi, vj ] to

ffl
[vi,vj ]

udx.

In the next section, we consider a better characterization of Crouzeix-Raviart gradients
(which is also easier to handle in arbitrary dimension).
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v1

v2

v3

e

νT

νT
νT

θ3

θ2h1

Figure 3: A triangle T = (v1, v2, v3) ∈ T h together with its outer normals νT , the normal-
ized edge direction e = (v3−v2)/|v3−v2| shown and the two angles θ3 = v̂1v3v2

and θ2 = v̂3v2v1.

2.3. Characterization of Crouzeix-Raviart gradients

We introduce, given the mesh T h, the set N (T h) of nodes which are the middle points
of the edges of the triangles of T h. Moreover, we define the nonconforming Crouzeix-
Raviart (CR) finite-element space

V (T h) =
{
u : Ωh → R : u|T affine ∀T ∈ T h, u continuous at x, ∀x ∈ N (T h)

}
. (10)

In this space, the gradient ph = Dhu of a function u is defined as the vectorial function
which coincides with ∇u|T on each triangle (and we will denote Dhu(T ) its value in
the triangle T ). We call it a “Crouzeix-Raviart (CR) gradient”, and observe that this
field is a P0 finite elements vector field, that is, a vector field which is constant on
each triangle. The analysis in the previous section shows that for any u ∈ BV (Ω) with
|Du|(

⋃N
i=1 ∂Ti) = 0, the function uh defined by assigning to x ∈ N (T h) the average value

of u on the edge through x, and affine with slope pi, given by (4), in each Ti, belongs
to V (T h). (We call it the projection of u to V (T h), and it is naturally extended to any
u ∈ BV (Ω) by assigning the boundaries

⋃N
i=1 ∂Ti arbitrarily to one of the neighbouring

triangle, such as the one with lower index as already suggested). In particular, ph, given
by (5), is a CR gradient.

In the following, we give a characterization of CR gradients which is more precise
than (9). It is based on zeroth order “Raviart-Thomas” (RT0) vector fields [43], which
are defined by their fluxes across the edges of the triangulation. Inside the triangles,
RT0 fields are affine functions and they are continuous across the edges of the mesh.
Given a triangle T = (v1, v2, v3), the RT0 field φT (x) inside the triangle T is given by

φT (x) =
f1

h1|v3 − v2|
(x− v1) +

f2

h2|v3 − v1|
(x− v2) +

f3

h3|v2 − v1|
(x− v3),

9



where fi are the fluxes through the edges ei which are opposite to the vertex vi and hi
are the heights relative to the vertex vi. With this choice the flux of the field φT (x)
through each edge ei with outward normal νi is constant. Indeed, for x ∈ e1 = [v2, v3],

φT (x) · ν1 =
f1(x− v1) · ν1

h1|v3 − v2|
+
f2(x− v2) · ν1

h2|v3 − v1|
+
f3(x− v3) · ν1

h3|v2 − v1|
=

f1

|v3 − v2|

since (x− v1) · ν1 = h1 and (x− v2) · ν1 = (x− v3) · ν1 = 0. Hence
ˆ
e1

φT (x) · ν1dH1 = f1,

and the total flux through the edges of T is given by (denoting νT ∈ {ν1, ν2, ν3} the
outwards normal to T ): ˆ

∂T
φT · νTdH1 = f1 + f2 + f3.

We denote RT0(T h) the space of RT0 vector fields relative to the mesh T h, while
RT00(T h) ⊂ RT0(T h) is the subspace of Raviart-Thomas vector fields with zero flux
through ∂Ωh.

The next result establishes a relationship between CR gradients and zero-divergence
RT0 fields.

Lemma 2.4. The P0 field ph is a CR gradient if and only if it is orthogonal to all
zero-divergence RT0 fields φ with vanishing fluxes on ∂Ωh, that is

ˆ
Ωh
φ · ph dx = 0 ∀φ ∈ RT00(T h).

Remark 2.5. Strangely, we have not found this statement in this form in the literature.
It is however related to Helmholtz Decomposition type results and is for instance used
in [17], where a (more complicated and 2D) proof of the duality result (Sec. 3.3 below)
is found also in a nonlinear setting.

Proof. First, we show that CR gradients are orthogonal to zero divergence RT0 fields.
Given a RT0 field φ defined in Ωh and uh ∈ V (T h) with ph = Dhu

h (which can be the
projection, as mentioned, of a BV function u), then for Ti ∈ T h,

ˆ
Ti

φ · ph dx =

ˆ
∂Ti

uhφ · νTidH1 −
ˆ
Ti

uhdivφdx,

where in the second integral, uh is the inner trace of the affine function uh in the triangle
(recall that this function may be discontinuous through the edges of the triangle). Since
φ · νTi is constant on each edge (eij)j=1,2,3 of Ti, and since uh has, on eij , average value

uh(xij) where xij ∈ N (T h) is the middle point of eij , it yields

ˆ
Ti

φ · ph dx =

3∑
j=1

|eij |uh(xij)φ · νij −
ˆ
Ti

uhdivφdx.

10



If Ti′ is a neighbouring triangle and ei
′
j′ = eij the common edge, as uh is continuous at

xij = xi
′
j′ and νij = −νi′j′ ,

|eij |uh(xij)φ · νij + |ei′j′ |uh(xi
′
j′)φ · νi

′
j′ = 0.

Hence summing on all triangles, we obtain the general Green formula:ˆ
Ωh
φ ·Dhu

h dx =

ˆ
∂Ωh

uhφ · νΩhdH1 −
ˆ

Ωh
uhdivφdx. (11)

(Remark that if uh was obtained as the projection of a BV function u, then the second
integral is also

´
∂Ωh uφ · νΩhdH1.) In particular, if divφ = 0 and φ vanishes on ∂Ωh, we

find ˆ
Ωh
φ · ph dx = 0.

Conversely, we show that if ph is orthogonal to all zero-divergence RT0 field with
vanishing flux through ∂Ωh, then it is a CR gradient. Assume we are given a 2D P0
vector field ph such that

´
Ωh φ · p

hdx = 0 for all ph ∈ RT00(T h) with zero divergence.
Let x0, x1 ∈ N (T h) be two midpoints of edges of the triangulation and assume we are
given two different piecewise linear simple paths from x0 to x1, intersecting at most once
each triangle by joining two nodes of N (T h) by a straight segment. Letting u(x0) = 0,
we can integrate ph along each path Γi, i = 1, 2, to obtain two different values ui(x1),
i = 1, 2. If these values are the same (i.e. independent on the path), the circulation of
ph along the path Γ1 followed by Γ2 will be zero, which in turn implies that ph is a CR
gradient.

In fact, we can identify each path with a Raviart-Thomas vector field φi, such that
the flux through an edge is 1 when the path crosses the edge, moving forward. Then,
φ = φ2 − φ1 is divergence free so thatˆ

ph · φ1dx =

ˆ
ph · φ2dx.

The same computation as before shows that this is equivalent to u1(x1) = u2(x1).

2.4. Further obvious remarks

Given u ∈ V (T h), we may define a P0 function u0 by averaging u in each triangle
T ∈ T h. Obviously (as u is affine in T ), the value thus obtained is the same as the value
in the center (of mass) cT of the triangle, and the average of the three mid-point values
of the edges. One hasˆ

T
|u(x)− u(cT )|dx ≤ |Dhu(T )|

ˆ
T
|x− cT |dx ≤ h|T ||Dhu(T )|.

In particular, summing on all triangles we find that:

‖u− u0‖L1(Ωh) ≤ h
ˆ

Ωh
|Dhu|dx. (12)

The same would also clearly hold with a Lp norm on both sides, replacing the L1 norm,
for p ∈ [1,∞]. See for instance [14] for more general estimates.
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3. Definition of a Crouzeix-Raviart discrete total variation

3.1. Definition, and approximation properties

Given then u ∈ V (T h), we define the approximate total variation

Jh(u) :=

ˆ
Ωh
|Dhu|dx =

∑
T∈T h

|T ||Dhu(T )|. (13)

Here we recall that Dhu(T ) is the gradient of u in each triangle T (and not across the
edges of the triangles). In this section, we show that in a variational sense, Jh is an
approximation of the total variation.

The following result is obvious, considering the analysis in the previous sections. We
assume that we are given an arbitrary family of triangulations T h, with h→ 0.

Proposition 3.1. Jh Γ-converges to the total variation (1) as h→ 0, in L1(Ω), as well
as for the distributional convergence.

Although the latter convergence is quite weak, we will see later on that without further
assumption on the triangulations we can hardly hope for compactness in a better sense.
For functional with growth p > 1, [42] propose a more precise approach to convergence
(for regular meshes).

Proof. As we have seen, for any u ∈ L1(Ω) with finite total variation, one can build
uh which will go to u as h → 0, and such that Jh(uh) → |Du|(Ω). Conversely, if uh

is a sequence which converges to some u and suph Jh(uh) < +∞, then clearly ph(x) is
bounded as a measure and converges weakly-∗ (up to subsequences) to some measure
p ∈M(Ω;R2). The fact that p is orthogonal to zero divergence fields is is easy to show
by approximating compactly supported smooth vanishing divergence fields with RT0
fields and using Lemma 2.4. Moreover one obviously have

ˆ
Ω
|p| ≤ lim inf

h→0
Jh(uh).

It remains therefore to show that p = Du. This will follow from the compactness result
which we now state in Proprosition 3.2.

Proposition 3.2. Let uh ∈ V (T h) such that suph J(uh) < +∞. Then, there exists a
subsequence (uhk) and a constant chk ∈ R, and u ∈ BV (Ω), such that uhk − chk → u in
the sense of distributions in Ω as k →∞ (and |Du|(Ω) ≤ lim infk Jhk(uhk)).

Moreover, if we assume that the triangulations are uniformly regular (in the classical
sense: there exists θ̄ > 0 such that the angles of the triangles are all larger than θ̄, or
equivalently, there exists δ > 0 such that for any triangle T = (v1, v2, v3) ∈ T h, h3 ≥
δ|v3 − v1| where h3 = dist (v3, (v1, v2)) is the height of T from v3), then the convergence
uhk − chk → u is strong in Lp(Ω) for any p < 2, and weak in L2(Ω).

12



Proof. As we have seen, up to a subsequence, phk := Dhku
hk ∗

⇀ p as measures and
p = Du for some function u ∈ BV (Ω). We need to show that u is the limit of the uhk

(up to constants).
First, without further assumption on the triangulations, the following is true: given φ

a C1, compactly supported field and φh the RT0 fields obtained by evaluating the fluxes
of φ across the edges of T h, one still has thanks to (11):

ˆ
Ωhk

uhkdivφhkdx = −
ˆ

Ωhk
φhk ·Dhku

hkdx→ −
ˆ

Ω
φ ·Du =

ˆ
Ω
udivφdx

as k → ∞. The first integral, on the other hand (using the notation of Section 2.4) is
also∑

T⊂Ω

ˆ
T
uhk(x)dx

1

|T |

ˆ
T

divφ(y)dy =
∑
T⊂Ω

uhk0 (T )

ˆ
T

divφ(y)dy =

ˆ
Ωh
uhk0 divφ(y)dy

so that we conclude that uhk0 → u (up to constants, one should for instance remove the
averages of all the functions) in the distributional sense (and uhk as well, thanks to (12)).

We now assume in addition that the triangulations are uniformly regular, and consider
again the P0 functions uh0 . Observe that the jump of uh0 across an edge [v2, v3] common
to two triangles T = (v1, v2, v3) and T ′ = (v2, v3, v4) is given by Dhu

h(T ) · (2v1 − v2 −
v3)/6−Dhu

h(T ′) · (2v4 − v2 − v3)/6 (we recall that uh0(T ) is both given by the average
of uh in T triangle and by the middle value uh((v1 + v2 + v3)/3)). Hence,

|uh0(T )− uh0(T ′)||v3 − v2|

≤ |Dhu
h(T )| |v3 − v2||2v1 − v2 − v3|

6
+ |Dhu

h(T ′)| |v3 − v2||2v4 − v2 − v3|
6

.

By the regularity assumption, |v3−v2||2v1−v2−v3| ≤ |v3−v2||v1−v2|+|v3−v2||v1−v3| ≤
2|T |/δ, hence

|uh0(T )− uh0(T ′)||v3 − v2| ≤
1

3δ

(
|T ||Dhu

h(T )|+ |T ′||Dhu
h(T ′)|

)
.

Summing on all the edges, it follows that (seing the P0 function uh0 as a piecewise
constant function with bounded variation)

ˆ
Ωh
|Duh0 | ≤

1

δ
Jh(uh).

Hence, up to a constant, uh0 is bounded in L2(Ω) and compact in Lp(Ω), p < 2. We
conclude thanks to (12). We could have used general estimates for nonconforming finite
elements, such as found in [14, Chap. 10].
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ν

x
·ν

=
a

v1

v2

v3

Dhu
h

Figure 4: The figure shows the function uh and its gradient for one triangle T =
(v1, v2, v3) approximating the characteristic function of the half space x ·ν > a
with ν = (1, 0) and a ∈ R. The function uh inside the triangle is affine with a
gradient Dhu

h which is simply a mutiple of the normal ν.

3.2. The measure of straight lines

The Green formula (11) shows that Jh satisfies the following lower estimate, for u ∈
V (T h) and φh a RT0 field:

Jh(u) ≥ sup

{ˆ
∂Ωh

uφh · νΩhdH1 −
ˆ

Ωh
udivφhdx : |φh(cT )| ≤ 1 ∀T ∈ T h

}
, (14)

where we recall that cT refers to the center of the respective triangle T .
This formula would be an interesting way to build lower estimates for variational

problems involving Jh if it were easy to build test RT0 fields φh satisfying the constraint,
possibly from fields in the continuum. However, it is easy to check that given φ ∈
C∞c (Ω;R2) with |φ| ≤ 1 everywhere, the RT0 projection φh defined by assigning on each
edge of the triangulation the flux of φ through the edge needs not satisfy |φh(cT )| ≤ 1
(and can be substantially larger, independently on the mesh size h).

There is however one trivial situation where this can be used, and we obtain the
following result, valid for any triangulation T h of Ω:

Proposition 3.3. Let ν ∈ S1 be a unit vector, a ∈ R and u = χ{x·ν>a}. Let uh be the

projection of u on CR functions, obtained by letting Dhu
h(T ) = νH1({x ·ν = a}∩T )/|T |

in each triangle T ∈ T h. Then for any CR function v with v = uh on N (T h) ∩ ∂Ωh,

Jh(v) ≥ Jh(uh) = H1({x · ν = a} ∩ Ωh).

The proposition shows (see also Figure 4) that in some sense, the discrete functional
Jh is perfectly isotropic, as its minimal value for a straight edge coincides with the length
of the edge whatever the direction ν. We will see soon that unfortunately, this is not
enough to make Jh a “perfect” approximation of the total variation.
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Proof. The fact that Jh(uh) = H1({x·ν = a}∩Ωh) follows from (7). The other inequality
follows from (14). Indeed, consider the constant field ν, which is of course a particular
RT0 field defined on T h with norm less or equal to 1. We have therefore:

Jh(v) ≥
ˆ

Ωh
ν ·Dhv =

ˆ
Ωh
ν ·Dhu

h +

ˆ
Ωh
ν ·Dh(v − uh) = Jh(uh) +

ˆ
Ωh
ν ·Dh(v − uh).

Now, thanks to (11),

ˆ
Ωh
ν ·Dh(v − uh) =

ˆ
∂Ωh

(v − uh)ν · νΩh

and this vanishes since we have assumed that v = uh on all the midpoints of the edges
of the triangles which form ∂Ωh.

3.3. A general duality formula

A natural question is whether equality holds in (14). The answer is clearly no, since one
can check that the right-hand side of (14) depends only on the average values (in the
middle of each simplex) of u, while Jh depends on the full function. The precise answer
is as follows: give ū a P0 function, constant with value uT on each element T , we let

J0
h(ū) = min

{
Jh(u) : u ∈ V (T h), u(cT ) = ūT ∀T ∈ T

}
. (15)

Then, it holds the following

Theorem 1. For any u ∈ V (T h) and ū := (u(cT ))T∈T h,

J0
h(ū) = sup

{
−
ˆ

Ωh
udivφhdx : φh ∈ RT00(T h) , |φh(cT )| ≤ 1 ∀T ∈ T h

}
. (16)

We give a proof of this in Appendix A, for more general discretizations of Sobolev
semi-norms. Note also that this can be derived from a similar result in [17] (the proof
we propose is however simpler and easily seen to hold in any dimension).

3.4. The bad news: diffuse solutions

Proposition 3.3 shows that in theory, Jh is an excellent approximation of the total
variation, which does not suffer from metrication errors or anisotropy as most other,
in both the finite differences (such as graph based TVs [10], “isotropic” `2-TV [20]) or
finite elements (P1 based [5]) settings. However, we will show that it does not mean that
the corresponding solution is always sharp: we now show a particular example where
in addition to the projection uh (which is sharp), we can build infinitely many other
solutions with the same energy (and a transition width which of course will go to zero
as h→ 0), for which the transition occurs across a large number of elements.

The setting is as follows: Ω = Ωh = [0, 1]2, h = 1/n, n ≥ 1 divided in squares Ci,j =
[(ih, jh), ((i+1)h, jh))×[(ih, jh), (ih, (j+1)h)) for i = 0, . . . , n−1, j = 0, . . . , n−1. Then,
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Figure 5: Discretization of the unit square Ωh = [0, 1]2, h = 1/3 using squares
C0,0, ..., C2,2 each of size h2. Each square Ci,j is then divided into an upper
triangle T+

i,j and a lower triangle T−i,j . The nodes of the mesh, represented as
black dots, are in the middle of the edges of the triangles. Note the boundary
conditions imposed by the functions U(x, y) and V (x, y).

each square Ci,j is divided into two triangles T±i,j with T−i,j = Ci,j ∩{x+y ≤ (i+ j+ 1)h}
and T+

i,j = Ci,j ∩ {x + y > (i + j + 1)h}, see Figure 5. We recall that the nodes

N ({T±i,j}) of the mesh are the middle of the edges of the triangles, hence, here, the
points ((i+ 1/2)h, jh), (ih, (j + 1/2)h), and ((i+ 1/2)h, (j + 1/2)h).

Consider now the boundary conditions U(x, y) = 1 if x = 0 or y = 0, U(x, y) = 0 if
x = 1 or y = 1, and V (x, y) = 1 if x = 0 or y = 1, and V (x, y) = 0 if x = 1 or y = 0.
Clearly, Proposition 3.3 shows that the problems

min
u=U on ∂Ω∩N ({T±i,j})

Jh(u) and min
v=V on ∂Ω∩N ({T±i,j})

Jh(v) (17)

where the minimizers are taken on CR functions on the mesh {T±i,j}, have both value
√

2.
Moreover, a solution is given, for the first, by u = χ{x+y≤1} (that is, the exact solution)
on all nodes with i+ j 6= n, and u ∈ [0, 1] in any node with i+ j = n. For the second we
can find a solution considering the projection of χ{x≤y} on the CR functions: that is, the
functions v with v(x, y) = 1 on all nodes with x < y, v(x, y) = 0 on all nodes with x > y,
and v(x, y) = 1/2 on the nodes with x = y. We claim that if there are infinitely many
solutions to the first problem in (17), they are all concentrated (their gradient is not zero
only near the axis x+ y = 1) and may differ from u only near the line {x+ y = 1}. On
the other hand, there are also infinitely many solutions to the second, but now they can
be very diffuse, and in particular solutions v′ with 0 < v′ < 1 on all the interior nodes.
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To prove the first claim, we observe that for any solution u and for all i, u has to go
from 1 to 0 along the “vertical” chain of vertices ((i+ 1/2)h, j), j = 0, . . . , n. It follows
that

´
Ω(Dhu)1dx = −1. Similarly,

´
Ω(Dhu)2dx = −1. Hence,

2 = −
ˆ

Ω
(Dhu)1 + (Dhu)2dx ≤

√
2

ˆ
Ω
|Dhu|dx

using the 2D Cauchy-Schwartz inequality, pointwise. Since the right-hand side of this
expression is also 2, it means that these inequalities are in fact equalities, and in partic-
ular that for a.e. x, (Dhu)1(x) = (Dhu)2(x). As a consequence, in each triangle T±i,j , the
values of u at the middle of the two shorter edges are equal. Using the boundary con-
dition, it follows that u is unique except possibly on the middle vertices with x+ y = 1
and thus in the triangles which contain them. It is easy to see that one can assign
any arbitrary value u(ih + h/2, (n − i)h − h/2) ∈ [0, 1]. at each of these nodes without
changing the value of the energy.

We now focus on the second claim. Observe that if v is a minimizer of the second
problem in (17), one must have now, for the same reasons as for u,

2 =

ˆ
Ω

(Dhv)1 − (Dhv)2dx ≤
√

2

ˆ
Ω
|Dhv|dx = 2

so that (Dhv)1 = −(Dhv)2 ≥ 0 a.e.
But now, this just imposes that the value of v in the middle of the longer edge of each

triangle is the average of the two values in the middle of the shorter edges. Moreover,
any CR function v which satisfies this condition and is globally nondecreasing from 0 to
1 along the nodes in the direction (−1, 1) has minimal energy (as it will satisfy equality
in the above equation).

Let us build a solution v “as diffusive as possible” (we would like to make this claim
rigorous, however it is not clear how).

To simplify: we will look for solutions which satisfy the symmetry, for all (x, y) ∈
(0, 1)2,

v(x, y) + v(y, x) = 1.

In fact, if v is an arbitrary solution, then so is (x, y) 7→ 1−v(y, x), hence so is also 1/2 +
(v(x, y)−v(y, x))/2 which has the above symmetry and essentially a larger transition than
v. Hence assuming this symmetry is not too restrictive when looking for diffuse solutions.
Similarly, we will assume that v is symmetric with respect to the axis {x + y = 1}:
v(x, y) = v(1− y, 1− x).

In particular, we have that v′(x, x) = 1/2, and v′(x, y) ≤ 1/2 if x ≥ y. We build a v
in {y ≤ x ≤ 1− y}. We claim (and this is all we know for sure) that this is the solution
with the largest values vi−1,1/2, vi,1/2, 1 ≤ i ≤ n.

The first observation is that if v1/2,1/2 = 1/2, then the largest possible value for v1,1/2

is also 1/2. But then, since v3/2,0 = 0, one has v3/2,1/2 = 1/4. Then the largest possible
value v2,1/2 is also 1/4, etc. One finds that the largest possible value of v in the first line
is by taking v(i−1/2),1/2 = vi,1/2 = 1/2i+1.
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(a) n = 10 (b) n = 100 (c) n = 1000 (d) n = 10000

Figure 6: The smooth transition for different numbers of n, where we only plot the values
vi+1/2,j+1/2. Observe that only for a very fine mesh (n = 10000) we obtain a

reasonably sharp transition.

We build then v by assuming that it is constant on the triangles T+
i,j , at least as long

as i + j < n. It will be clear later on why a “bad” v has to have such an oscillating
gradient. One has

• vi+1/2,i+1/2 = 1/2 for i ≥ 0;

• vi+1/2,0 = 0 for i ≥ 0;

• vi+1/2,j+1/2 = vi+1,j+1/2 = vi+1/2,j+1 for i ≥ j ≥ 0, i+ j ≤ n− 1;

• vi+1/2,j+1/2 = (vi,j+1/2 + vi+1/2,j)/2.

In particular, we deduce that

vi+1/2,j+1/2 =
vi−1/2,j+1/2 + vi+1/2,j−1/2

2
.

Now, we introduce the variables ξi+ji−j = vi+1/2,j+1/2. One has ξ2i
0 = 1/2 for i ≥ 0, and

ξml =
ξm−1
l−1 + ξm−1

l+1

2
=

1

4
ξm−2
l−2 +

1

2
ξm−2
l +

1

4
ξm−2
l+2 .

For m even and l = 2, this reduces to

ξm2 =
1

8
+

1

2
ξm−2

2 +
1

4
ξm−2

3 .

Denoting now, ζml = ξ2m
2l , l ≥ 1, we find that (ζ0

l = 0 and) for m ≥ 1,

ζm =
1

4


2 1 0 0 . . .

1 2 1 0
. . .

0 1 2 1
. . .

...
. . .

. . .
. . .

. . .

 ζm−1 +


1
8
0
0
...
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Denoting B the matrix appearing in the recursion, we find that we must choose

ζm =

(
m−1∑
l=0

Bl

)
1
8
0
...

 = (I −B)−1(I −Bm)


1
8
0
...

 . (18)

From there, we can go back to build v in {y < x < 1 − y}, and then by symmetry in
the whole square [0, 1]2. This shows that one can find a solution v, in that case, with
a quite large transition layer. Of course any convex combination between this function
and the function which is 1/2 only at nodes where x = y, and equal to χ{y>x} elsewhere,
provides another solution.

In (18), we did not specify the size of the matrices: in fact, it is enough to take these of
size larger than n/2 to compute v in a mesh of size n× n. Choosing therefore M > n/2
we consider the M ×M matrix

1

4



2 1 0 0 . . .

1 2 1 0
. . .

0 1 2 1
. . .

...
. . .

. . .
. . .

. . .

0 . . . 0 1 2


This matrix has the M eigenvectors ek = (sin(lkπ/(M+1)))Ml=1, for k = 1, . . . ,M , corre-
sponding to the eigenvalues, respectively, (1+cos(kπ/(M+1)))/2 = cos2(kπ/(2(M+1))).
One can therefore compute (at least numerically) solutions ζm for large values of m, using
that

〈ζm, ek〉 =
1− cos2m(kπ/(2(M + 1)))

4 sin(kπ/(2(M + 1)))
cos(kπ/(2(M + 1))) (19)

and ζm =
∑

k 〈ζm, ek〉ek/‖ek‖2. We show in Fig. 6 a plot of the corresponding function
v for various n.

4. Implementation with adaptive meshes in 2D

In this section we propose, for a quadrangular mesh in 2D, an adaptive CR finite elements
discretization which is based on the important observation that the triangulation (T±i,j)
in Section 3.4 shares the same nodes as the triangulation obtained by dividing each Ci,j
in the other possible way, that is, along the axis {x− ih = y − jh}.

Let us define v′ as the function which is equal to v (defined in the previous section) on
the nodes, but is now a CR function on the flipped mesh. Then, in all the squares Ci,j
where v was constant in one of the triangles T±i,j (T+

i,j for i+j < n, T−i,j for i+j > n), one
observes that Dhv

′ is either horizontal or vertical so that |Dhv
′| = |(Dh)1v

′|+|(Dh)2v
′| =:

|Dhv
′|1 (with an obvious notation).
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Let Sh =
⋃
i+j=nCi,j be the remaining squares (where, in fact, it is easy to see that

v′ = v), and S̃h = {1− h ≤ x+ y ≤ 1 + h} ⊃ Sh. By minimality, we must have that (we
use Dhv = 0 in S̃h \ Sh, v = v′ in Sh)

√
2h =

ˆ
S̃h

|Dhv|dx =

ˆ
Sh

|Dhv|dx =

ˆ
Sh

|Dhv
′|dx.

It yields that

2 =

ˆ
Ω
|Dhv

′|1dx =

ˆ
Ω\Sh

|Dhv
′|dx+

ˆ
Sh

|Dhv
′|1dx

=

ˆ
Ω
|Dhv

′|dx+

ˆ
Sh

|Dhv
′|1 − |Dhv

′|dx ≤
ˆ

Ω
|Dhv

′|dx+ (
√

2− 1)

ˆ
Sh

|Dhv
′|dx.

Hence, we see that in the new triangulation,
ˆ

Ω
|Dhv

′|dx ≥ 2− (2−
√

2)h. (20)

This is much larger than the optimal value of
√

2. It means that if we had minimized
here the maximum of the discrete total variation over the two possible triangulations,
such a bad solution would have been ruled out and we would have recovered in the best
solution.

We clearly see that we could even do better: we could choose in each square Ci,j the
best triangulation. This is what we describe in the next section.

4.1. Total variation on a square mesh

As before, we use an image domain Ω = [0, 1]2, set the scale parameter h = 1/N , with
N ≥ 1, and discretize Ω into N × N squares of size h × h. As mentioned above, given
such a square mesh in 2D, we can build (2N

2
) different triangulations by cutting each

square into two triangles, in two possible ways. It is particularly remarkable that in this
case, the nodes of the Crouzeix-Raviart spaces associated to these triangulations, which
are the middle of the edges, remain the same. As a consequence, given the values on the
nodes, we can introduce an approximation of the total variation given by the maximum,
over all possible triangulations, of the discrete functional (13).

As shown in Figure 5 we need to store values of the image u in the middle of each
horizontal and vertical edge as well as in the centers of each square. Therefore we
introduce the three index sets Ih, Iv, and Ic which are given by

Ih =
{
i = ((i+ 1

2), j) : 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N
}
,

Iv =
{
i = (i, (j + 1

2)) : 0 ≤ i ≤ N, 0 ≤ j ≤ N − 1
}
,

Ic =
{
i = ((i+ 1

2), (j + 1
2)) : 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1

}
.

We also set I = Ih ∪ Iv ∪ Ic, which refers to the complete set of nodal values. Note
that |Ih| = |Iv| = N(N + 1) and |Ic| = N2, hence, |I| = 3N2 + 2N . This shows

20



that the proposed discretization of the total variation increases the number of variables
roughly by a factor of three. A more memory efficient (but also more diffusive) version
is proposed in section B.

The discrete image is now given by a vector u ∈ RI , where we can (by a slight abuse
of notation) identify the values of the discrete image with the values of the underlying
piecewise affine CR function by means of ui = u(ih) for all i ∈ I.

Next, we introduce the linear operators D1, D2 : RI 7→ RIc×4, each of them computing
per square i ∈ Ic the 4 possible differences out of the 5 nodal values.

(D1u)i =


(D1u)i,1
(D1u)i,2
(D1u)i,3
(D1u)i,4

 =


ui − ui−(

1
2 ,0)

ui − ui−(0,
1
2 )

u
i+(

1
2 ,0)
− ui

u
i+(0,

1
2 )
− ui

 ,

and

(D2u)i =


(D2u)i,1
(D2u)i,2
(D2u)i,3
(D2u)i,4

 =


u
i+(

1
2 ,0)
− ui

ui − ui−(
1
2 ,0)

ui − ui−(0,
1
2 )

u
i+(0,

1
2 )
− ui

 ,

for all i ∈ Ic, where D1 computes the differences for the first triangulation (the one shown
in Figure 5) and D2 computes the differences of the second triangulation. Moreover, we
define the operator D : RI 7→ RIc×4×2 , which simply combines the two preceding
operators such that

(Du)i = ((D1u)i, (D2u)i) , ∀i ∈ Ic.

We are now ready to state the proposed discretization of the total variation, denoted as
adaptive Crouzeix-raviart (ACR). It is defined as the energy

Jh(u) = h
∑
i∈Ic

f((Du)i). (21)

Let ξ ∈ R4×2 with

ξ =


ξ1,1, ξ1,2

ξ2,1, ξ2,2

ξ3,1, ξ3,2

ξ4,1, ξ4,2

 =


(D1u)i,1, (D2u)i,1
(D1u)i,2, (D2u)i,2
(D1u)i,3, (D2u)i,3
(D1u)i,4, (D2u)i,4

 ,

the function f : R4×2 7→ R is given by

f(ξ) = max
{(√

ξ2
1,1 + ξ2

2,1 +
√
ξ2

3,1 + ξ2
4,1

)
,
(√

ξ2
1,2 + ξ2

2,2 +
√
ξ2

3,2 + ξ2
4,2

)}
. (22)
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The function f computes on each square the maximum of the total variation for each
of the two possible triangulations. Then, the local contributions are summed over all
squares, which gives our proposed adaptive total variation.

In some applications, the given image datum might not be given as averages along the
edges of the triangles but rather as averages across pixels. In order to relate the edge
values of the triangles to such pixel averages, we introduce a linear operator A : RI 7→ RIc
which computes the averages of the two triangles corresponding to the images pixels:

(Au)i =

2ui + u
i−(

1
2 ,0)

+ u
i+(

1
2 ,0)

+ u
i−(0,

1
2 )

+ u
i+(0,

1
2 )

6
, ∀i ∈ Ic.

Remark 4.1. Before proceeding with imaging applications, we would like to comment
on the proposed discrete ACR energy.

• In (22), we are minimizing the maximum of two convex functions, which in general
is larger than the minimal value of the single functions. Hence, it could happen
that we slightly overestimate the value of the total variation. In numerical results
it turns out that such a case is rare, but may occurs, for example, if the orientation
of a line discontinuity is {π/8, 3π/8, ...}, see the second row in Table 1. However,
this difference is only marginal and has almost no influence on the quality of the
solution.

• Instead of minimizing the maximum of the two functions, we could have minimized
the average as well. While this seems slightly simpler from an optimization point of
view, it leads to blurrier results and does not allow to identify the mesh afterwards.

4.2. Application to image processing problems

In order to apply the proposed ACR discretization of the total variation to image pro-
cessing problems, we consider generic optimization problems of the form

min
u
F (Du) +G(Au) +H(u), (23)

where F (Du) = λJh(u) with λ > 0 being a regularization parameter. For simplicity
we set h = 1, because if h 6= 1, its value can always be lagged into the regularization
parameter λ.

The functions G and H are convex functions representing boundary conditions or
data fidelity terms. Observe that while the function G is defined on pixel averages the
function H is defined on nodes of the triangles which corresponds to the edge averages.
This allows to adapt the proposed discrete version of the total variation to the specific
properties of different applications. For example, a data fidelity term with respect to
a noisy image might be better specified based on the pixel averages while a boundary
condition might be better specified based on the edge averages. We shall assume here
that the functions G and H are of the form G(v) =

∑
i∈Ic gi(vi) and H(u) =

∑
i∈I hi(ui)

which will allow to efficiently compute their proximal maps.
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As the problem (23) represents a non-smooth convex optimization problem, we fol-
low [22] and consider instead its saddle-point formulation

min
u

max
p,q
〈Du,p〉P + 〈Au, q〉Q +H(u)−G∗(q)− F ∗(p), (24)

where p = (pi)i∈Ic ∈ RIc×4×2, with pi ∈ R4×2, and q = (qi)i∈Ic ∈ RIc with qi ∈ R are
the dual variables. The function F ∗ denotes the convex conjugate of the function F . It
is given by

F ∗(p) =
∑
i∈Ic

f∗(pi/λ),

where f∗ refers to the convex conjugate of the function f defined in (22). Likewise, the
function G∗ denotes the convex conjugate of the function G. The inner products 〈·, ·〉P
and 〈·, ·〉Q are given by

〈Du,p〉P =
∑
i∈Ic

4∑
m=1

2∑
n=1

(Du)i,m,npi,m,n, 〈Au,q〉Q =
∑
i∈Ic

(Au)iqi.

We will also make use of the adjoint operators D∗ : RIc×4×2 7→ RI and A∗ : RIc 7→ RI
which are defined through the identities 〈Du,p〉P = 〈u,D∗p〉U and 〈Au, q〉Q = 〈u,A∗q〉U
with inner products 〈·, ·〉U given by

〈u,D∗p〉U =
∑
i∈Ic

ui (D∗p)i, 〈u,A∗q〉U =
∑
i∈Ic

ui (A∗q)i.

Moreover, we need to evaluate the proximal operators with respect to the functions F ∗,
G∗ and H. Thanks to their structure, they decompose into local operations:

û = prox τH(ū) ⇐⇒ ûi = prox τhi(ūi), ∀i ∈ I,
q̂ = prox σG∗(q̄) ⇐⇒ q̂i = prox σg∗i (q̄i), ∀i ∈ Ic,
p̂ = prox σF ∗(p̄) ⇐⇒ p̂i = prox σf∗(·/λ)(p̄i) ∀i ∈ Ic.

The proximity operators with respect to the functions σg∗i and τhi are usually easy to
compute (also thanks to Moreau’s identity) as the functions gi and hi usually repre-
sent jsut boundary conditions or simple 1D functions, see [25] for standard examples.
The proximity operator with respect to the function σf∗(·/λ) is more complicated but
fortunately it also admits a closed form solution, see Appendix C for details.

We solve the saddle-point problem (24) using the first-order primal-dual algorithm
studied in [22, 23]. The algorithm is as follows: Choose u0 ∈ RI , p0 ∈ RIc×4×2, and
q0 ∈ RIc . Then for all k ≥ 0 compute:

uk+1 = prox τH
(
uk − τ

(
D∗pk +A∗qk

))
ūk = 2uk+1 − uk

pk+1 = prox σF ∗
(
pk + σDūk

)
qk+1 = prox σG∗

(
qk + σAūk

) (25)

23



It is shown in [22] that the algorithm converges as long as τσL2 < 1, where L = ‖(D,A)‖
is the operator norm of the linear operator (D,A). Moreover, its (partial) primal-dual
gap converges with rate O

(
1
K

)
, where K is the total number of iterations. In case G

and/or F ∗ are strongly convex one can choose optimal (iteration dependent) step sizes
such that the algorithm provides improved convergence rates, which in fact are optimal
in the sense of lower bounds of first-order methods, see [22, 23, 25] for more details.
Finally, the values of the pixel averages can be easily recovered as ua = Au. In some
applications, we observed that the central values uc = (ui)i∈Ic can also be interesting as
they can give sharper images and lower errors.

5. An error analysis

The aim of this section is to show for our non-conforming P1 approximation of the
total variation error bounds which are not worse than standard P1, and which can
even be improved if some (geometric) regularity is known. We address here the simple
exemplar “ROF” [46] problem (3) for g ∈ L∞(Ω) (and τ = 1), and in order not to deal
with boundary issues, we assume that Ω is polyhedral so that the boundaries of the
discretized domain and the original domain coincide. Hence we aim at comparing ū,
solution of (3), with the solution û0

h of

min
uh∈P0

J0
h(uh) +

1

2

ˆ
Ω

(uh − g)2dx (26)

where we use the P0 variant of the Crouzeix-Raviart total variation (15). Our most
striking result is that in case the solution of the dual problem of (3) has some regu-
larity (which is known to be true in particular instances, but unknown in general, see
Sec. 5.1.1), then the discrete energy differs from the continuous one from an error O(h),
while the L2 distance between the discrete solution û0

h and the solution ū is of order
O(
√
h). This is the best one can hope for possibly discontinuous solutions, as in case ū

has discontinuities, then it differs from its P0 projection by the same order of magnitude.
We require, for these error estimates to hold, a minimal regularity of the meshes.

Basically, we must assume that there exists κ ≥ 1 such that for any T ∈ T h and any
z ∈W 1,∞(T ;Rd), denoting zh the RT0 projection of the vector field z in T ,

‖zh‖L∞(T ) ≤ ‖z‖L∞(T ) + κLh (27)

where L is the Lipschitz constant of z. Notice that it is enough to show that when
div zh = 0 the constant vector zh satisfies |zh| ≤ c(‖z‖L∞(T ) + h‖∇z‖L∞(T )) and then
apply this inequality to z −

ffl
T z −

x−xc
d

ffl
T div z to recover (27) with κ = 4c.

Such regularity is known to hold, obviously for 2D triangles with a minimal angle
condition, but in fact also, in less obvious configurations. For instance, it is true for
any d-dimensional simplex T which satisfies a “regular vertex property”, that is, if the
unit vectors along the edges at one vertex have a determinant bounded away from zero
(by a constant c which will determine κ in (27)), see [1, Def. 2.1, Thm. 3.1] (where the
proof is in 3D but can be extended). In 2D, it allows for instance for arbitrarily flat
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triangles as long as one edge is of the order of the width of the element (and the two
other remain large). Still in [1], it is shown for 3D tetraedra which satisfy the “maximum
angle condition”, that is such that the maximum angle between faces and the maximum
angle inside the faces are less than some ψ̄ < π.

5.1. Primal estimate

Given u ∈ BV (Ω), we consider u0
h and uch ∈ V (T h), respectively, its projection onto P0

and CR elements in a given mesh T h. This means that u0
h(T ) is the average of u on

T ∈ T h while uch(x), x ∈ N (T h), is the average of u on the facet whose x is the center

of mass. We also let u0,c
h the P0 function which coincides with uch(cT ) on each element

T .

Lemma 5.1. One has

‖u0
h − u

0,c
h ‖L1 ≤

h

d
|Du|(Ω) (28)

(here d is the dimension, usually 2), and in particular ‖u0
h − u‖L1 ≤ ch|Du|(Ω) and

‖u0,c
h − u‖L1 ≤ ch|Du|(Ω).

Proof. Let us consider a simple element T , with center cT . One has

u0
h(T ) =

1

|T |

ˆ
T
u(x)dx =

1

d|T |

ˆ
T
u(x)div (x− cT )dx

=
1

d|T |

ˆ
∂T
u(x)(x− cT ) · νTdHd−1 − 1

d|T |

ˆ
T

(x− cT ) ·Du. (29)

On each facet of T , (x − cT ) · νT is exactly the height of the simplex orthogonal to the
facet, divided by (d+ 1) (3 in 2D). Using that the product of this height with the area
of the facet is precisely d|T |, we deduce that the boundary integral in (29) is nothing
but the average of the CR projection of u (as it is the average over the facets of the
average on each facet of u), uch(cT ). Hence (28) follows. The other inequalities also
follow, actually the first is classical (and easy to show) and the second follows from the
first and (28).

Remark 5.2. Observe that (29) is also true if Du in the last integral is replaced with
(Du−p) for p a constant vector, since

´
T (x− cT ) · p = 0. So that we would also obtain

a higher order error if u had more regularity: for instance if one had D2u ∈ L1, using´
T |Du−

1
T

´
T Du| ≤ ch

´
T |D

2u| one would obtain ‖u0
h(T )− u0,c

h ‖L1 ≤ ch2
´
T |D

2u| and
a second order error.

It follows that if ū is the solution of (3), its projection ū0,c
h satisfies, using that

J0
h(ū0,c

h ) ≤ Jh(ūch) ≤ |Dū|(Ω):

J0
h(ū0,c

h ) +
1

2

ˆ
Ω
|ū0,c
h − g|

2dx ≤
(

1 + 2h‖g‖∞d

)
|Dū|(Ω) +

1

2

ˆ
Ω
|ū0
h − g|2dx

≤ (1 + Ch‖g‖∞) |Dū|(Ω) +
1

2

ˆ
Ω
|ū− g|2dx
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Using the minimality of û0
h and the strong convexity of the energy, we deduce:

(1 + Ch‖g‖∞) |Dū|(Ω) +
1

2

ˆ
Ω
|ū− g|2dx−

(
J0
h(û0

h) +
1

2

ˆ
Ω
|û0
h − g|2dx

)
≥ 1

2

ˆ
Ω
|ū0,c
h − û

0
h|2dx. (30)

We now need to show a similar estimate from above. We distinguish two cases.

5.1.1. First case: there exists a Lipschitz dual field

The Euler-Lagrange equation for (3) can be written in the following form: there exists
z̄ ∈ L∞(Ω;B(0, 1)) with

−div z̄ + ū = g, z̄ ·Dū = |Du|

and z̄ · ν = 0 on ∂Ω (unless one solves (3) with some boundary condition). Here the dot
product z̄ ·Du has to be understood in the sense of Anzelotti, see [4], observe also that z̄
is not unique (it can be modified outside of the support of |Du|). Convex duality shows
that
ˆ

Ω
|Dū|+ 1

2

ˆ
Ω

(ū− g)2dx = min
u

ˆ
Ω
|Du|+ 1

2

ˆ
Ω

(u− g)2dx

= sup
z,

z·ν=0 on ∂Ω

−
ˆ

Ω

1

2
|div z|2 + gdiv z dx = −

ˆ
Ω

1

2
|div z̄|2 + gdiv z̄ dx. (31)

Similarly thanks to (16), one has, introducing gh the orthogonal projection of g on P0
functions,

J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − gh)2dx = min

uh∈P0
J0
h(uh) +

1

2

ˆ
Ω

(uh − gh)2dx

= max

{
−
ˆ

1

2
|div zh|2 + ghdiv zh dx : zh ∈ RT00(T h) , |zh(cT )| ≤ 1 ∀T ∈ T h

}
. (32)

We denote ẑ0
h a maximizer of the dual problem, then, one has ûh = gh + div ẑ0

h.
We first assume that there exists a dual field z̄ which is L-Lipschitz. The existence of a

Lipschitz field can be asserted in some situations. For instance, if g is the characteristic
of a disk of radius R and Ω the whole plane, then z̄(x) = x/R for |x| ≤ R and Rx/|x|2
for |x| ≥ R is a possible field, which is (1/R)-Lipschitz. It is yet unclear in general what
conditions on g and the domain are necessary for such a field to exist. In 2D, it could
be that bounded is enough, in a convex domain (as, at least on the support of |Du|,
the curvature of the level set, which is bounded by 2‖g‖∞, is essentially controlling
the gradient of z̄, which is the normal to the level sets; however it is unclear if one
can extend z̄ into a global Lipschitz field out of the support of |Du|). In general (and
in higher dimension) no such regularity is known; we believe however that it could be
expected if the level sets of g have some smoothness.
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Under this assumption, let us project z̄ onto RT0 elements, defining a Raviart-Thomas
field z̄h: this is simply done by computing the flux of z̄ through each edge of the trian-
gulation (or facet in higher dimension). We observe that in this case, div z̄h is the (L2-)
orthogonal projection of div z onto the P0 fields. In each T , thanks to the regularity
condition (27), one has ‖z̄h(x)‖ ≤ 1 + κLh, and in particular letting z̄′h = z̄h/(1 + κLh),
we find a field which is admissible in the dual problem (32). We first estimate:

−
ˆ

Ω

1

2
|div z̄|2 + gdiv z̄ dx = −1

2

ˆ
Ω
|div z̄ + g|2dx+

1

2

ˆ
Ω
|g|2dx

≤ −1

2

ˆ
Ω
|div z̄h + gh|2dx+

1

2

ˆ
Ω
|g|2dx

= −
ˆ

Ω

1

2
|div z̄h|2 + ghdiv z̄h dx+

1

2

ˆ
Ω
|g − gh|2dx (33)

In the second line, we have used that the L2 norm of a P0 projection is of course smaller
than the L2 norm of the initial function div z̄ + g, and in the third, that

´
|g|2dx −´

|gh|2dx =
´
|g− gh|2dx, being gh the average of g on each element of the mesh. Then,

we write, using (32):

−
ˆ

Ω

1

2
|div z̄h|2 + ghdiv z̄h dx

= −(1 + κLh)

ˆ
Ω

1

2
|div z̄′h|2 + ghdiv z̄′h dx−

κLh(1 + κLh)

2

ˆ
Ω
|div z̄′h|2dx

≤ −(1 + κLh)

ˆ
Ω

1

2
|div ẑ0

h|2 + ghdiv ẑ0
h dx

= (1 + κLh)

(
J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − gh)2dx

)
. (34)

From (33)-(34), we deduce

ˆ
Ω
|Dū|+ 1

2

ˆ
Ω

(ū− g)2dx

≤ (1 + κLh)

(
J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − gh)2dx

)
+

1

2

ˆ
Ω
|g − gh|2dx

≤ (1 + κLh)

(
J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − g)2dx

)
. (35)

Together with (30), we deduce that

‖ū0,c
h − û

0
h‖L2(Ω) ≤ C

√
h (36)

with a constant C depending on L and the minimal energy. Observe that the same
rate is proven in [8] without any assumption (such as here, on z̄), however for a simpler
(`1-based, or anisotropic) total variation, which is easier to discretize on a square grid
or structured mesh. Thanks to Lemma 5.1, (36) also holds with ū0,c

h replaced with ū.
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5.2. Second case: simpler domain, g (slightly) regular

If we do not know whether a Lipschitz z̄ exists, it is a bit harder to show estimates, and
these, in turn, are a bit weaker. The easiest way is to follow the strategy in [47]. To
simplify (a lot) we assume our domain is periodic (that is, a torus). In this case, we
introduce a parameter ε > 0 and a smoothing kernel, and replace z̄ with z̄ε := ηε ∗ z̄
which is c/ε-Lipschitz (where c =

´
|∇η|dx). We then project this smoothed vector field

onto Raviart-Thomas fields: it gives a field z̄ε,h with |z̄ε,h| ≤ 1 + ch/ε for some c > 0,
thanks to (27). First observe that (34) still holds exactly as before, with κL replaced
with c/ε and z̄h replaced with z̄ε,h. Next, we write that (denoting ūε = ηε∗ū, gε = ηε∗g):

−
ˆ

Ω
gdiv z̄ dx = −

ˆ
Ω
gū dx+

ˆ
Ω

(g)2dx =

= −
ˆ

Ω
gūε dx+

ˆ
Ω
g(ūε − ū) dx+

ˆ
Ω

(g)2dx

= −
ˆ

Ω
gdiv z̄ε dx+

ˆ
Ω
g(ūε − ū) dx+

ˆ
Ω
g(g − gε) dx.

One has ‖ūε − ū‖L1 ≤ Cε where C depends on |Dū|(Ω), hence

−
ˆ

Ω

1

2
|div z̄|2 + gdiv z̄ dx

≤ −
ˆ

Ω

1

2
|div z̄ε|2 + gdiv z̄ε dx+ ‖g‖L∞(Cε+ ‖g − gε‖L1)

≤ −
ˆ

Ω

1

2
|div z̄ε,h|2 + ghdiv z̄ε,h dx+

1

2

ˆ
Ω

(g − gh)2dx+ ‖g‖L∞(Cε+ ‖g − gε‖L1)

where for the last estimate we have argued as in (33). Reasoning then as in (34)–(35),
we find:

ˆ
Ω
|Dū|+ 1

2

ˆ
Ω

(ū− g)2dx ≤ J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − g)2dx

+ C
h

ε
+ Cε+ C‖g − gε‖L1 , (37)

now C depending on the minimal energy, η, and ‖g‖∞. The error estimate now depends
on the initial smoothness of g and the speed at which it is approximated by gε, as for
instance in [47] where a few cases are discussed. If, to simplify, we assume g ∈ BV (Ω),
then the last two terms are of the same order and the optimal choice of ε is of order

√
h,

yielding the estimate
‖ū0,c

h − û
0
h‖L2(Ω) ≤ Ch1/4, (38)

obviously weaker than (36).
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6. Numerical experiments

6.1. Comparisons to the state-of-the-art

In order to compare our proposed ACR scheme to the state-of-the-art, we have chosen
four different discretization schemes.

First, we compare to the most simple and most commonly used scheme, which is based
on forward differences on a regular grid, as in (2) (see for instance [20]). This scheme
suffers from an anisotropy, which is induced by the bias of the forward differences, as
shown in Figure 1. In our experiments we will refer to this schemes as forward differences
(FD).

Second, we compare to a upwind forward-backward differences (UFBD) scheme, which
borrows ideas from the discretization of Hamilton-Jacobi equations [21]. This scheme
adaptively selects between forward and backward differences, based on the sign of the
difference and hence is more isotropic but it suffers from the fact that J(u) 6= J(−u).

Third, we compare to an `1-type anisotropic total variation that uses non-local finite
differences in order to approximate the isotropic total variation [30]. We choose a rel-
atively large neighborhood of 16 to obtain competitive results and hence refer to this
scheme as anisotropic finite differences (AFD16). Furthermore, we weight the contribu-
tions of the `1 norms such that we obtain exact values of the total variation for the edges
directions supported by the 16-neighborhood.

Finally, we compare with a discrete total variation recently proposed in [27], which is
based on a staggered grid discretization of the dual field and constraints first introduced
in [36]. The optimization is based on the infimal-convolution representation of Condat
in [27]. The method is based on the dual formulation and uses a more sophisticated
application of the pointwise constraint of the dual variable based on averaging. In
the primal formulation, the scheme can be written as the infimal convolution of three
different discrete derivative operators. We will refer to this method as CONDAT.

All algorithms have been implemented in Matlab and are minimized using the first-
order primal-dual algorithm [22]. The fastest scheme is FD due to its simplicity. UFBD
is slower by about a factor of 2 as it is based on forward and backward differences. ACR
and AFD16 have a comparable computational complexity among each other but are
slower than FD by about a factor 4. The slowest method is CONDAT which is about a
factor of 6 slower than FD. In order to make sure that all algorithms have converged to
a solution with sufficient accuracy, we run them for many iterations (> 10000).

6.2. Rotational invariance

In our first experiment, we demonstrate the rotational invariance of the proposed ACR
scheme by recovering (inpainting) straight discontinuities of various orientations in the
image domain Ω = [0, 1]2. For this, we consider the characteristic function χ{x·ν>a}(x)

as a boundary condition, where ν ∈ S1 is its normal and a = (1
2 ,

1
2) ·ν is set such that the

discontinuity passes through the center of the image domain. As before, we discretize
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Figure 7: Recovery of a discontinuity with normal ν = (cos θ, sin θ) on a square grid of
10 × 10 pixels. We plot the image function which is piecewise affine on the
triangles together with the triangulation shown in blue. Observe that the tri-
angles are well aligned with the direction of discontinuity while in homogeneous
regions the orientation of the triangles is ambiguous.

the domain Ω at scale h = 1/N and identify the index set

B = {i ∈ I : ih ∈ ∂Ω},

as the set of boundary points. At those points we compute the average values of the
characteristic function along the edges ei that is

gi =
1

|ei|

ˆ
ei

χ{x·ν>a}(x)dx.

In order to use the values gi as boundary condition we solve problem (23) using

G(v) = 0, H(u) =
∑
i∈B

δ{gi}(ui),

where δ{c}(·) denotes the indicator function of the singleton c.
We first demonstrate the property of our proposed ACR discretization scheme to

adapt the triangulation to the direction of the discontinuity. For this we set h = 1/10,
which yields a square grid of 10 × 10 pixels (squares). We set ν = (cos θ, sin θ), with
θ ∈ {0, π/4, π/2, 3π/4} in order to recover discontinuities of the four main orientations.
In Figure 7 we show the results for these four main orientations. We plot the continuous
image function u, which is piecewise affine on the triangles, and the triangulation itself
which is shown in blue. As expected the solution of the problem yields a straight dis-
continuity with the correct orientation. Observe that the triangulation is automatically
adapted to match the orientation of the discontinuity. Moreover, one can also see that
in the homogeneous regions the triangulation is ambiguous. Note that the value of the
discrete total variation is equivalent to the true total variation, that is Jh(u) = 10 for
π ∈ {0, π/2} and Jh(u) = 10

√
2 for π ∈ {π/4, 3π/4}.

The aim of the second experiment is to evaluate the rotational invariance of the pro-
posed discrete total variation and compare to other methods. For this we repeat the
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θ l ACR FD UFBD AFD16 CONDAT

π/2 100.00 100.00 100.00 100.00 100.00 100.00
3π/8 108.24 108.31 109.07 108.59 109.75 108.31
π/4 141.42 141.42 140.38 140.71 140.07 141.42

Table 1: This table compares the values of the discrete total variation Jh(u) for the
different schemes with the true value of the total variation which is equivalent
to the length l of the discontinuity.

first experiment but now with orientations θ ∈ {π/2, 3π/8, π/4} and using a larger grid
of 100 × 100 pixels and using h = 1. As the other approaches (FD, UFBD, AFD16,
CONDAT) do not give explicit access to boundary points, we instead use a classical
pixel-based boundary condition of sufficient width (5 pixels on each side). Is is com-
puted by first computing the discrete characteristic function on a 30 times finer grid and
then downsampling the function to the desired resolution using averaging.

In Table 1, we compare the values of the discrete total variation computed by the
different schemes. For θ = 0 all schemes give the correct value of the discontinuity.
As predicted by Proposition 3.3 the proposed ACR scheme is isotropic and hence very
successful in recovering the correct value of the total variation for different orientations.
Also CONDAT is very successful as it gives results of exactly the same quality. Note
that for θ = 3π/8, both ACR and CONDAT slightly overestimate the value of the total
variation, see also Remark 4.1.

In Figure 8 we show the images corresponding to the experiments presented in Ta-
ble (1). For the proposed ACR scheme we plot an image consisting of the center values
uc as they provide slightly sharper results. In general all schemes yield sharp discon-
tinuities for θ = 0, which is explained by the alignment of the discontinuity with the
grid. FD yields very blurry results for θ = {π/4, 3π/8}, because the forward differences
would considerably overestimate the total variation of a sharp discontinuity (compare
Figure 1). AFD16 works well for θ = π/4 but produces strong artifacts for θ = 3π/8.
This is explained by the fact that only orientations which are supported by the neighbor-
hood system can be recovered. UFBD yields good results for θ = π/4 but gives slightly
more blurry results for θ = 3π/8. ACR yields good results for all orientations, with a
small degree of blur for θ = 3π/8. The sharpest transitions are recovered by CONDAT.

6.3. A segmentation problem

In the next experiment we are considering the following geometric minimization problem:

min
u
λ|Du|(Ω) +

ˆ
Ω
u(x)(|x| −R)dx, s.t. 0 ≤ u(x) ≤ 1 ∀x ∈ Ω (39)

where R > 0 is some parameter and we assume that 0 ∈ Ω. Observe that the level lines
of the term (|x| − R) are circles around the origin. Hence, for not too large λ > 0, the
minimizer will be the characteristic function of a disk with radius r > 0. Though it can
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Figure 8: Images corresponding to the experiments of Table 1. Note the significantly
more blurry results of FD and the “failure” of AFD16 to recover a straight
line with angle θ = 3π/8.

be recovered as the sublevel R of the function in [19, Eq. (39)], for N = 2 and h = λ,
we now derive its expression for the reader’s convenience.

Using polar coordinates (ρ, θ) the variational problem can be re-written as

min
r≥0

2λrπ +

ˆ 2π

0

ˆ r

0
ρ(ρ−R)dρdθ = 2πmin

r≥0
λr +

r3

3
−Rr

2

2
. (40)

The minimal r, if positive, must satisfy λ+ r2 −Rr = 0, so that:

r =
R+
√
R2 − 4λ

2
.

The disk of radius r solves the problem as long as its energy (40) is nonpositive, since
otherwise it is energetically more favorable to choose r = 0. The value (40) is less or
equal than zero as long as

3R−
√

9R2 − 48λ

4
≤ r ≤ 3R+

√
9R2 − 48λ

4

Comparing this bound with the minimizing radius r, we see that we need to ensure

R+
√
R2 − 4λ

2
≤ 3R+

√
9R2 − 48λ

4
.
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λ p ACR FD UFBD AFD16 CONDAT

25 150.52 150.46 151.79 149.19 151.38 150.31
50 143.31 143.29 143.64 141.74 143.38 143.39
100 125.66 125.28 124.72 122.56 124.07 125.83

Table 2: For a range of different regularization parameters λ, we compute the perimeter
p = 2πr of the true minimizing disk and compare it to the values of the discrete
total variation obtained from different discretization schemes.

Solving for equality we find the upper bound on λ as

λ =
3

16
R2,

which corresponds to a radius r = 3
4R.

The aim of our experiment is now to numerically compute the solution of (39) using
our proposed discretization and existing discretization schemes and compare it to the
true solution. For comparison we use the value of the total variation which is equivalent
of the perimeter p = 2πr of the disk. We perform a numerical experiment on a grid
of N × N pixels with N = 100, h = 1, approximating the image domain Ω and we set
R = N/4 = 25. The data term and boundary conditions in the variational model (23)
are given by

G(v) =
∑
i∈Ic

viwi, H(u) =
∑
i∈I

δ[0,1](ui)

with segmentation “weight” wi = (|ih| −R) and δ[0,1](·) denotes the indicator function
of the interval [0, 1]. Here, we shall assume that the values of the index set are properly
shifted such that 0 ∈ Ic is in the middle of the domain. From our above computation we
know that the problem has a non-trivial minimizer as long as λ ∈ [0, 3

16R
2) ≈ [0, 117.18].

For the other schemes (FD, UFBD, AFD16, CONDAT) we use exactly the same data
fidelity term and the bound constraint is directly applied to the image pixels.

Table 2 compares the values of the discrete total variation to the true perimeter of the
disk for different values of the parameter λ ∈ {25, 50, 100}. From the results we see that
both the proposed ACR scheme and CONDAT approximate the true perimeter quite
well. FD seems to overestimate the TV for smaller values of λ and underestimate it for
larger values of λ. AFD16 and UFBD generally underestimate the TV for all values of
λ.

In Figure 9 we provide the images corresponding to the experiments conducted in Ta-
ble 2. We can observe that ACR provides quite isotropic solutions with slighly blurred
interfaces. FD shows the well-known anisotropic smoothing behavior in the four quad-
rants. UFBD is more isotropic but also shows blurry interfaces. AFD16 provides very
sharp interfaces but approximates the disc – as expected – by a 16-polygon. Visually,
CONDAT provides the sharpest results.
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Figure 9: Image scorresponding to the experiments in Table 2. Note the anisotropic
behavior of FD and the polygonal behavior of AFD16.

6.4. Computing the ROF problem for a square

In the next example, we consider the problem of minimizing the ROF problem

min
u
λ|Du|(Ω) +

1

2

ˆ
Ω

(u(x)− g(x))2dx,

where g(x) is the characteristic function of a square of size L, that is g(x) = χ{[−L/2,L/2]2}(x).
The image domain is set as Ω = [−L,L]2 and we are using Dirichlet zero boundary con-
ditions. It is well-known that for λ < λ∗ with λ∗ = L

2+
√
π

, the solution is given by a

lower intensity square with rounded and blurred corners. The exact solution uλ is given
by an analytical formula, see [2, 27] for more details. Moreover, it can be shown that
the value of the total variation of the solution uλ is given by

TV (uλ) = 4L

(
1− λ

λ∗

)
− 2(4− π)λ log

λ∗

λ
.

Figure 10 plots the characteristic function of the square as well as exact solutions of the
regularized squares for λ ∈ {2, 5, 10}.

In our experiments, we numerically compute the solutions of the regularized squares
using different discretizations of the total variation and we compare it to the analytical
solution. For this we set L = 50 and generate a grid of 2L × 2L pixels to cover the
image domain Ω = [−L,L]2. In order to obtain an accurate ground truth solution, we
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(a) g(x) (b) λ = 2 (c) λ = 5 (d) λ = 10

Figure 10: Original square g(x), and ground truth solutions u(x) for different values of
λ.

λ ACR FD UFBD AFD16 CONDAT

2 3.08 6.21 9.35 3.50 8.93
5 3.54 10.95 20.58 5.30 9.14
10 2.82 10.67 26.69 6.79 5.03

Table 3: `1-errors between the analytical solutions of the ROF problem and the discrete
solutions for different values of the regularization parameter λ.

first compute the analytical solution on a 30 times finer grid (similar to [27]) and then
downsample the image to the target resolution using averaging. For solving the ROF
problem using the proposed ACR method, we use a quadratic data fidelity term defined
on the average pixels:

G(v) =
∑
i∈Ic

(vi − gi)2,

where gi is the pixel-averaged disrcete version of the function g(x) = χ{[−L/2,L/2]2}(x).
For the other methods we use exactly the same data fidelity term.

In Table 3 we give the `1 errors between the pixel-averaged analytical solution and
the discrete solutions computed by different discretization schemes of the total variation.
For ACR we use the pixel center values uc as they give sharper results.

One can see that the proposed ACR scheme gives the smallest `1 errors. Surprisingly,
the AFD16 scheme gives also quite low error rates. The worst results are provided by the
UFBD scheme. In Figure 11 we show the corresponding error images. One can clearly
see that UFBD has a significantly larger global error. The errors at the corners varies
between the different methods, but one can also see the strong anisotropic behavior of
FD. Interestingly, the errors of CONDAT are mainly concentrated at the edges which
is explained by the fact that the discretization scheme of CONDAT is based on pixel
averages.

Table 4 finally compares the values of the total variation with respect to the true
values of the total variation. ACR is slightly worse compared to CONDAT for λ ∈ {2, 5}
but gives the best results for λ = 10.
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Figure 11: Error plots of the numerical solutions with respect to the analytical solution.
For better comparison, the images are truncated to the range [−0.1, 0.1] and
gray corresponds to zero. Note the anisotropic behavior of FD and the sig-
nificantly larger global error of UFBD.

λ TV ACR FD UFBD AFD16 CONDAT

2 163.33 162.96 163.41 161.72 163.57 163.30
5 116.18 116.02 116.48 115.80 116.35 116.21
10 44.27 44.26 44.20 45.41 44.13 44.29

Table 4: Total variation of the different discretization schemes compared to the true total
variation (TV) of the regularized square.

6.5. An example of image denoising

Finally, we present an examples where we remove the noise of a gray scale image. We
use the same discrete ROF model as described in the previous section. Figure 12 shows
the noisy clock image together with its ROF denoised version. We also provide detail
views of the center pixel values, the average pixel values and the adaptive triangulation’s.
Note that the center pixel values yield slightly sharper results but can also contain some
isolated pixels. The plots based on the triangulation nicely show how the mesh adapts
to the structures. We also conducted comparisons with other existing discretization
schemes, but we omit the results here because they were visually almost identical. The
reason is that in case of image denoising the data term is dominating and hence differ-
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(a) Noisy image (σ = 0.05) (b) Denoised image, λ = 1/25 (c) Detail view, center pixel val-
ues

(d) Detail view, average pixel
values

(e) Detail view, constant trian-
gles

(f) Detail view, affine triangles

Figure 12: Image denoising using the proposed adaptive Crouzeix-Raviart discretization
scheme. In (a), the noisy input image (σ = 0.05), in (b) the ROF denoised
image. Image (c) shows the average pixel values and (d) the center pixel
values for a detail of (b). Images (e), (f) show the average values (e) and the
piecewise affine CR function (f) defined on the adaptive triangulation.

ences in the discretization of the regularizer only have a minor influence on the solution.
However, we point out that for more geometric problems, as the problems we have pre-
sented in the previous sections, the discretization of the regularizer of course plays an
important role.
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A. Proof of the duality Theorem 1

The goal of this section is to provide a proof of the duality theorem, Theorem 1. We
prove a more general result for the CR approximation of Sobolev semi-norms.

A.1. Almost constant Crouzeix-Raviart functions

To simplify we drop the scale parameter h which is useless in this section. We consider
a mesh T of d-dimensional simplices in a polygonal domain Ω ⊂ Rd. We denote V (T )
the nonconforming P1 functions (Crouzeix-Raviart), defined in (10). We then let

V 0(T ) =

{
u ∈ CR(T ) :

ˆ
T
u(x)dx = u(cT ) = 0 ∀T ∈ T

}
.

It is the space of the functions which are 0 on average in each simplex (in other words,
the average of the middle values of the facets vanishes, equivalently the value at the
center of each simplex is zero).

We define P0(T )d ≈ (Rd)T as usual as the space of “P0” functions which are constant
on each T ∈ T . Endowed with the topology of L2(Ω;Rd), it is a Euclidean space with
the weighted scalar product: for p, q ∈ P0(T ),ˆ

Ω
p(x)q(x)dx =

∑
T∈T
|T |pT · qT .
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Then we consider the gradients

GV 0(T ) =
{
Du : u ∈ V 0(T )

}
⊂ P0(T ).

We want to characterize this space and its orthogonal. In order to do this, we consider
the space RT0(T ) of the first order Raviart-Thomas vector fields subject to the mesh
T (cf Section 2.3, these are defined by their fluxes through the edges of the elements
T ∈ T ). As before we also let RT00(T ) ⊂ RT0(T ) the RT0 fields with zero flux through
∂Ω.

We know that, cf Lemma 2.4:

{Du : u ∈ V (T )} =

{
p ∈ P0(T )d :

ˆ
Ω
p(x) · σ(x)dx = 0 ∀σ ∈ RT00(T ), divσ = 0

}
.

More generally, if u ∈ V (T ) and σ ∈ RT00(T ), one has thanks to (11):ˆ
Ω
σ(x) ·Du(x)dx = −

ˆ
Ω

divσ(x)u(x)dx.

As Du and divσ are constant on each triangle, this can also be written:∑
T∈T
|T |σ(cT ) ·Du(T ) = −

∑
T∈T
|T |divσ(T )u(cT ) (41)

where cT is the center of mass of the simplex T (so that given any affine function a(x),´
T a(x)dx = |T |a(cT )).
Hence in particular, for any p ∈ GV 0(T ) and σ ∈ RT00(T ),

´
Ω σ ·pdx = 0. A natural

question is whether this is an if and only if; that is, if the orthogonal of {(σ(cT ))T ∈
P0(T ) : σ ∈ RT00(T )} is GV 0(T ).

Assume p ∈ P0(T )d is such that
´

Ω σ · pdx = 0 for all σ ∈ RT00(T ). Then in
particular it is orthogonal to fields with zero divergence and there exists u ∈ V (T ) with
Du = p, thanks to Lemma 2.4. In particular because of (41) we have

0 = −
∑
T∈T
|T |divσ(T )u(cT )

for all Raviart-Thomas field σ (vanishing on ∂Ω). Now, given any inner facet S ⊂
∂T ∩ ∂T ′, T, T ′ ∈ T , T 6= T ′. we can introduce the field σ with flux 1 through S from
T to T ′ and zero through all other facets. Then the formula becomes

0 = u(cT ′)− u(cT ).

This shows that u must take the same value in all the centers of the vertices. As u is
defined up to a constant (in each connected component of Ω) we can assume this value
is zero, and we have shown that in P0(T )d,

{(σ(cT ))T∈T : σ ∈ RT00(T )}⊥ = GV 0(T ). (42)

In particular, as a consequence, also

GV 0(T )⊥ = {(σ(cT ))T∈T : σ ∈ RT00(T )} . (43)
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A.2. Duality for discrete Sobolev semi-norms

Let us introduce, for u ∈ V (T ), p ∈ [1,∞),

Jp(u) =
1

p

ˆ
Ω
|Du|pdx (44)

and, for ū ∈ P0(T )

J0
p (ū) = min {Jp(u) : u ∈ V (T ), u(cT ) = ūT ∀T ∈ T } . (45)

By a slight abuse of notation we also let J0
p (u) = J0

p ((u(cT )T ) for u ∈ V (T ). Then:

Theorem 2. For all p ∈ (1,∞) and any u ∈ V (T ),

J0
p (u) = sup

{ˆ
Ω
σ(x) ·Du(x)dx− 1

p′

∑
T∈T
|T ||σ(cT )|p′ : σ ∈ RT00(T )

}
, (46)

where p′ = p/(p− 1), and for p = 1,

J0
p (u) = sup

{ˆ
Ω
σ(x) ·Du(x)dx : σ ∈ RT00(T ), |σ(cT )| ≤ 1

}
. (47)

In particular, Theorem 1 corresponds to the particular case p = 1.

Proof. We consider the case p > 1. The case p = 1 is then recovered as a limit problem.
The “≥” inequality is obvious. To show the reverse, we assume that u is a minimizer
in (45). Then, for any v ∈ V 0(T ) (cf Sec. A.1), u+ v is admissible in the problem and
one has Jp(u+ v) ≥ Jp(u). Hence, taking the derivative limt↓0(Jp(u+ tv)− Jp(v))/t, it
follows that ˆ

Ω
|Du|p−2Du ·Dvdx = 0

for all v ∈ V 0(T ). That is, the field (|Du(T )|p−2Du(T ))T∈T ∈ P0(T ) is orthogo-
nal to GV 0(T ), hence thanks to (43), there exists σ ∈ RT00(T ) such that σ(cT ) =
|Du(T )|p−2Du(T ) for all T ∈ T . Clearly, |σ(cT )|p′ = |Du(T )|p and the conclusion easily
follows. The case p = 1 can be recovered as follows: one builds, for p > 1, a field
σp ∈ RT00(T ) optimal in (46), and letting then p → 1, one checks that it converges to
a field which is optimal in (47).

Remark A.1. It is quite easy to derive, as a more general result, that given f : Rd → R
a convex, lower semicontinuous function and any ū ∈ P0(T ) one has

inf

{ˆ
Ω
f(∇u)dx : u ∈ V (T ), u(cT ) = ūT ∀T ∈ T

}
= sup

{
−
ˆ

Ω
ūdivσ dx−

∑
T∈T
|T |f∗(σ(cT )) : σ ∈ RT00(T )

}
.
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Figure 13: Left: the variant (49), right: the ACR result of Fig. 8.

B. A variant with one node per pixel

For imaging application, one drawback of our approach could be the need to introduce
more nodes in the representation than the number of pixels.

Given a (grey-level) n×m image (ui,j)
j=1,...,m
i=1,...,n (to simplify, we assume that the scale

h = 1 in this section), even if one rotates the grid by 45◦ and considers the pixels (i, j)
as centers of edges of larger squares (for instance, (1, 1), (1, 2), (2, 1), (2, 2) would be the
centers of the edges of the square [(3/2, 1/2), (5/2, 3/2), (3/2, 5/2), (1/2, 3/2)]), one still
needs to introduce an additional node in the center of each square (in the above example,
at (3/2, 3/2)) and introduce fictitious values ui+1/2,j+1/2 (i, j both even or both odd) at
these nodes. On average, this increases the dimension of the problems by roughly 50%.

Unfortunately, it seems there is no simple strategy to eliminate this additional node.
To illustrate this issue, let us first concentrate on one square. We consider the four
vertices {0, 1}2 as the middle points of the edges of the square (of area 2)

C =
[(

1
2 ,−

1
2

)
,
(

3
2 ,

1
2

)
,
(

1
2 ,

3
2

)
,
(
−1

2 ,
1
2

)]
and a fifth vertex in (1/2, 1/2) in the middle, which is the middle of both the vertical
and horizontal edges cutting the square into two halves. Then, given the values uα,β :=
u(α, β), (α, β) ∈ {0, 1}2, and c the value at the center, the Crouzeix-Raviart total
variation inside the square is

max
{√

2
√

(u00 − c)2 + (u10 − c)2 +
√

2
√

(u11 − c)2 + (u01 − c)2,

√
2
√

(u00 − c)2 + (u01 − c)2 +
√

2
√

(u11 − c)2 + (u10 − c)2
}
.

(Each gradient norm is multiplied by the area 1 of the corresponding triangle, and we
have used that the distance between a vertex of the cube and the center is 1/

√
2.) A

possibility to eliminate c is to minimize this quantity with respect to c. In the “inpaint-
ing” problems of Fig. 8, this would give the same results (since this is precisely what is
done automatically by the minimization in this case). Unfortunately we have, at this
point, no idea of how to solve this problem explicitly. It means that to compute the
“proximity” operator of the corresponding energy on a whole image, we need to solve
subproblems which keep the additional central variable.
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A simpler possibility is to first optimize with respect to the value c and then, after-
wards, pick the best orientation. In that case, one needs to solve

√
2 max

{
min
c

√
(u00 − c)2 + (u10 − c)2 +

√
(u11 − c)2 + (u01 − c)2,

min
c

√
(u00 − c)2 + (u01 − c)2 +

√
(u11 − c)2 + (u10 − c)2,

}
.

A careful analysis shows that this value is given by the function

J4((u00, u10, u01, u11)) :=
√

2 max
{√

(u11 − u00)2 + (u10 − u01)2,
√

(u01 − u00)2 + (u11 − u10)2,√
(u10 − u00)2 + (u11 − u01)2

}
. (48)

One can use (48) to define, given u defined by its pixel values (ui,j)
j=1,...,m
i=1,...,n , a discrete

total variation as

J(u) :=
∑

(i,j) even

J4((ui,j , ui+1,j , ui,j+1, ui+1,j+1))

+
∑

(i,j) odd

J4((ui,j , ui+1,j , ui,j+1, ui+1,j+1)). (49)

We remark this is a variant of the energy defined in [24] (see also [26] for a theoretical
study), which can be optimized by an efficient alternating descent method as soon as
one knows how to solve explicitly the subproblems given by the proximity operator of
J4, on each square.

Unfortunately, our implementation shows that it does not perform as well as the ACR
technique introduced in this paper. Figure 13 compares this to the ACR result in Fig. 8:
we obtain a very diffusive solution, with practically no improvement over a non-optimized
Crouzeix Raviart implementation.

On the other hand, as is expected, this approximation (which in any case is still based
on a hidden, underlying Crouzeix-Raviart discretization), yields to a quite precise ap-
proximation of the energy and is a reasonable regularizer for standard inverse problems,
cf. Fig. 14.

C. The proximity operator of (22)

We describe in this Section how to implement the proximity operator of the function f
in (22). The problem we need to solve is as follows, given ξ̄ = (ξ̄mn)n=1,2

m=1,...,4 ∈ R4×2 and
τ > 0:

min
ξ=(ξmn)n=1,2

m=1,...,4∈R4×2
f(ξ) +

1

2τ
‖ξ − ξ̄‖2. (50)
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Figure 14: Left: original “clock” image, middle: with a Gaussian blur of std. dev. 1.5
and a 1% Gaussian noise, right: TV-regularised deblurred image with (49).

We call prox τf (ξ̄) the solution of (50). We recall that the prox of the convex conjugate
f∗ is also easily recovered, once (50) is solved, using Moreau’s identity:

x = prox τf (x) + τprox 1
τ
f∗(

x
τ ).

To solve (50) we first make the following obvious observation: denoting

x1 =
√
ξ2

1,1 + ξ2
2,1, (ξ1,1, ξ2,1)T = x1η1,

x2 =
√
ξ2

3,1 + ξ2
4,1, (ξ3,1, ξ4,1)T = x2η2,

x3 =
√
ξ2

1,2 + ξ2
2,2, (ξ1,2, ξ2,2)T = x3η3,

x4 =
√
ξ2

3,2 + ξ2
4,2, (ξ3,2, ξ4,2)T = x4η4,

(and the same for ξ̄), it is equivalent to solve:

min
(xi)≥0,(ηi)

max{|x1|+ |x2|, |x3|+ |x4|}+
1

2τ

4∑
i=1

|xiηi − x̄iη̄i|2.

We obtain at the minimum that ηi = η̄i, i = 1, . . . , 4 and the problem boils down to

min
x=(xi)4i=1∈R4

+

max{|x1|+ |x2|, |x3|+ |x4|}+
1

2τ
|x− x̄|2

where |x− x̄|2 =
∑4

i=1 |xi − x̄i|2. Remark that here, x̄i ≥ 0 and it is equivalent to look
for x ∈ R4

+ or in R4.
We now explain how to solve this 4-dimensional convex problem. We can rewrite it as

min
x

max
µ12+µ34=1
µ12≥0,µ34≥0

µ12(|x1|+ |x2|) + µ34(|x3|+ |x4|) +
1

2τ
|x− x̄|2
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and then we exchange min and max. We obtain 4 problems of the form

min
x1

µ12|x1|+
1

2τ
|x1 − x̄1|2.

This is well known to be solved by x1 = (x̄1 − τµ12)+ and with value

µ12(x̄1 − τµ12)+ +
1

2τ

{
|x̄1|2 if x̄1 ≤ τµ12

|τµ12|2 else.

When x̄1 ≤ τµ12, this is |x̄1|2/(2τ), otherwise

µ12x̄1 −
τ

2
|µ12|2 =

1

2τ
|x̄1|2 −

1

2τ
|x̄1 − τµ12|2.

We end up with the dual problem

max
µ12+µ34=1
µ12≥0,µ34≥0

1

2τ

( 4∑
i=1

|x̄i|2 −
(
|(x̄1 − τµ12)+|2 + |(x̄2 − τµ12)+|2

+ |(x̄3 − τµ34)+|2 + |(x̄4 − τµ34)+|2
))
,

whose optimality reads, if 0 < µ12 < 1,

(x̄1 − τµ12)+ + (x̄2 − τµ12)+ = (x̄3 − τµ34)+ + (x̄4 − τµ34)+

with µ34 = 1− µ12.
Without loss of generality, assume that x̄2 ≥ x̄1 and x̄4 ≥ x̄3. We recast the problem

as

min
0≤µ≤1

|(x̄1 − τµ)+|2 + |(x̄2 − τµ)+|2 + |(x̄3 − τ + τµ)+|2 + |(x̄4 − τ + τµ)+|2

by letting µ := µ12 and µ34 = 1− µ.
By convexity of the objective, µ ∈ [0, 1] is optimal if and only if:(x̄1 − τµ)+ + (x̄2 − τµ)+ − (x̄3 − τ + τµ)+ − (x̄4 − τ + τµ)+ ≤ 0 if µ < 1 ;

(x̄1 − τµ)+ + (x̄2 − τµ)+ − (x̄3 − τ + τµ)+ − (x̄4 − τ + τµ)+ ≥ 0 if µ > 0.
(51)

Hence, one sees that if one knows which term are positive in the above sums, µ is found
by solving the above equations with “= 0” instead of “≥ / ≤ 0” and then projecting the
value onto the interval [0, 1]. For instance, if all values are positive,

µ =

(
0 ∨ x̄1 + x̄2 − x̄3 − x̄4 + 2τ

4τ

)
∧ 1. (52)

Whenever µ ∈ (0, 1), of course, (51) reads

(x̄1 − τµ)+ + (x̄2 − τµ)+ = (x̄3 − τ + τµ)+ + (x̄4 − τ + τµ)+. (53)

Hence, the problem is solved by exhaustion of the following cases:
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1. if x̄2 + x̄4 ≤ τ , then clearly one can find µ ∈ [0, 1] such that all terms of the sums
in (51) are zero, hence the solution is x1 = x2 = x3 = x4 = 0.

2. if x̄2 + x̄4 > τ then:

a) either both x̄2 − τµ > 0 and x̄4 − τ + τµ > 0,

b) or one side of (53) is zero so that one must be in a case of strict inequality
in (51), and µ ∈ {0, 1}.

The second case 2b can be first easily eliminated by checking whether µ = 0 or
µ = 1 is a solution of the optimality condition: one has

x̄1 + x̄2 ≤ (x̄3 − τ)+ + (x̄4 − τ)+ ⇔ µ = 0,

(x̄1 − τ)+ + (x̄2 − τ)+ ≥ x̄3 + x̄4 ⇔ µ = 1.

3. Otherwise, we must be in the first case 2a, where x̄2− τµ > 0 and x̄4− τ + τµ > 0,
equality (53) holds, and which is then split into four possible cases:

a) µ given by (52), and x̄1 ≥ τµ, x̄3 ≥ τ(1−µ), then x1 = x̄1−τµ, x2 = x̄2−τµ,
x3 = x̄3 − τ(1− µ), x4 = x̄4 − τ(1− µ);

b) µ = x̄1+x̄2−x̄4+τ
3τ and x̄1 ≥ τµ, x̄3 ≤ τ(1−µ), x̄3 ≥ τ(1−µ), then x1 = x̄1−τµ,

x2 = x̄2 − τµ, x3 = 0, x4 = x̄4 − τ(1− µ);

c) µ = x̄2−x̄3−x̄4+2τ
3τ and x̄1 ≤ τµ, x̄2 ≥ τµ, x̄3 ≥ τ(1 − µ), then x1 = 0,

x2 = x̄2 − τµ, x3 = x̄3 − τ(1− µ), x4 = x̄4 − τ(1− µ);

d) µ = x̄2−x̄4+τ
2τ if all the previous cases fail to hold, and then x1 = x3 = 0,

x2 = x̄2 − τµ, x4 = x̄4 − τ(1− µ).
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