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CROUZEIX-RAVIART APPROXIMATION OF THE TOTAL
VARIATION ON SIMPLICIAL MESHES.∗

ANTONIN CHAMBOLLE† AND THOMAS POCK‡

Abstract. We propose an adaptive implementation of a Crouzeix-Raviart based discretization
of the total variation, which has the property of approximating from below the total variation, with
metrication errors only depending on the local curvature, rather than on the orientation as is usual
for other approaches.
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1. Introduction. Since [42], the total variation has been widely used in imaging
as a basic denoising tool and a regularizer for inverse problems, obviously as it is one
of the few convex regularizing energies which preserve discontinuities [17]. Classically,
it is defined for a (here, to simplify, scalar) function u : Ω → R defined on a domain
Ω ⊂ Rd (d = 2 or 3 for most imaging applications) as the (total) varation of the distri-
butional derivative, Du, which is assumed to be a measure. An equivalent definition,
by duality, is simply

(1.1) |Du|(Ω) = sup

{
−
ˆ

Ω

u(x)divϕ(x)dx : ϕ ∈ C∞c (Ω;Rd), ‖ϕ(x)‖ ≤ 1∀x ∈ Ω

}
,

see for instance [2], and a function u ∈ L1(Ω) is said to have bounded variation if and
only if this quantity is finite. The space of such functions is usually denoted BV (Ω).
Clearly, such a definition allows for discontinuous functions, as it is obvious that the
characteristic function of a sufficiently regular set is a BV function.

For this reason, it is not trivial to correctly discretize the functional |Du|(Ω). An
obvious discretization, assuming to simplify Ω = [0, 1]2, N is an integer, h = 1/N > 0
would be, given the discrete function uh = (uhi,j)0≤i,j≤N ,

(1.2) Jh(uh) = h
∑

i<N,j<N

√
(uhi+1,j − uhi,j)2 + (uhi,j+1 − uhi,j)2

+ h

N−1∑
i=1

|uhi+1,N − uhi,N |+ h

N−1∑
j=1

|uhN,j+1 − uhj,N |.

The scaling h is the volume of the elementary “pixel” hd (here d = 2) divided by the
scale h which appears in the discrete gradients. Naively, this discretization appears
to be wrong, as for instance the measure of a characteristic function (uhi,j ∈ {0, 1})
will always be exaggerated, more or less strongly depending on the orientation of the
boundary, see Fig. (1).
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Fig. 1. How Jh would measure a sharp slanted edge: on the left, we get the correct measure,
on the right the result is biased by a factor

√
2, while a smoothed edge in the same direction can

have a much lower energy. This explains why discrete minimizers of this approximation will have
sharp edges in some orientation, and smoother edges in other.

However, this analysis is not really correct: as we are in practice interested in
minimization problems involving Jh, the right question should be wether minimizers
of such problems will approximate correctly the minimizer of some related continuous
problem. This is expressed by the fact that Jh, as h→ 0, actually “Γ-converges” [11,
27] to |Du|(Ω) (the proof is more or less trivial, for instance see [14, 24] for examples
of similar proofs for variants of Jh). But this result suffers from a slight drawback:
since the measure of characteristic functions with Jh is wrong, it means that in this
process, such a function in the limit will not, in general, be approximated by discrete
characteristic functions. In practice, it is easy to see that it suffices to slightly smooth
the limiting function u to obtain after discretization an image uh with Jh(uh) ≈
|Du|(Ω). (Rigorous error estimates can be found for instance in [43, 36, 35], see
also some references below for P1 finite elements error estimates.) This means that
sharp discontinuities will exceptionally appear in minimizers of energies involving Jh
(see [25] for many interesting examples).

This issue has been addressed many times in the imaging literature, in many
contexts: finite differences [19, 22, 25], graph-based total variations [41, 10] (these
references can by no means be exhaustive), more complex grids [34]... Others have
advocated for finite elements discretizations [31, 32, 30], obtaining in particular very
good results with adaptive meshes [4, 6, 5, 7, 8]. An obvious issue with P1 elements
is the following: again, if one wants to approximate a discontinous function, then the
gradient in some elements should be very large, and its orientation will be mostly
determined by the directions of the edges of the element. This leads again to an
exaggeration of the total variation of characteristic functions, and as a result, to a
smoothing of the discrete variational solutions, unless adaption is (well) implemented.
One direction to improve this is suggested in [40], which suggests to use discontinuous
P1 finite elements. There, again, the discretization is conforming in the sense that the
jump energy is actually taken into account in the discretized functional. A notable
interest here should be a much more precise discretization of the discontinuities, how-
ever, once again, in case the edges of the mesh are not parallel to a jump, its measure
will be exaggerated and a smoothing will be necessary in order to better approximate
the energy.

In this paper, we discuss the merits of a finite elements discretization of the total
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variation based on nonconforming P1 elements, also known as “Crouzeix-Raviart”
finite elements since they were introduced in [26] (see also [12]). Contrarily to [40],
the discretizations we consider will be truly nonconforming, in the sense that the jump
part accross edges of the mesh are not part of the energy.

It has been observed many times that such elements can be useful to discretize
some nonlinear variational problems such as Cavitation and Fracture [33, 44], Non-
linear Elasticity and Stokes’s equation [29] (where it is extended to non-triangular
meshes, which should also be interesting for total variation-based energies), Nonlin-
ear Elasticity with mesh adaption [38, 37], Topology Optimization [15] — see [12] for
a general overview of the use of this discretization over the years.

It turns out that indeed these elements enjoy some very nice properties: in par-
ticular, the direction of the gradient in an element is entirely free and not determined
by the shape of the element itself. This makes them particularly desirable to ap-
proximate functions with discontinuities, without altering the total measure of the
singularity (see the quite elementary Prop 3.3 below). On the other hand, minimizers
of a Crouzeix-Raviart-based total variation can be quite diffusive, for reasons differ-
ent than the ones pointed out before, so that the need for adaptivity is not totally
eliminated by this choice. We can propose, on square grids, a particular adaptive
strategy which automatically derives the best way to cut elementary squares into two
triangles in order to find the best approximation of a given image, from the point of
view of diffusivity.

Throughout the paper we will mostly focus on the following “denoising” prob-
lem [42]:

(1.3) min
u∈BV (Ω)

|Du|(Ω) +
1

2τ

ˆ
Ω

(u− u�)2dx.

Here, u� ∈ L2(Ω) is the original signal (in [42], a noisy image), u its regularized
version, and τ > 0 a parameter (which obviously controls the degree of smoothing).

The main reason for focusing on this problem is that its solution corresponds to
evaluating the “proximity operator” of the total variation at u�, and can be used as
a basic brick in many minimization algorithms involving the same functional (see [23]
for an overview). Additionally, since we will focus mostly on the discretization of the
first term in this problem, our study will apply with little or no change to many other
second terms (and simple variants of the first).

The paper is organized as follows: in the next Section 2 we discuss the issues of
approximating the gradient of BV functions and introduce the Crouzeix-Raviart finite
elements, discussing their most useful properties in our context. Then, in Section 3,
we define the Crouzeix-Raviart total variation and analyse some properties. We show
in particular that straight lines (more precisely, step functions with straight jump)
are measured perfectly by this energy, independently of the mesh. On the other
hand, we can also build diffusive approximations to step functions. In Section 4 we
introduce a simple adaptive strategy, in 2D, to overcome this issue. We show numerical
experiments, and comparison with other discretizations, in Section 6. Eventually, we
propose in Section B a variant of our adaptive Crouzeix-Raviart discretization for 2D
images, which has only one degree of freedom per pixel.

2. Crouzeix-Raviart approximation of BV functions.

2.1. Discretization of the gradient of a BV function u. Consider u ∈
BV (Ω), Ω ⊂ R2, a function with bounded variation and T h = {Ti : i = 1, . . . , N}
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a triangular mesh of a polygonal approximation Ωh ⊂ Ω of Ω. Here h > 0, is
the maximal size of an edge of a triangle Ti, i = 1, . . . , N , moreover one assumes
dist (Ωh,R2 \ Ω) ≤ h. Let for each triangle Ti,

(2.1) pi :=
1

|Ti|

ˆ
Ti

Du.

Remark 2.1. Since Du is a measure, unless |Du|(
⋃N
i=1(∂Ti)) = 0 one needs to be

more precise when defining pi as above. Our analysis will be rigorous for general BV
functions provided we first arbitrarily assign each facet of the Ti to one of the adjacent
elements it belongs to: that is, for instance, replace T1 with T 1, T2 with T 2 \ T 1, Ti
with T i \

⋃
j<i T j , etc. In this case, given a facet F = ∂T ∩∂T ′ and assuming F ⊂ T ,

the restriction u|F should be understood as the trace of u|T ′ , which might differ from
the trace of u|T̊ in case |Du|(F ) 6= 0. To simplify, we will not stress this point in each
of our statements, however this is how they should be understood in general.

Based on the vectors pi, we define, for x ∈ Ωh the piecewise constant function

(2.2) ph(x) =
∑
i

piχTi(x),

where χTi denotes the characteristic function of the triangle Ti. By construction,
obviously (thanks to Jensen’s inequality),

(2.3)

ˆ
Ωh
|ph(x)|dx ≤ |Du|(Ωh) ≤ |Du|(Ω).

More precisely, if we introduce νh(x) = ph(x)/|ph(x)| (if pi = 0 for some triangle
Ti, we can either choose arbitrarily νh(x) in Ti, or let νh(x) = 0), we can derive the
following estimate:

Lemma 2.2. Let u ∈ BV (Ωh) be a function with bounded variation and let ph(x)
be defined as in (2.2). Then,

(2.4) |Du|(Ωh) =

ˆ
Ωh
|ph(x)|dx+

1

2

ˆ
Ωh
|νu(x)− νh(x)|2|Du|.

Proof. By direct calculation,

|Du|(Ωh) =

ˆ
Ωh
|Du| =

ˆ
Ωh
νu(x) ·Du

=

N∑
i=1

ˆ
Ti

νh(x) ·Du+

ˆ
Ωh

(νu(x)− νh(x)) ·Du

=

N∑
i=1

|pi||Ti|+
ˆ

Ωh
|Du| − νh(x) · νu(x)|Du|

=

ˆ
Ωh
|ph(x)|dx+

ˆ
Ωh

(1− νh(x) · νu(x))|Du|

=

ˆ
Ωh
|ph(x)|dx+

1

2

ˆ
Ωh

(|νu(x)|2 + |νh(x)|2 − 2νh(x) · νu(x))|Du|,

and the final estimate follows.



CROUZEIX-RAVIART TOTAL VARIATION 5

The error estimate shows that the approximation will be better if the gradient direc-
tion νu = Du/|Du| does not oscillate too much in each triangle. In particular if u is
the characteristic of a half-space, then the value of the discrete variation is exact.

Remark 2.3. Interestingly, it is easy to deduce that if u = χE is the characteristic
function of a C1,1 set E which satisfies both a R-inner and outer ball condition
everywhere on ∂E (so that |κE | ≤ 1/R, in particular), then if h ≤ R,

(2.5)

(
1− π2

18

(
h

R

)2
)
|DχE(Ωh)| ≤

ˆ
Ωh
|ph(x)|dx ≤ |DχE(Ωh)|.

Indeed, if h ≤ R then, thanks to the ball condition, for any triangle T ∈ T h, ∂E∩T is
the intersection of T with a small piece of C1,1 curve of length at most πh/3. Denoting
by θ the angle of the normal vector of this curve with respect to e1 and θ̄ the angle
of νh, obviously |ν(x) − νh| ≤ |θ(x) − θ̄|. Observing that there must be a point on
the piece of curve where νh = ν(x̄) (as νh is in the cone generated by ν(x) for x on
the curve), one has (using that θ is (1/R)-Lipschitz, and denoting dist the distance
along the curve)

|ν(x)− νh| ≤ |θ(x)− θ̄| ≤ 1

R
dist (x, x̄) ≤ πh

3R
.

Hence, ˆ
T

|ν(x)− νh|2|Du| ≤ π2h2

9R2
H1(∂E ∩ T )

and (2.5) follows from (2.4). (Under the very strong inner and outer ball conditions,
this can be extended to any dimension, with a different constant.) A natural question
is whether a similar estimate would hold, in 2D, for u ∈ BV (Ω) such that there exists
z ∈ L∞(Ω;B(0, 1)) (or maybe continuous) with div z ∈ L∞(Ω) and z ·Du = |Du|.

2.2. Approximation of u. Now an important question is whether ph can be
considered as the discrete gradient of some discretized function uh. It is in fact well
known that it is the case, with the function uh defined in a space of nonconforming
finite elements interpolation called “Crouzeix-Raviart” (CR) finite elements [26, 12].

For the readers’ convenience we give here shortly simple arguments which explain
this fact (which are known, see for instance [38, Lemma 2]). Although CR elements
are defined in any dimension, let us first expose basic arguments in 2D.

We first claim that in a discrete sense, curl ph = 0. The precise sense is (obviously)
as follows: For any continuous and piecewise linear (P1) function ϕ : T h 7→ R one has

(2.6)

ˆ
Ωh

ph · (∇ϕ)⊥dx = 0,

where we denoted (a, b)⊥ := (−b, a), for (a, b) ∈ R2 a counter-clock rotation by 90
degrees. Indeed, by definition, ∇ϕ is constant in each triangle Ti and will denote ist
value by (∇ϕ)i. Clearly, ph is also constant on each triangle (with value pi), and
therefore (2.6) becomes

N∑
i=1

|Ti|pi · (∇ϕ)⊥i =

N∑
i=1

(ˆ
Ti

Du

)
· (∇ϕ)⊥i =

ˆ
Ω

(∇ϕ)⊥ ·Du = 0.

as curlDu = 0. To prove this rigorously, if |Du|(
⋃N
i=1(∂Ti)) = 0 one can first ap-

proximate u with smooth functions, for which the integral is trivially zero, and pass
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v̄
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Fig. 2. A set of ordered triangles Ti, i = 1, ..., 5 defined through the triplets (vi, vi+1, v̄) with
a common vertex v̄ in the middle. In the background, we show the P1 function ϕ which is one at
v̄ and zero at the other vertices. In red we show the loop of vectors originating by the rotated and
scaled gradients of the function φ passing through the middle of each edge.

to the limit, if not, one can first approximate the mesh and ϕ with a slightly per-
turbed mesh T ′ = {T ′i : i = 1, . . . , N} and ϕ′ such that |Du|(

⋃N
i=1(∂T ′i )) = 0 and´

Ω
(∇ϕ′)⊥ ·Du ≈

´
Ω

(∇ϕ)⊥ ·Du = 0 and pass to the limit.

Let us now show that one can integrate back any discrete field ph satisfying (2.6)
into a function uh, which is, if ph was obtained from (2.1), an approximation of u.
In Figure 2 we consider a vertex v̄ which is common to a set of ordered triangles Ti,
i = 1, ..., N of a triangulation T h, defined via the triplets (vi, vi+1, v̄) and vN+1 = v1

Moreover, we consider for ϕ in (2.6) a function equal to 1 in the vertex v̄ and zero in
all other vertices v1, ..., vN+1. The rotated gradients (∇ϕ)⊥i in the triangles are given
by

(∇ϕ)⊥i =
vi+1 − vi

hi|vi+1 − vi|
=
vi+1 − vi
|Ti|

,

where hi denotes the height of the triangle relative to the edge (vi, vi+1). Then, (2.6)
becomes

ˆ
Ωh

ph · (∇ϕ)⊥dx =

N∑
i=1

|Ti|pi · (∇ϕ)⊥i =

N∑
i=1

pi · (vi+1 − vi) = 0

that is, the circulation of ph around the loop v1, ..., vN+1 vanishes. In particular,
the circulation of ph also vanishes for all loops passing the points αvi + (1− α)v̄ for
α ∈ [0, 1]. The most interesting case is α = 1

2 since it yields points in the middle of
the edges which are also part of neighboring loops. It follows that one can assign a
(unique up to a global constant) values ue in the middle of each edge e of the whole
triangulation (at least if the domain is simply connected). We will soon see a more
global characterization of ph which allows to consider it as a discrete gradient in
arbitrary domains (and dimension), see Lemma 2.4.

Actually, if ph is obtained through (2.1), one checks easily that in addition, the
correct value to assign in the middle of an edge is the average of u on the edge. Indeed,
Figure 3 shows a triangle T = (v1, v2, v3) ∈ T h, where we have chose the normalized
edge direction e = (v3 − v2)/|v3 − v2|. Then, one has (assuming |Du|(∂T ) = 0, else
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v1

v2

v3

e

νT

νT
νT

θ3

θ2h1

Fig. 3. A triangle T = (v1, v2, v3) ∈ T h together with its outer normals νT , the normalized
edge direction e = (v3 − v2)/|v3 − v2| shown and the two angles θ3 = v̂1v3v2 and θ2 = v̂3v2v1.

taking into account Remark 2.1)

ˆ
T

e ·Du =

ˆ
∂T

u(x)e · νT dH1 = sin(θ3)

ˆ
[v1,v3]

udx− sin(θ2)

ˆ
[v1,v2]

udx.

Denoting h1 the height from v1, one has h1 = |v2 − v1| sin(θ2) = |v3 − v1| sin(θ3) and
|T | = h1|v3 − v2|/2, so that we have

ph · e =
1

|T |

ˆ
T

e ·Du =
2

|v3 − v2|

( 
[v1,v3]

udx−
 

[v1,v2]

udx

)
.

The right-hand side is exactly the gradient, in the direction e, of the affine function
which is equal in the middle of each edge [vi, vj ] to

ffl
[vi,vj ]

udx.

In the next section, we consider a better characterization of Crouzeix-Raviart
gradients (which is also easier to handle in arbitrary dimension).

2.3. Characterization of Crouzeix-Raviart gradients. We introduce, given
the mesh T h, the set N (T h) of nodes which are the middle points of the edges of
the triangles of T h. Moreover, we define the nonconforming Crouzeix-Raviart (CR)
finite-element space
(2.7)
V (T h) =

{
u : Ωh → R : u|T affine ∀T ∈ T h, u continuous at x, ∀x ∈ N (T h)

}
.

In this space, the gradient ph = Dhu of a function u is defined as the vectorial function
which coincides with ∇u|T on each triangle (and we will denote Dhu(T ) its value in
the triangle T ). We call it a “Crouzeix-Raviart (CR) gradient”, and observe that this
field is a P0 finite elements vector field, that is, a vector field which is constant on each
triangle. The analysis in the previous section shows that for any u ∈ BV (Ω) with

|Du|(
⋃N
i=1 ∂Ti) = 0, the function uh defined by assigning to x ∈ N (T h) the average

value of u on the edge through x, and affine with slope pi, given by (2.1), in each
Ti, belongs to V (T h). (We call it the projection of u to V (T h), and it is naturally

extended to any u ∈ BV (Ω) by assigning the boundaries
⋃N
i=1 ∂Ti arbitrarily to one
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of the neighbouring triangle, such as the one with lower index as already suggested).
In particular, ph, given by (2.2), is a CR gradient.

In the following, we give a characterization of CR gradients which is more precise
than (2.6). It is based on zeroth order “Raviart-Thomas” (RT0) vector fields [39],
which are defined by their fluxes across the edges of the triangulation. Inside the
triangles, RT0 fields are affine functions and they are continuous across the edges of
the mesh. Given a triangle T = (v1, v2, v3), the RT0 field φT (x) inside the triangle T
is given by

φT (x) =
f1

h1|v3 − v2|
(x− v1) +

f2

h2|v3 − v1|
(x− v2) +

f3

h3|v2 − v1|
(x− v3),

where fi are the fluxes through the edges ei which are opposite to the vertex vi and
hi are the heights relative to the vertex vi. With this choice the flux of the field φT (x)
through each edge ei with outward normal νi is constant. Indeed, for x ∈ e1 = [v2, v3],

φT (x) · ν1 =
f1(x− v1) · ν1

h1|v3 − v2|
+
f2(x− v2) · ν1

h2|v3 − v1|
+
f3(x− v3) · ν1

h3|v2 − v1|
=

f1

|v3 − v2|

since (x− v1) · ν1 = h1 and (x− v2) · ν1 = (x− v3) · ν1 = 0. Hence

ˆ
e1

φT (x) · ν1dH1 = f1,

and the total flux through the edges of T is given by (denoting νT ∈ {ν1, ν2, ν3} the
outwards normal to T ):

ˆ
∂T

φT · νT dH1 = f1 + f2 + f3.

We denote RT0(T h) the space of RT0 vector fields relative to the mesh T h, while
RT00(T h) ⊂ RT0(T h) is the subspace of Raviart-Thomas vector fields with zero flux
through ∂Ωh.

The following result establishes a relationship between CR gradients and zero-
divergence RT0 fields.

Lemma 2.4. The P0 field ph is a CR gradient if and only if it is orthogonal to
all zero-divergence RT0 fields φ with vanishing fluxes on ∂Ωh, that is

ˆ
Ωh
φ · ph dx = 0 ∀φ ∈ RT00(T h).

Remark 2.5. Strangely, we have not found this statement in this form in the
literature. It is however related to Helmholtz Decomposition type results and is for
instance used in [15], where a (more complicated and 2D) proof of the duality result
(Sec. 3.3 below) is found also in a nonlinear setting.

Proof. First, we show that CR gradients are orthogonal to zero divergence RT0
fields. Given a RT0 field φ defined in Ωh and uh ∈ V (T h) with ph = Dhu

h (which
can be the projection, as mentioned, of a BV function u), then for Ti ∈ T h,

ˆ
Ti

φ · ph dx =

ˆ
∂Ti

uhφ · νTidH1 −
ˆ
Ti

uhdiv phdx,
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where in the second integral, uh is the inner trace of the affine function uh in the
triangle (recall that this function may be discontinuous through the edges of the
triangle). Since φ · νTi is constant on each edge (eij)j=1,2,3 of Ti, and since uh has, on

eij , average value uh(xij) where xij ∈ N (T h) is the middle point of eij , it yields

ˆ
Ti

φ · ph dx =

3∑
j=1

|eij |uh(xij)φ · νij −
ˆ
Ti

uhdiv phdx.

If Ti′ is a neighbouring triangle and ei
′

j′ = eij the common edge, as uh is continuous at

xij = xi
′

j′ and νij = −νi′j′ ,

|eij |uh(xij)φ · νij + |ei
′

j′ |uh(xi
′

j′)φ · νi
′

j′ = 0.

Hence summing on all triangles, we obtain the general Green formula:

(2.8)

ˆ
Ωh
φ ·Dhu

h dx =

ˆ
∂Ωh

uhφ · νΩhdH1 −
ˆ

Ωh
uhdivφdx.

(Remark that if uh was obtained as the projection of a BV function u, then the second
integral is also

´
∂Ωh

uφ · νΩhdH1.) In particular, if divφ = 0 and φ vanishes on ∂Ωh,
we find ˆ

Ωh
φ · ph dx = 0.

Conversely, we show that if ph is orthogonal to all zero-divergence RT0 field with
vanishing flux through ∂Ωh, then it is a CR gradient. Assume we are given a 2D P0
vector field ph such that

´
Ωh
φ ·phdx = 0 for all ph ∈ RT00(T h) with zero divergence.

Let x0, x1 ∈ N (T h) be two midpoints of edges of the triangulation and assume we are
given two different piecewise linear simple paths from x0 to x1, intersecting at most
once each triangle by joining two nodes of N (T h) by a straight segment. Letting
u(x0) = 0, we can integrate ph along each path Γi, i = 1, 2, to obtain two different
values ui(x1), i = 1, 2. If these values are the same (i.e. independent on the path),
the circulation of ph along the path Γ1 followed by Γ2 will be zero, which in turn
implies that ph is a CR gradient.

In fact, we can identify each path with a Raviart-Thomas vector field φi, such
that the flux through an edge is 1 when the path crosses the edge, moving forward.
Then, φ = φ2 − φ1 is divergence free so thatˆ

ph · φ1dx =

ˆ
ph · φ2dx.

The same computation as before shows that this is equivalent to u1(x1) = u2(x1).

2.4. Further obvious remarks. Given u ∈ V (T h), we may define a P0 func-
tion u0 by averaging u in each triangle T ∈ T h. Obviously (as u is affine in T ), the
value thus obtained is the same as the value in the center (of mass) cT of the triangle,
and the average of the three mid-point values of the edges. One hasˆ

T

|u(x)− u(cT )|dx ≤ |Dhu(T )|
ˆ
T

|x− cT |dx ≤ h|T ||Dhu(T )|.

In particular, summing on all triangles we find that:

(2.9) ‖u− u0‖L1(Ωh) ≤ h
ˆ

Ωh
|Dhu|dx.
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The same would also clearly hold with a Lp norm on both sides, replacing the L1

norm, for p ∈ [1,∞]. See for instance [13] for more general estimates.

3. Definition of a Crouzeix-Raviart discrete total variation.

3.1. Definition, and approximation properties. Given then u ∈ V (T h), we
define the approximate total variation

(3.1) Jh(u) :=

ˆ
Ωh
|Dhu|dx =

∑
T∈T h

|T ||Dhu(T )|.

Here we recall that Dhu(T ) is the gradient of u in each triangle T (and not across the
edges of the triangles). In this section, we show that in a variational sense, Jh is an
approximation of the total variation.

The following result is obvious, considering the analysis in the previous sections.
We assume that we are given an arbitrary family of triangulations T h, with h→ 0.

Proposition 3.1. Jh Γ-converges to the total variation (1.1) as h→ 0, in L1(Ω),
as well as for the distributional convergence.

Although the latter convergence is quite weak, we will see later on that without
further assumption on the triangulations we can hardly hope for compactness in a
better sense. For functional with growth p > 1, [38] propose a more precise approach
to convergence (for regular meshes).

Proof. As we have seen, for any u ∈ L1(Ω) with finite total variation, one can
build uh which will go to u as h → 0, and such that Jh(uh) → |Du|(Ω). Conversely,
if uh is a sequence which converges to some u and suph Jh(uh) < +∞, then clearly
ph(x) is bounded as a measure and converges weakly-∗ (up to subsequences) to some
measure p ∈ M(Ω;R2). The fact that p is orthogonal to zero divergence fields is
is easy to show by approximating compactly supported smooth vanishing divergence
fields with RT0 fields and using Lemma 2.4. Moreover one obviously have

ˆ
Ω

|p| ≤ lim inf
h→0

Jh(uh).

It remains therefore to show that p = Du. This will follow from the compactness
result which we now state in Proprosition 3.2.

Proposition 3.2. Let uh ∈ V (T h) such that suph J(uh) < +∞. Then, there
exists a subsequence (uhk) and a constant chk ∈ R, and u ∈ BV (Ω), such that
uhk − chk → u in the sense of distributions in Ω as k → ∞ (and |Du|(Ω) ≤
lim infk Jhk(uhk)).

Moreover, if we assume that the triangulations are uniformly regular (in the clas-
sical sense: there exists θ̄ > 0 such that the angles of the triangles are all larger than
θ̄, or equivalently, there exists δ > 0 such that for any triangle T = (v1, v2, v3) ∈ T h,
h3 ≥ δ|v3 − v1| where h3 = dist (v3, (v1, v2)) is the height of T from v3), then the
convergence uhk − chk → u is strong in Lp(Ω) for any p < 2, and weak in L2(Ω).

Proof. As we have seen, up to a subsequence, phk := Dhku
hk ∗

⇀ p as measures
and p = Du for some function u ∈ BV (Ω). We need to show that u is the limit of
the uhk (up to constants).

First, without further assumption on the triangulations, the following is true:
given φ a C1, compactly supported field and φh the RT0 fields obtained by evaluating
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the fluxes of φ across the edges of T h, one still has thanks to (2.8):ˆ
Ωhk

uhkdivφhkdx = −
ˆ

Ωhk
φhk ·Dhku

hkdx→ −
ˆ

Ω

φ ·Du =

ˆ
Ω

udivφdx

as k →∞. The first integral, on the other hand (using the notation of Section 2.4) is
also∑
T⊂Ω

ˆ
T

uhk(x)dx
1

|T |

ˆ
T

divφ(y)dy =
∑
T⊂Ω

uhk0 (T )

ˆ
T

divφ(y)dy =

ˆ
Ωh
uhk0 divφ(y)dy

so that we conclude that uhk0 → u (up to constants, one should for instance remove
the averages of all the functions) in the distributional sense (and uhk as well, thanks
to (2.9)).

We now assume in addition that the triangulations are uniformly regular, and
consider again the P0 functions uh0 . Observe that the jump of uh0 across an edge
[v2, v3] common to two triangles T = (v1, v2, v3) and T ′ = (v2, v3, v4) is given by
Dhu

h(T ) ·(2v1−v2−v3)/6−Dhu
h(T ′) ·(2v4−v2−v3)/6 (we recall that uh0 (T ) is both

given by the average of uh in T triangle and by the middle value uh((v1 +v2 +v3)/3)).
Hence,

|uh0 (T )− uh0 (T ′)||v3 − v2|

≤ |Dhu
h(T )| |v3 − v2||2v1 − v2 − v3|

6
+ |Dhu

h(T ′)| |v3 − v2||2v4 − v2 − v3|
6

.

By the regularity assumption, |v3−v2||2v1−v2−v3| ≤ |v3−v2||v1−v2|+ |v3−v2||v1−
v3| ≤ 2|T |/δ, hence

|uh0 (T )− uh0 (T ′)||v3 − v2| ≤
1

3δ

(
|T ||Dhu

h(T )|+ |T ′||Dhu
h(T ′)|

)
.

Summing on all the edges, it follows that (seing the P0 function uh0 as a piecewise
constant function with bounded variation)ˆ

Ωh
|Duh0 | ≤

1

δ
Jh(uh).

Hence, up to a constant, uh0 is bounded in L2(Ω) and compact in Lp(Ω), p < 2. We
conclude thanks to (2.9). We could have used general estimates for nonconforming
finite elements, such as found in [13, Chap. 10].

3.2. The measure of straight lines. The Green formula (2.8) shows that Jh
satisfies the following lower estimate, for u ∈ V (T h) and φh a RT0 field:

(3.2) Jh(u) ≥ sup

{ˆ
∂Ωh

uφh · νΩhdH1 −
ˆ

Ωh
udivφhdx : |φh(cT )| ≤ 1 ∀T ∈ T h

}
,

where we recall that cT refers to the center of the respective triangle T .
This formula would be an interesting way to build lower estimates for variational

problems involving Jh if it were easy to build test RT0 fields φh satisfying the con-
straint, possibly from fields in the continuum. However, it is easy to check that given
φ ∈ C∞c (Ω;R2) with |φ| ≤ 1 everywhere, the RT0 projection φh defined by assigning
on each edge of the triangulation the flux of φ through the edge needs not satisfy
|φh(cT )| ≤ 1 (and can be substantially larger, independently on the mesh size h).

There is however one trivial situation where this can be used, and we obtain the
following result, valid for any triangulation T h of Ω:
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ν

x
·ν

=
a

v1

v2

v3

Dhu
h

Fig. 4. The figure shows the function uh and its gradient for one triangle T = (v1, v2, v3)
approximating the characteristic function of the half space x · ν > a with ν = (1, 0) and a ∈ R.
The function uh inside the triangle is affine with a gradient Dhu

h which is simply a mutiple of the
normal ν.

Proposition 3.3. Let ν ∈ S1 be a unit vector, a ∈ R and u = χ{x·ν>a}. Let uh

be the projection of u on CR functions, obtained by letting Dhu
h(T ) = νH1({x · ν =

a} ∩ T )/|T | in each triangle T ∈ T h. Then for any CR function v with v = uh on
N (T h) ∩ ∂Ωh,

Jh(v) ≥ Jh(uh) = H1({x · ν = a} ∩ Ωh).

The proposition shows (see also Figure 4) that in some sense, the discrete functional
Jh is perfectly isotropic, as its minimal value for a straight edge coincides with the
length of the edge whatever the direction ν. We will see soon that unfortunately, this
is not enough to make Jh a “perfect” approximation of the total variation.

Proof. The fact that Jh(uh) = H1({x ·ν = a}∩Ωh) follows from (2.4). The other
inequality follows from (3.2). Indeed, consider the constant field ν, which is of course
a particular RT0 field defined on T h with norm less or equal to 1. We have therefore:

Jh(v) ≥
ˆ

Ωh
ν ·Dhv =

ˆ
Ωh
ν ·Dhu

h+

ˆ
Ωh
ν ·Dh(v−uh) = Jh(uh)+

ˆ
Ωh
ν ·Dh(v−uh).

Now, thanks to (2.8),

ˆ
Ωh
ν ·Dh(v − uh) =

ˆ
∂Ωh

(v − uh)ν · νΩh

and this vanishes since we have assumed that v = uh on all the midpoints of the edges
of the triangles which form ∂Ωh.

3.3. A general duality formula. A natural question is whether equality holds
in (3.2). The answer is clearly no, since one can check that the right-hand side
of (3.2) depends only on the average values (in the middle of each simplex) of u,
while Jh depends on the full function. The precise answer is as follows: give ū a P0
function, constant with value uT on each element T , we let

(3.3) J0
h(ū) = min

{
Jh(u) : u ∈ V (T h), u(cT ) = ūT ∀T ∈ T

}
.

Then, it holds the following
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T+
0,0

T+
0,1

T+
0,2

T+
1,0

T+
1,1

T+
1,2

T+
2,0

T+
2,1

T+
2,2

T−0,0

T−0,1

T−0,2

T−1,0

T−1,1

T−1,2

T−2,0

T−2,1

T−2,2

C0,0

C0,1

C0,2

C1,0

C1,1

C1,2

C2,0

C2,1

C2,2

U(·, 0) = 1, V (·, 0) = 0

U(·, 1) = 0, V (·, 1) = 1

U
(0
,·

)
=

1
,
V

(0
,·

)
=

1

U
(1
,·

)
=

0
,
V

(1
,·

)
=

0

Fig. 5. Discretization of the unit square Ωh = [0, 1]2, h = 1/3 using squares C0,0, ..., C2,2 each

of size h2. Each square Ci,j is then divided into an upper triangle T+
i,j and a lower triangle T−i,j .

The nodes of the mesh, represented as black dots, are in the middle of the edges of the triangles.
Note the boundary conditions imposed by the functions U(x, y) and V (x, y).

Theorem 3.4. For any u ∈ V (T h) and ū := (u(cT ))T∈T h ,

(3.4) J0
h(ū) = sup

{
−
ˆ

Ωh
udivφhdx : φh ∈ RT00(T h) , |φh(cT )| ≤ 1 ∀T ∈ T h

}
.

We give a proof of this in Appendix A, for more general discretizations of Sobolev
semi-norms. Note also that this can be derived from a similar result in [15] (the proof
we propose is however simpler and easily seen to hold in any dimension).

3.4. The bad news: diffuse solutions. Proposition 3.3 shows that in theory,
Jh is an excellent approximation of the total variation, which does not suffer from
metrication errors or anisotropy as most other, in both the finite differences (such as
graph based TVs [9], “isotropic” `2-TV [18]) or finite elements (P1 based [4]) settings.
However, we will show that it does not mean that the corresponding solution is always
sharp: we now show a particular example where in addition to the projection uh

(which is sharp), we can build infinitely many other solutions with the same energy
(and a transition width which of course will go to zero as h → 0), for which the
transition occurs across a large number of elements.

The setting is as follows: Ω = Ωh = [0, 1]2, h = 1/n, n ≥ 1 divided in squares
Ci,j = [(ih, jh), ((i + 1)h, jh)) × [(ih, jh), (ih, (j + 1)h)) for i = 0, . . . , n − 1, j =
0, . . . , n − 1. Then, each square Ci,j is divided into two triangles T±i,j with T−i,j =

Ci,j ∩{x+ y ≤ (i+ j+ 1)h} and T+
i,j = Ci,j ∩{x+ y > (i+ j+ 1)h}, see Figure 5. We

recall that the nodesN ({T±i,j}) of the mesh are the middle of the edges of the triangles,
hence, here, the points ((i+ 1/2)h, jh), (ih, (j + 1/2)h), and ((i+ 1/2)h, (j + 1/2)h).

Consider now the boundary conditions U(x, y) = 1 if x = 0 or y = 0, U(x, y) = 0
if x = 1 or y = 1, and V (x, y) = 1 if x = 0 or y = 1, and V (x, y) = 0 if x = 1 or
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y = 0. Clearly, Proposition 3.3 shows that the problems

(3.5) min
u=U on ∂Ω∩N ({T±i,j})

Jh(u) and min
v=V on ∂Ω∩N ({T±i,j})

Jh(v)

where the minimizers are taken on CR functions on the mesh {T±i,j}, have both value√
2. Moreover, a solution is given, for the first, by u = χ{x+y≤1} (that is, the exact

solution) on all nodes with i + j 6= n, and u ∈ [0, 1] in any node with i + j = n.
For the second we can find a solution considering the projection of χ{x≤y} on the
CR functions: that is, the functions v with v(x, y) = 1 on all nodes with x < y,
v(x, y) = 0 on all nodes with x > y, and v(x, y) = 1/2 on the nodes with x = y. We
claim that if there are infinitely many solutions to the first problem in (3.5), they are
all concentrated (their gradient is not zero only near the axis x+y = 1) and may differ
from u only near the line {x + y = 1}. On the other hand, there are also infinitely
many solutions to the second, but now they can be very diffusive, and in particular
solutions v′ with 0 < v′ < 1 on all the interior nodes.

To prove the first claim, we observe that for any solution u and for all i, u has to
go from 1 to 0 along the “vertical” chain of vertices ((i + 1/2)h, j), j = 0, . . . , n. It
follows that

´
Ω

(Dhu)1dx = −1. Similarly,
´

Ω
(Dhu)2dx = −1. Hence,

2 = −
ˆ

Ω

(Dhu)1 + (Dhu)2dx ≤
√

2

ˆ
Ω

|Dhu|dx

using the 2D Cauchy-Schwartz inequality, pointwise. Since the right-hand side of this
expression is also 2, it means that these inequalities are in fact equalities, and in
particular that for a.e. x, (Dhu)1(x) = (Dhu)2(x). As a consequence, in each triangle
T±i,j , the values of u at the middle of the two shorter edges are equal. Using the
boundary condition, it follows that u is unique except possibly on the middle vertices
with x + y = 1 and thus in the triangles which contain them. It is easy to see that
one can assign any arbitrary value u(ih+h/2, (n− i)h−h/2) ∈ [0, 1]. at each of these
nodes without changing the value of the energy.

We now focus on the second claim. Observe that if v is a minimizer of the second
problem in (3.5), one must have now, for the same reasons as for u,

2 =

ˆ
Ω

(Dhv)1 − (Dhv)2dx ≤
√

2

ˆ
Ω

|Dhv|dx = 2

so that (Dhv)1 = −(Dhv)2 ≥ 0 a.e.
But now, this just imposes that the value of v in the middle of the longer edge of

each triangle is the average of the two values in the middle of the shorter edges. More-
over, any CR function v which satisfies this condition and is globally nondecreasing
from 0 to 1 along the nodes in the direction (−1, 1) has minimal energy (as it will
satisfy equality in the above equation).

Let us build a solution v “as diffusive as possible” (we would like to make this
claim rigorous, however it is not clear how).

To simplify: we will look for solutions which satisfy the symmetry, for all (x, y) ∈
(0, 1)2,

v(x, y) + v(y, x) = 1.

In fact, if v is an arbitrary solution, then so is (x, y) 7→ 1 − v(y, x), hence so is also
1/2 + (v(x, y) − v(y, x))/2 which has the above symmetry and essentially a larger
transition than v. Hence assuming this symmetry is not too restrictive when looking
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(a) n = 10 (b) n = 100 (c) n = 1000 (d) n = 10000

Fig. 6. The smooth transition for different numbers of n, where we only plot the values
vi+1/2,j+1/2. Observe that only for a very fine mesh (n = 10000) we obtain a reasonably sharp
transition.

for diffuse solutions. Similarly, we will assume that v is symmetric with respect to
the axis {x+ y = 1}: v(x, y) = v(1− y, 1− x).

In particular, we have that v′(x, x) = 1/2, and v′(x, y) ≤ 1/2 if x ≥ y. We build
a v in {y ≤ x ≤ 1 − y}. We claim (and this is all we know for sure) that this is the
solution with the largest values vi−1,1/2, vi,1/2, 1 ≤ i ≤ n.

The first observation is that if v1/2,1/2 = 1/2, then the largest possible value for
v1,1/2 is also 1/2. But then, since v3/2,0 = 0, one has v3/2,1/2 = 1/4. Then the largest
possible value v2,1/2 is also 1/4, etc. One finds that the largest possible value of v in
the first line is by taking v(i−1/2),1/2 = vi,1/2 = 1/2i+1.

We build then v by assuming that it is constant on the triangles T+
i,j , at least

as long as i + j < n. It will be clear later on why a “bad” v has to have such an
oscillating gradient. One has

• vi+1/2,i+1/2 = 1/2 for i ≥ 0;
• vi+1/2,0 = 0 for i ≥ 0;
• vi+1/2,j+1/2 = vi+1,j+1/2 = vi+1/2,j+1 for i ≥ j ≥ 0, i+ j ≤ n− 1;
• vi+1/2,j+1/2 = (vi,j+1/2 + vi+1/2,j)/2.

In particular, we deduce that

vi+1/2,j+1/2 =
vi−1/2,j+1/2 + vi+1/2,j−1/2

2
.

Now, we introduce the variables ξi+ji−j = vi+1/2,j+1/2. One has ξ2i
0 = 1/2 for i ≥ 0, and

ξml =
ξm−1
l−1 + ξm−1

l+1

2
=

1

4
ξm−2
l−2 +

1

2
ξm−2
l +

1

4
ξm−2
l+2 .

For m even and l = 2, this reduces to

ξm2 =
1

8
+

1

2
ξm−2
2 +

1

4
ξm−2
3 .

Denoting now, ζml = ξ2m
2l , l ≥ 1, we find that (ζ0

l = 0 and) for m ≥ 1,

ζm =
1

4


2 1 0 0 . . .

1 2 1 0
. . .

0 1 2 1
. . .

...
. . .

. . .
. . .

. . .

 ζm−1 +


1
8
0
0
...


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Denoting B the matrix appearing in the recursion, we find that we must choose

(3.6) ζm =

(
m−1∑
l=0

Bl

)
1
8
0
...

 = (I −B)−1(I −Bm)


1
8
0
...

 .

From there, we can go back to build v in {y < x < 1 − y}, and then by symmetry
in the whole square [0, 1]2. This shows that one can find a solution v, in that case,
with a quite large transition layer. Of course any convex combination between this
function and the function which is 1/2 only at nodes where x = y, and equal to χ{y>x}
elsewhere, provides another solution.

In (3.6), we did not specify the size of the matrices: in fact, it is enough to take
these of size larger than n/2 to compute v in a mesh of size n×n. Choosing therefore
M > n/2 we consider the M ×M matrix

1

4



2 1 0 0 . . .

1 2 1 0
. . .

0 1 2 1
. . .

...
. . .

. . .
. . .

. . .

0 . . . 0 1 2


This matrix has the M eigenvectors ek = (sin(lkπ/(M+1)))Ml=1, for k = 1, . . . ,M , cor-
responding to the eigenvalues, respectively, (1+cos(kπ/(M+1)))/2 = cos2(kπ/(2(M+
1))). One can therefore compute (at least numerically) solutions ζm for large values
of m, using that

(3.7) 〈ζm, ek〉 =
1− cos2m(kπ/(2(M + 1)))

4 sin(kπ/(2(M + 1)))
cos(kπ/(2(M + 1)))

and ζm =
∑
k 〈ζm, ek〉ek/‖ek‖2. We show in Fig. 6 a plot of the corresponding

function v for various n.

4. Implementation with adaptive meshes in 2D. In this section we propose,
for a quadrangular mesh in 2D, an adaptive CR finite elements discretization which
is based on the important observation that the triangulation (T±i,j) in Section 3.4
shares the same nodes as the triangulation obtained by dividing each Ci,j in the other
possible way, that is, along the axis {x− ih = y − jh}.

Let us define v′ as the function which is equal to v (defined in the previous
section) on the nodes, but is now a CR function on the flipped mesh. Then, in all
the squares Ci,j where v was constant in one of the triangles T±i,j (T+

i,j for i+ j < n,

T−i,j for i + j > n), one observes that Dhv
′ is either horizontal or vertical so that

|Dhv
′| = |(Dh)1v

′|+ |(Dh)2v
′| =: |Dhv

′|1 (with an obvious notation).
Let Sh =

⋃
i+j=n Ci,j be the remaining squares (where, in fact, it is easy to see

that v′ = v), and S̃h = {1− h ≤ x+ y ≤ 1 + h} ⊃ Sh. By minimality, we must have
that (we use Dhv = 0 in S̃h \ Sh, v = v′ in Sh)

√
2h =

ˆ
S̃h

|Dhv|dx =

ˆ
Sh

|Dhv|dx =

ˆ
Sh

|Dhv
′|dx.
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It yields that

2 =

ˆ
Ω

|Dhv
′|1dx =

ˆ
Ω\Sh

|Dhv
′|dx+

ˆ
Sh

|Dhv
′|1dx

=

ˆ
Ω

|Dhv
′|dx+

ˆ
Sh

|Dhv
′|1 − |Dhv

′|dx ≤
ˆ

Ω

|Dhv
′|dx+ (

√
2− 1)

ˆ
Sh

|Dhv
′|dx.

Hence, we see that in the new triangulation,

(4.1)

ˆ
Ω

|Dhv
′|dx ≥ 2− (2−

√
2)h.

This is much larger than the optimal value of
√

2. It means that if we had minimized
here the maximum of the discrete total variation over the two possible triangulations,
such a bad solution would have been ruled out and we would have recovered in the
best solution.

We clearly see that we could even do better: we could choose in each square Ci,j
the best triangulation. This is what we describe in the next section.

4.1. Total variation on a square mesh. As before, we use an image domain
Ω = [0, 1]2, set the scale parameter h = 1/N , with N ≥ 1, and discretize Ω into
N ×N squares of size h × h. As mentioned above, given such a square mesh in 2D,
we can build (2N

2

) different triangulations by cutting each square into two triangles,
in two possible ways. It is particularly remarkable that in this case, the nodes of the
Crouzeix-Raviart spaces associated to these triangulations, which are the middle of
the edges, remain the same. As a consequence, given the values on the nodes, we
can introduce an approximation of the total variation given by the maximum, over
all possible triangulations, of the discrete functional (3.1).

As shown in Figure 5 we need to store values of the image u in the middle of each
horizontal and vertical edge as well as in the centers of each square. Therefore we
introduce the three index sets Ih, Iv, and Ic which are given by

Ih =
{
i = ((i+ 1

2 ), j) : 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N
}
,

Iv =
{
i = (i, (j + 1

2 )) : 0 ≤ i ≤ N, 0 ≤ j ≤ N − 1
}
,

Ic =
{
i = ((i+ 1

2 ), (j + 1
2 )) : 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1

}
.

We also set I = Ih ∪ Iv ∪ Ic, which refers to the complete set of nodal values. Note
that |Ih| = |Iv| = N(N + 1) and |Ic| = N2, hence, |I| = 3N2 + 2N . This shows that
the proposed discretization of the total variation increases the number of variables
roughly by a factor of three. A more memory efficient (but also more diffusive)
version is proposed in section B.

The discrete image is now given by a vector u ∈ RI , where we can (by a slight
abuse of notation) identify the values of the discrete image with the values of the
underlying piecewise affine CR function by means of ui = u(ih) for all i ∈ I.

Next, we introduce the linear operators D1, D2 : RI 7→ RIc×4, each of them
computing per square i ∈ Ic the 4 possible differences out of the 5 nodal values.

(D1u)i =


(D1u)i,1
(D1u)i,2
(D1u)i,3
(D1u)i,4

 =


ui − u

i−(
1
2 ,0)

ui − u
i−(0,

1
2 )

u
i+(

1
2 ,0)
− ui

u
i+(0,

1
2 )
− ui

 ,



18 A. CHAMBOLLE AND T. POCK

and

(D2u)i =


(D2u)i,1
(D2u)i,2
(D2u)i,3
(D2u)i,4

 =


u
i+(

1
2 ,0)
− ui

ui − u
i−(

1
2 ,0)

ui − u
i−(0,

1
2 )

u
i+(0,

1
2 )
− ui

 ,

for all i ∈ Ic, where D1 computes the differences for the first triangulation (the
one shown in Figure 5) and D2 computes the differences of the second triangulation.
Moreover, we define the operator D : RI 7→ RIc×4×2 , which simply combines the two
preceding operators such that

(Du)i = ((D1u)i, (D2u)i) , ∀i ∈ Ic.

We are now ready to state the proposed discretization of the total variation, denoted
as adaptive Crouzeix-raviart (ACR). It is defined as the energy

(4.2) Jh(u) = h
∑
i∈Ic

f((Du)i).

Let ξ ∈ R4×2 with

ξ =


ξ1,1, ξ1,2
ξ2,1, ξ2,2
ξ3,1, ξ3,2
ξ4,1, ξ4,2

 =


(D1u)i,1, (D2u)i,1
(D1u)i,2, (D2u)i,2
(D1u)i,3, (D2u)i,3
(D1u)i,4, (D2u)i,4

 ,

the function f : R4×2 7→ R is given by

(4.3) f(ξ) = max
{(√

ξ2
1,1 + ξ2

2,1 +
√
ξ2
3,1 + ξ2

4,1

)
,
(√

ξ2
1,2 + ξ2

2,2 +
√
ξ2
3,2 + ξ2

4,2

)}
.

The function f computes on each square the maximum of the total variation for each
of the two possible triangulations. Then, the local contributions are summed over all
squares, which gives our proposed adaptive total variation.

In some applications, the given image datum might not be given as averages along
the edges of the triangles but rather as averages across pixels. In order to relate the
edge values of the triangles to such pixel averages, we introduce a linear operator
A : RI 7→ RIc which computes the averages of the two triangles corresponding to the
images pixels:

(Au)i =
2ui + u

i−(
1
2 ,0)

+ u
i+(

1
2 ,0)

+ u
i−(0,

1
2 )

+ u
i+(0,

1
2 )

6
, ∀i ∈ Ic.

Remark 4.1. Before proceeding with imaging applications, we would like to com-
ment on the proposed discrete ACR energy.

• In (4.3), we are minimizing the maximum of two convex functions, which in
general is larger than the minimal value of the single functions. Hence, it
could happen that we slightly overestimate the value of the total variation.
In numerical results it turns out that such a case is rare, but may occurs,
for example, if the orientation of a line discontinuity is {π/8, 3π/8, ...}, see
the second row in Table 1. However, this difference is only marginal and has
almost no influence on the quality of the solution.



CROUZEIX-RAVIART TOTAL VARIATION 19

• Instead of minimizing the maximum of the two functions, we could have
minimized the average as well. While this seems slightly simpler from an
optimization point of view, it leads to blurrier results and does not allow to
identify the mesh afterwards.

4.2. Application to image processing problems. In order to apply the pro-
posed ACR discretization of the total variation to image processing problems, we
consider generic optimization problems of the form

(4.4) min
u
F (Du) +G(Au) +H(u),

where F (Du) = λJh(u) with λ > 0 being a regularization parameter. For simplicity
we set h = 1, because if h 6= 1, its value can always be lagged into the regularization
parameter λ.

The functions G and H are convex functions representing boundary conditions
or data fidelity terms. Observe that while the function G is defined on pixel averages
the function H is defined on nodes of the triangles which corresponds to the edge
averages. This allows to adapt the proposed discrete version of the total variation
to the specific properties of different applications. For example, a data fidelity term
with respect to a noisy image might be better specified based on the pixel averages
while a boundary condition might be better specified based on the edge averages. We
shall assume here that the functions G and H are of the form G(v) =

∑
i∈Ic gi(vi)

and H(u) =
∑

i∈I hi(ui) which will allow to efficiently compute their proximal maps.
As the problem (4.4) represents a non-smooth convex optimization problem, we

follow [20] and consider instead its saddle-point formulation

(4.5) min
u

max
p,q
〈Du,p〉P + 〈Au, q〉Q +H(u)−G∗(q)− F ∗(p),

where p = (pi)i∈Ic ∈ RIc×4×2, with pi ∈ R4×2, and q = (qi)i∈Ic ∈ RIc with qi ∈ R
are the dual variables. The function F ∗ denotes the convex conjugate of the function
F . It is given by

F ∗(p) =
∑
i∈Ic

f∗(pi/λ),

where f∗ refers to the convex conjugate of the function f defined in (4.3). Likewise,
the function G∗ denotes the convex conjugate of the function G. The inner products
〈·, ·〉P and 〈·, ·〉Q are given by

〈Du,p〉P =
∑
i∈Ic

4∑
m=1

2∑
n=1

(Du)i,m,npi,m,n, 〈Au,q〉Q =
∑
i∈Ic

(Au)iqi.

We will also make use of the adjoint operators D∗ : RIc×4×2 7→ RI and A∗ : RIc 7→
RI which are defined through the identities 〈Du,p〉P = 〈u,D∗p〉U and 〈Au, q〉Q =
〈u,A∗q〉U with inner products 〈·, ·〉U given by

〈u,D∗p〉U =
∑
i∈Ic

ui (D∗p)i, 〈u,A∗q〉U =
∑
i∈Ic

ui (A∗q)i.

Moreover, we need to evaluate the proximal operators with respect to the functions
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F ∗, G∗ and H. Thanks to their structure, they decompose into local operations:

û = prox τH(ū) ⇐⇒ ûi = prox τhi
(ūi), ∀i ∈ I,

q̂ = prox σG∗(q̄) ⇐⇒ q̂i = prox σg∗i (q̄i), ∀i ∈ Ic,
p̂ = prox σF∗(p̄) ⇐⇒ p̂i = prox σf∗(·/λ)(p̄i) ∀i ∈ Ic.

The proximity operators with respect to the functions σg∗i and τhi are usually easy to
compute (also thanks to Moreau’s identity) as the functions gi and hi usually represent
jsut boundary conditions or simple 1D functions, see [23] for standard examples. The
proximity operator with respect to the function σf∗(·/λ) is more complicated but
fortunately it also admits a closed form solution, see Appendix C for details.

We solve the saddle-point problem (4.5) using the first-order primal-dual algo-
rithm studied in [20, 21]. The algorithm is as follows: Choose u0 ∈ RI , p0 ∈ RIc×4×2,
and q0 ∈ RIc . Then for all k ≥ 0 compute:

(4.6)


uk+1 = prox τH

(
uk − τ

(
D∗pk +A∗qk

))
ūk = 2uk+1 − uk

pk+1 = prox σF∗
(
pk + σDūk

)
qk+1 = prox σG∗

(
qk + σAūk

)
It is shown in [20] that the algorithm converges as long as τσL2 < 1, where L =
‖(D,A)‖ is the operator norm of the linear operator (D,A). Moreover, its (partial)
primal-dual gap converges with rate O

(
1
K

)
, where K is the total number of iterations.

In case G and/or F ∗ are strongly convex one can choose optimal (iteration dependent)
step sizes such that the algorithm provides improved convergence rates, which in fact
are optimal in the sense of lower bounds of first-order methods, see [20, 21, 23] for
more details. Finally, the values of the pixel averages can be easily recovered as
ua = Au. In some applications, we observed that the central values uc = (ui)i∈Ic can
also be interesting as they can give sharper images and lower errors.

5. An error analysis. The aim of this section is to show for our non-conforming
P1 approximation of the total variation error bounds which are not worse than stan-
dard P1, and which can even be improved if some (geometric) regularity is known.
We address here the simple exemplar “ROF” [42] problem (1.3) for u� ∈ L∞(Ω) (and
τ = 1), and in order not to deal with boundary issues, we assume that Ω is polyhedral
so that the boundaries of the discretized domain and the original domain coincide.

In this section, we aim at comparing ū, solution of (1.3), with the solution û0
h of

(5.1) min
uh∈P0

J0
h(uh) +

1

2

ˆ
Ω

(uh − u�)2dx

where we use the P0 total variation (3.3).

5.1. Primal estimate. Given u ∈ BV (Ω), we consider u0
h and uch ∈ V (T h),

respectively, its projection onto P0 and CR elements in a given mesh T h. This means
that u0

h(T ) is the average of u on T ∈ T h while uch(x), x ∈ N (T h), is the average of

u on the facet whose x is the center of mass. We also let uc,0h the P0 function which
coincides with uch(cT ) on each element T .

Lemma 5.1. One has

(5.2) ‖u0
h − u

0,c
h ‖L1 ≤ h

d
|Du|(Ω)



CROUZEIX-RAVIART TOTAL VARIATION 21

(here d is the dimension, usually 2), and in particular ‖u0
h − u‖L1 ≤ ch|Du|(Ω) and

‖u0,c
h − u‖L1 ≤ ch|Du|(Ω).

Proof. Let us consider a simple element T , with center cT . One has

(5.3) u0
h(T ) =

1

|T |

ˆ
T

u(x)dx =
1

d|T |

ˆ
T

u(x)div (x− cT )dx

=
1

d|T |

ˆ
∂T

u(x)(x− cT ) · νT dHd−1 − 1

d|T |

ˆ
T

(x− cT ) ·Du.

On each facet of T , (x − cT ) · νT is exactly the height of the simplex orthogonal to
the facet, divided by (d+ 1) (3 in 2D). Using that the product of this height with the
area of the facet is precisely d|T |, we deduce that the boundary integral in (5.3) is
nothing but the average of the CR projection of u (as it is the average over the facets
of the average on each facet of u), uch(cT ). Hence (5.2) follows. (Observe that (5.3) is
also true if Du in the last integral is replaced with (Du− p) for p a constant vector,
so that we would also obtain a higher order error if u had more regularity.) The other
inequalities also follow, actually the first is classical (and easy to show) and the second
follows from the first and (5.2).

It follows that if ū is the solution of (1.3), its projection ū0,c
h satisfies

J0
h(ū0,c

h ) +
1

2

ˆ
Ω

|ū0,c
h − u

�|2dx ≤
(

1 + 2h‖u
�‖∞
d

)
|Dū|(Ω) +

1

2

ˆ
Ω

|ū0
h − u�|2dx

≤ (1 + Ch‖u�‖∞) |Dū|(Ω) +
1

2

ˆ
Ω

|ū− u�|2dx

It follows that

(5.4) (1 + Ch‖u�‖∞) |Dū|(Ω) +
1

2

ˆ
Ω

|ū− u�|2dx−
(
J0
h(û0

h) +
1

2

ˆ
Ω

|û0
h − u�|2dx

)
≥ 1

2

ˆ
Ω

|ū0,c
h − û

0
h|2dx.

We now need to show a similar estimate from above. We distinguish two cases.

5.1.1. First case: there exists a Lipschitz dual field. The Euler-Lagrange
equation for (1.3) can be written in the following form: there exists z̄ ∈ L∞(Ω;B(0, 1))
with

−div z̄ + ū = u�, z̄ ·Dū = |Du|

and z̄ · ν = 0 on ∂Ω (unless one solves (1.3) with some boundary condition). Here
the dot product z̄ ·Du has to be understood in the sense of Anzelotti, see [3], observe
also that z̄ is not unique (it can be modified outside of the support of |Du|). Convex
duality shows that

(5.5)

ˆ
Ω

|Dū|+ 1

2

ˆ
Ω

(ū− u�)2dx = min
u

ˆ
Ω

|Du|+ 1

2

ˆ
Ω

(u− u�)2dx

= sup
z,

z·ν=0 on ∂Ω

−
ˆ

Ω

1

2
|div z|2 + u�div z dx = −

ˆ
Ω

1

2
|div z̄|2 + u�div z̄ dx.
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Similarly thanks to (3.4), one has, introducing u�h the orthogonal projection of u� on
P0 functions,

(5.6) J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − u�h)2dx = min

uh∈P0
J0
h(uh) +

1

2

ˆ
Ω

(uh − u�h)2dx

= max

{
−
ˆ

1

2
|div zh|2 + u�hdiv zh dx : zh ∈ RT00(T h) , |zh(cT )| ≤ 1 ∀T ∈ T h

}
.

We denote ẑ0
h a maximizer of the dual problem, then, one has ûh = u�h + div ẑ0

h.
We first assume that there exists a dual field z̄ which is L-Lipschitz. The existence

of a Lipschitz field can be asserted in some situations. For instance, if u� is the
characteristic of a disk of radius R and Ω the whole plane, then z̄(x) = x/R for
|x| ≤ R and Rx/|x|2 for |x| ≥ R is a possible field, which is (1/R)-Lipschitz. It is yet
unclear in general what conditions on u� and the domain are necessary for such a field
to exist. In 2D, it could be that bounded is enough, in a convex domain (as, at least
on the support of |Du|, the curvature of the level set, which is bounded by 2‖u�‖∞, is
essentially controlling the gradient of z̄, which is the normal to the level sets; however
it is unclear if one can extend z̄ into a global Lipschitz field out of the support of
|Du|). In general (and in higher dimension) no such regularity is known; we believe
however that it could be expected if the level sets of u� have some smoothness.

Under this assumption, let us project z̄ onto RT0 elements, defining a Raviart-
Thomas field z̄h: this is simply done by computing the flux of z̄ accross each edge of the
triangulation (or facet in higher dimension). (We also observe that as a consequence
div z̄h is the (L2-) orthogonal projection of div z onto the P0 fields.) Clearly, in each T ,
up to an error Lh this flux is close to the flux of the fixed center value z̄(cT ). We find
that the Raviart-Thomas projection z̄h of z̄ is, in T , at distance at most Lh of z̄(cT ):
hence globally one has ‖z̄h(x)‖ ≤ 1 + Lh, and in particular letting z̄′h = z̄h/(1 + Lh),
we find a field which is admissible in the dual problem (5.6). As a consequence,

(5.7) −
ˆ

Ω

1

2
|div z̄|2 + u�div z̄ dx = −1

2

ˆ
Ω

|div z̄ + u�|2dx+
1

2

ˆ
Ω

|u�|2dx

≤ −1

2

ˆ
Ω

|div z̄h + u�h|2dx+
1

2

ˆ
Ω

|u�|2dx

= −
ˆ

Ω

1

2
|div z̄h|2 + u�hdiv z̄h dx+

1

2

ˆ
Ω

|u� − u�h|2dx

Then, we write, using (5.6):

(5.8) −
ˆ

Ω

1

2
|div z̄h|2 + u�hdiv z̄h dx

= −(1 + Lh)

ˆ
Ω

1

2
|div z̄′h|2 + u�hdiv z̄′h dx−

Lh(1 + Lh)

2

ˆ
Ω

|div z̄′h|2dx

≤ −(1 + Lh)

ˆ
Ω

1

2
|div ẑ0

h|2 + u�hdiv ẑ0
h dx

= (1 + Lh)

(
J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − u�h)2dx

)
.
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From (5.7)-(5.8), we deduce

(5.9)

ˆ
Ω

|Dū|+ 1

2

ˆ
Ω

(ū− u�)2dx

≤ (1 + Lh)

(
J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − u�h)2dx

)
+

1

2

ˆ
Ω

|u� − u�h|2dx

≤ J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − u�)2dx+ Ch

where the constant C depends on L and the minimal energy.
Together with (5.4), we deduce that

(5.10) ‖ū0,c
h − û

0
h‖L2(Ω) ≤ C

√
h

with a constant C depending on L and the minimal energy. Observe that the same
rate is proven in [7] without any assumption (such as here, on z̄), however for a simpler
(`1-based, or anisotropic) total variation, which is easier to discretize on a square grid
or structured mesh.

5.2. Second case: simpler domain, u� (slightly) regular. If we don’t know
whether a Lipschitz z̄ exists, it is a bit harder to show estimates, which are a bit
weaker. The easiest way is to follow the strategy in [43]. To simplify (a lot) we assume
our domain is periodic (that is, a torus). In this case, we introduce a parameter ε > 0
and a smoothing kernel, and replace z̄ with z̄ε := ηε ∗ z̄ which is c/ε-Lipschitz (where
c =

´
|∇η|dx). We the project this smoothed vector field onto Raviart-Thomas fields:

it gives a field z̄ε,h with |z̄ε,h| ≤ 1 + ch/ε. First observe that (5.8) still holds exactly
as before, with L replaced with c/ε and z̄h replaced with z̄ε,h.

Next, we write that (denoting ūε = ηε ∗ ū, u�ε = ηε ∗ u�):

−
ˆ

Ω

u�div z̄ dx = −
ˆ

Ω

u�ū dx+

ˆ
Ω

(u�)2dx =

= −
ˆ

Ω

u�ūε dx+

ˆ
Ω

u�(ūε − ū) dx+

ˆ
Ω

(u�)2dx

= −
ˆ

Ω

u�div z̄ε dx+

ˆ
Ω

u�(ūε − ū) dx+

ˆ
Ω

u�(u� − u�ε) dx.

One has ‖ūε − ū‖L1 ≤ Cε where C depends on |Dū|(Ω), hence

−
ˆ

Ω

1

2
|div z̄|2 + u�div z̄ dx

≤ −
ˆ

Ω

1

2
|div z̄ε|2 + u�div z̄ε dx+ ‖u�‖L∞(Cε+ ‖u� − u�ε‖L1)

≤ −
ˆ

Ω

1

2
|div z̄ε,h|2 +u�div z̄ε,h dx+

1

2

ˆ
Ω

(u�−u�h)2dx+‖u�‖L∞(Cε+‖u�−u�ε‖L1)

where for the last estimate we have argued as in (5.7). We now deduce:

(5.11)

ˆ
Ω

|Dū|+ 1

2

ˆ
Ω

(ū− u�)2dx

≤ J0
h(û0

h) +
1

2

ˆ
Ω

(û0
h − u�)2dx+ C

h

ε
+ Cε+ C‖u� − u�ε‖L1 ,
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now C depending on the minimal energy, η, and ‖u�‖∞. The error estimate now
depends on the initial smoothness of u� and the speed at which it is approximated by
u�ε, as for instance in [43] where a few cases are discussed. If, to simplify, we assume
u� ∈ BV (Ω), then the last two terms are of the same order and the optimal choice of
ε is of order

√
h, yielding the estimate

(5.12) ‖ū0,c
h − û

0
h‖L2(Ω) ≤ Ch1/4,

obviously weaker than (5.10).

6. Numerical experiments.

6.1. Comparisons to the state-of-the-art. In order to compare our pro-
posed ACR scheme to the state-of-the-art, we have chosen four different discretization
schemes.

First, we compare to the most simple and most commonly used scheme, which
is based on forward differences on a regular grid, as in (1.2) (see for instance [18]).
This scheme suffers from an anisotropy, which is induced by the bias of the forward
differences, as shown in Figure 1. In our experiments we will refer to this schemes as
forward differences (FD).

Second, we compare to a upwind forward-backward differences (UFBD) scheme,
which borrows ideas from the discretization of Hamilton-Jacobi equations [19]. This
scheme adaptively selects between forward and backward differences, based on the
sign of the difference and hence is more isotropic but it suffers from the fact that
J(u) 6= J(−u).

Third, we compare to an `1-type anisotropic total variation that uses non-local
finite differences in order to approximate the isotropic total variation [28]. We choose
a relatively large neighborhood of 16 to obtain competitive results and hence refer
to this scheme as anisotropic finite differences (AFD16). Furthermore, we weight the
contributions of the `1 norms such that we obtain exact values of the total variation
for the edges directions supported by the 16-neighborhood.

Finally, we compare to the recently proposed discretization scheme of L. Con-
dat [25]. The method is based on the dual formulation and uses a more sophisticated
application of the pointwise constraint of the dual variable based on averaging. In
the primal formulation, the scheme can be written as the infimal convolution of three
different discrete derivative operators. We will refer to this method as CONDAT.

All algorithms have been implemented in Matlab and are minimized using the
first-order primal-dual algorithm [20]. The fastest scheme is FD due to its simplicity.
UFBD is slower by about a factor of 2 as it is based on forward and backward differ-
ences. ACR and AFD16 have a comparable computational complexity among each
other but are slower than FD by about a factor 4. The slowest method is CONDAT
which is about a factor of 6 slower than FD. In order to make sure that all algorithms
have converged to a solution with sufficient accuracy, we run them for many iterations
(> 10000).

6.2. Rotational invariance. In our first experiment, we demonstrate the ro-
tational invariance of the proposed ACR scheme by recovering (inpainting) straight
discontinuities of various orientations in the image domain Ω = [0, 1]2. For this, we
consider the characteristic function χ{x·ν>a}(x) as a boundary condition, where ν ∈ S1

is its normal and a = ( 1
2 ,

1
2 ) · ν is set such that the discontinuity passes through the

center of the image domain. As before, we discretize the domain Ω at scale h = 1/N
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and identify the index set

B = {i ∈ I : ih ∈ ∂Ω},

as the set of boundary points. At those points we compute the average values of the
characteristic function along the edges ei that is

u�i =
1

|ei|

ˆ
ei

χ{x·ν>a}(x)dx.

In order to use the values u�i as boundary condition we solve problem (4.4) using

G(v) = 0, H(u) =
∑
i∈B

δ{u�i }(ui),

where δ{c}(·) denotes the indicator function of the singleton c.
We first demonstrate the property of our proposed ACR discretization scheme to

adapt the triangulation to the direction of the discontinuity. For this we set h = 1/10,
which yields a square grid of 10× 10 pixels (squares). We set ν = (cos θ, sin θ), with
θ ∈ {0, π/4, π/2, 3π/4} in order to recover discontinuities of the four main orienta-
tions. In Figure 7 we show the results for these four main orientations. We plot the
continuous image function u, which is piecewise affine on the triangles, and the trian-
gulation itself which is shown in blue. As expected the solution of the problem yields
a straight discontinuity with the correct orientation. Observe that the triangulation
is automatically adapted to match the orientation of the discontinuity. Moreover, one
can also see that in the homogeneous regions the triangulation is ambiguous. Note
that the value of the discrete total variation is equivalent to the true total variation,
that is Jh(u) = 10 for π ∈ {0, π/2} and Jh(u) = 10

√
2 for π ∈ {π/4, 3π/4}.

The aim of the second experiment is to evaluate the rotational invariance of the
proposed discrete total variation and compare to other methods. For this we repeat
the first experiment but now with orientations θ ∈ {π/2, 3π/8, π/4} and using a
larger grid of 100× 100 pixels and using h = 1. As the other approaches (FD, UFBD,
AFD16, CONDAT) do not give explicit access to boundary points, we instead use a
classical pixel-based boundary condition of sufficient width (5 pixels on each side). Is
is computed by first computing the discrete characteristic function on a 30 times finer
grid and then downsampling the function to the desired resolution using averaging.

In Table 1, we compare the values of the discrete total variation computed by the
different schemes. For θ = 0 all schemes give the correct value of the discontinuity.
As predicted by Proposition 3.3 the proposed ACR scheme is isotropic and hence very
successful in recovering the correct value of the total variation for different orienta-
tions. Also CONDAT is very successful as it gives results of exactly the same quality.
Note that for θ = 3π/8, both ACR and CONDAT slightly overestimate the value of
the total variation, see also Remark 4.1.

In Figure 8 we show the images corresponding to the experiments presented in
Table (1). For the proposed ACR scheme we plot an image consisting of the center
values uc as they provide slightly sharper results. In general all schemes yield sharp
discontinuities for θ = 0, which is explained by the alignment of the discontinuity
with the grid. FD yields very blurry results for θ = {π/4, 3π/8}, because the forward
differences would considerably overestimate the total variation of a sharp discontinuity
(compare Figure 1). AFD16 works well for θ = π/4 but produces strong artifacts for
θ = 3π/8. This is explained by the fact that only orientations which are supported
by the neighborhood system can be recovered. UFBD yields good results for θ = π/4
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(d) θ = 3π/4

Fig. 7. Recovery of a discontinuity with normal ν = (cos θ, sin θ) on a square grid of 10 ×
10 pixels. We plot the image function which is piecewise affine on the triangles together with
the triangulation shown in blue. Observe that the triangles are well aligned with the direction of
discontinuity while in homogeneous regions the orientation of the triangles is ambiguous.

θ l ACR FD UFBD AFD16 CONDAT

π/2 100.00 100.00 100.00 100.00 100.00 100.00
3π/8 108.24 108.31 109.07 108.59 109.75 108.31
π/4 141.42 141.42 140.38 140.71 140.07 141.42

Table 1
This table compares the values of the discrete total variation Jh(u) for the different schemes

with the true value of the total variation which is equivalent to the length l of the discontinuity.

but gives slightly more blurry results for θ = 3π/8. ACR yields good results for all
orientations, with a small degree of blur for θ = 3π/8. The sharpest transitions are
recovered by CONDAT.
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Fig. 8. Images corresponding to the experiments of Table 1. Note the significantly more blurry
results of FD and the “failure” of AFD16 to recover a straight line with angle θ = 3π/8.

6.3. A segmentation problem. In the next experiment we are considering the
following geometric minimization problem:

(6.1) min
u
λ|Du|(Ω) +

ˆ
Ω

u(x)(|x| −R)dx, s.t. 0 ≤ u(x) ≤ 1 ∀x ∈ Ω

where R > 0 is some parameter and we assume that 0 ∈ Ω. Observe that the level
lines of the term (|x|−R) are circles around the origin. Hence, for not too large λ > 0,
the minimizer will be the characteristic function of a disk with radius r > 0. Though
it can be recovered as the sublevel R of the function in [16, Eq. (39)], for N = 2 and
h = λ, we now derive its expression for the reader’s convenience.

Using polar coordinates (ρ, θ) the variational problem can be re-written as

(6.2) min
r≥0

2λrπ +

ˆ 2π

0

ˆ r

0

ρ(ρ−R)dρdθ = 2πmin
r≥0

λr +
r3

3
−Rr

2

2
.

The minimal r, if positive, must satisfy λ+ r2 −Rr = 0, so that:

r =
R+
√
R2 − 4λ

2
.

The disk of radius r solves the problem as long as its energy (6.2) is nonpositive, since
otherwise it is energetically more favorable to choose r = 0. The value (6.2) is less or
equal than zero as long as

3R−
√

9R2 − 48λ

4
≤ r ≤ 3R+

√
9R2 − 48λ

4

Comparing this bound with the minimizing radius r, we see that we need to ensure

R+
√
R2 − 4λ

2
≤ 3R+

√
9R2 − 48λ

4
.
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λ p ACR FD UFBD AFD16 CONDAT

25 150.52 150.46 151.79 149.19 151.38 150.31
50 143.31 143.29 143.64 141.74 143.38 143.39
100 125.66 125.28 124.72 122.56 124.07 125.83

Table 2
For a range of different regularization parameters λ, we compute the perimeter p = 2πr of

the true minimizing disk and compare it to the values of the discrete total variation obtained from
different discretization schemes.

Solving for equality we find the upper bound on λ as

λ =
3

16
R2,

which corresponds to a radius r = 3
4R.

The aim of our experiment is now to numerically compute the solution of (6.1)
using our proposed discretization and existing discretization schemes and compare it
to the true solution. For comparison we use the value of the total variation which is
equivalent of the perimeter p = 2πr of the disk. We perform a numerical experiment
on a grid of N ×N pixels with N = 100, h = 1, approximating the image domain Ω
and we set R = N/4 = 25. The data term and boundary conditions in the variational
model (4.4) are given by

G(v) =
∑
i∈Ic

viwi, H(u) =
∑
i∈I

δ[0,1](ui)

with segmentation “weight” wi = (|ih| −R) and δ[0,1](·) denotes the indicator function
of the interval [0, 1]. Here, we shall assume that the values of the index set are properly
shifted such that 0 ∈ Ic is in the middle of the domain. From our above computation
we know that the problem has a non-trivial minimizer as long as λ ∈ [0, 3

16R
2) ≈

[0, 117.18].
For the other schemes (FD, UFBD, AFD16, CONDAT) we use exactly the same

data fidelity term and the bound constraint is directly applied to the image pixels.
Table 2 compares the values of the discrete total variation to the true perimeter

of the disk for different values of the parameter λ ∈ {25, 50, 100}. From the results
we see that both the proposed ACR scheme and CONDAT approximate the true
perimeter quite well. FD seems to overestimate the TV for smaller values of λ and
underestimate it for larger values of λ. AFD16 and UFBD generally underestimate
the TV for all values of λ.

In Figure 9 we provide the images corresponding to the experiments conducted
in Table 2. We can observe that ACR provides quite isotropic solutions with slighly
blurred interfaces. FD shows the well-known anisotropic smoothing behavior in the
four quadrants. UFBD is more isotropic but also shows blurry interfaces. AFD16
provides very sharp interfaces but approximates the disc – as expected – by a 16-
polygon. Visually, CONDAT provides the sharpest results.

6.4. Computing the ROF problem for a square. In the next example, we
consider the problem of minimizing the ROF problem

min
u
λ|Du|(Ω) +

1

2

ˆ
Ω

(u(x)− u�(x))2dx,
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Fig. 9. Image scorresponding to the experiments in Table 2. Note the anisotropic behavior of
FD and the polygonal behavior of AFD16.

(a) u�(x) (b) λ = 2 (c) λ = 5 (d) λ = 10

Fig. 10. Original square u�(x), and ground truth solutions u(x) for different values of λ.

where u�(x) is the characteristic function of a square of size L, that is u�(x) =
χ{[−L/2,L/2]2}(x). The image domain is set as Ω = [−L,L]2 and we are using Dirich-

let zero boundary conditions. It is well-known that for λ < λ∗ with λ∗ = L
2+
√
π

,

the solution is given by a lower intensity square with rounded and blurred corners.
The exact solution uλ is given by an analytical formula, see [1, 25] for more details.
Moreover, it can be shown that the value of the total variation of the solution uλ is
given by

TV (uλ) = 4L

(
1− λ

λ∗

)
− 2(4− π)λ log

λ∗

λ
.

Figure 10 plots the characteristic function of the square as well as exact solutions of
the regularized squares for λ ∈ {2, 5, 10}.

In our experiments, we numerically compute the solutions of the regularized
squares using different discretizations of the total variation and we compare it to
the analytical solution. For this we set L = 50 and generate a grid of 2L× 2L pixels
to cover the image domain Ω = [−L,L]2. In order to obtain an accurate ground truth
solution, we first compute the analytical solution on a 30 times finer grid (similar
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λ ACR FD UFBD AFD16 CONDAT

2 3.08 6.21 9.35 3.50 8.93
5 3.54 10.95 20.58 5.30 9.14
10 2.82 10.67 26.69 6.79 5.03

Table 3
`1-errors between the analytical solutions of the ROF problem and the discrete solutions for

different values of the regularization parameter λ.

λ TV ACR FD UFBD AFD16 CONDAT

2 163.33 162.96 163.41 161.72 163.57 163.30
5 116.18 116.02 116.48 115.80 116.35 116.21
10 44.27 44.26 44.20 45.41 44.13 44.29

Table 4
Total variation of the different discretization schemes compared to the true total variation (TV)

of the regularized square.

to [25]) and then downsample the image to the target resolution using averaging. For
solving the ROF problem using the proposed ACR method, we use a quadratic data
fidelity term defined on the average pixels:

G(v) =
∑
i∈Ic

(vi − u�i )2,

where u�i is the pixel-averaged disrcete version of the function u�(x) = χ{[−L/2,L/2]2}(x).
For the other methods we use exactly the same data fidelity term.

In Table 3 we give the `1 errors between the pixel-averaged analytical solution
and the discrete solutions computed by different discretization schemes of the total
variation. For ACR we use the pixel center values uc as they give sharper results.

One can see that the proposed ACR scheme gives the smallest `1 errors. Sur-
prisingly, the AFD16 scheme gives also quite low error rates. The worst results are
provided by the UFBD scheme. In Figure 11 we show the corresponding error images.
One can clearly see that UFBD has a significantly larger global error. The errors at
the corners varies between the different methods, but one can also see the strong
anisotropic behavior of FD. Interestingly, the errors of CONDAT are mainly concen-
trated at the edges which is explained by the fact that the discretization scheme of
CONDAT is based on pixel averages.

Table 4 finally compares the values of the total variation with respect to the
true values of the total variation. ACR is slightly worse compared to CONDAT for
λ ∈ {2, 5} but gives the best results for λ = 10.

6.5. An example of image denoising. Finally, we present an examples where
we remove the noise of a gray scale image. We use the same discrete ROF model
as described in the previous section. Figure 12 shows the noisy clock image together
with its ROF denoised version. We also provide detail views of the center pixel values,
the average pixel values and the adaptive triangulation’s. Note that the center pixel
values yield slightly sharper results but can also contain some isolated pixels. The
plots based on the triangulation nicely show how the mesh adapts to the structures.
We also conducted comparisons with other existing discretization schemes, but we
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Fig. 11. Error plots of the numerical solutions with respect to the analytical solution. For
better comparison, the images are truncated to the range [−0.1, 0.1] and gray corresponds to zero.
Note the anisotropic behavior of FD and the significantly larger global error of UFBD.

omit the results here because they were visually almost identical. The reason is that
in case of image denoising the data term is dominating and hence differences in the
discretization of the regularizer only have a minor influence on the solution. However,
we point out that for more geometric problems, as the problems we have presented in
the previous sections, the discretization of the regularizer of course plays an important
role.
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It is the space of the functions which are 0 on average in each simplex (in other words,
the average of the middle values of the facets vanishes, equivalently the value at the
center of each simplex is zero).

We define P0(T )d ≈ (Rd)T as usual as the space of “P0” functions which are
constant on each T ∈ T . Endowed with the topology of L2(Ω;Rd), it is a Euclidean
space with the weighted scalar product: for p, q ∈ P0(T ),

ˆ
Ω

p(x)q(x)dx =
∑
T∈T
|T |pT · qT .

Then we consider the gradients

GV 0(T ) =
{
Du : u ∈ V 0(T )

}
⊂ P0(T ).

We want to characterize this space and its orthogonal. In order to do this, we consider
the space RT0(T ) of the first order Raviart-Thomas vector fields subject to the mesh
T (cf Section 2.3, these are defined by their fluxes through the edges of the elements
T ∈ T ). As before we also let RT00(T ) ⊂ RT0(T ) the RT0 fields with zero flux
through ∂Ω.

We know that, cf Lemma 2.4:

{Du : u ∈ V (T )} =

{
p ∈ P0(T )d :

ˆ
Ω

p(x) · σ(x)dx = 0 ∀σ ∈ RT00(T ),divσ = 0

}
.

More generally, if u ∈ V (T ) and σ ∈ RT00(T ), one has thanks to (2.8):

ˆ
Ω

σ(x) ·Du(x)dx = −
ˆ

Ω

divσ(x)u(x)dx.

As Du and divσ are constant on each triangle, this can also be written:

(A.1)
∑
T∈T
|T |σ(cT ) ·Du(T ) = −

∑
T∈T
|T |divσ(T )u(cT )

where cT is the center of mass of the simplex T (so that given any affine function
a(x),

´
T
a(x)dx = |T |a(cT )).

Hence in particular, for any p ∈ GV 0(T ) and σ ∈ RT00(T ),
´

Ω
σ · pdx = 0.

A natural question is whether this is an if and only if; that is, if the orthogonal of
{(σ(cT ))T ∈ P0(T ) : σ ∈ RT00(T )} is GV 0(T ).

Assume p ∈ P0(T )d is such that
´

Ω
σ · pdx = 0 for all σ ∈ RT00(T ). Then in

particular it is orthogonal to fields with zero divergence and there exists u ∈ V (T )
with Du = p, thanks to Lemma 2.4. In particular because of (A.1) we have

0 = −
∑
T∈T
|T |divσ(T )u(cT )

for all Raviart-Thomas field σ (vanishing on ∂Ω). Now, given any inner facet S ⊂
∂T ∩∂T ′, T, T ′ ∈ T , T 6= T ′. we can introduce the field σ with flux 1 through S from
T to T ′ and zero through all other facets. Then the formula becomes

0 = u(cT ′)− u(cT ).
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This shows that u must take the same value in all the centers of the vertices. As u
is defined up to a constant (in each connected component of Ω) we can assume this
value is zero, and we have shown that in P0(T )d,

(A.2) {(σ(cT ))T∈T : σ ∈ RT00(T )}⊥ = GV 0(T ).

In particular, as a consequence, also

(A.3) GV 0(T )⊥ = {(σ(cT ))T∈T : σ ∈ RT00(T )} .

A.2. Duality for discrete Sobolev semi-norms. Let us introduce, for u ∈
V (T ), p ∈ [1,∞),

(A.4) Jp(u) =
1

p

ˆ
Ω

|Du|pdx

and, for ū ∈ P0(T )

(A.5) J0
p (ū) = min {Jp(u) : u ∈ V (T ), u(cT ) = ūT ∀T ∈ T } .

By a slight abuse of notation we also let J0
p (u) = J0

p ((u(cT )T ) for u ∈ V (T ).
Then

Theorem A.1. For all p ∈ (1,∞),

(A.6) J0
p (u) = sup

{ˆ
Ω

σ(x) ·Du(x)dx− 1

p′

∑
T∈T
|T ||σ(cT )|p

′
: σ ∈ RT00(T )

}
,

where p′ = p/(p− 1), and for p = 1,

(A.7) J0
p (u) = sup

{ˆ
Ω

σ(x) ·Du(x)dx : σ ∈ RT00(T ), |σ(cT )| ≤ 1
}
.

In particular, Theorem 3.4 corresponds to the particular case p = 1.

Proof. We consider the case p > 1. The case p = 1 is then recovered as a limit
problem. The “≥” inequality is obvious. To show the reverse we first consider u a
minimizer in (A.5). Then, for any v ∈ V 0(T ), u+ v is admissible in the problem and
one has Jp(u+ v) ≥ Jp(u). Hence, taking the derivative limt↓0(Jp(u+ tv)− Jp(v))/t,
it follows that ˆ

Ω

|Du|p−2Du ·Dvdx = 0

for all v ∈ V 0(T ). That is, the field (|Du(T )|p−2Du(T ))T∈T ∈ P0(T ) is orthogonal
to GV 0(T ), hence thanks to (A.3), there exists σ ∈ RT00(T ) such that σ(cT ) =
|Du(T )|p−2Du(T ) for all T ∈ T . Clearly, |σ(cT )|p′ = |Du(T )|p and the conclusion
easily follows.

Remark A.2. It is quite easy to derive, as a more general result, that given f :
Rd → R a convex, lower semicontinuous function and any ū ∈ P0(T ) one has

inf

{ˆ
Ω

f(∇u)dx : u ∈ V (T ), u(cT ) = ūT ∀T ∈ T
}

= sup
{
−
ˆ

Ω

ūdivσ dx−
∑
T∈T
|T |f∗(σ(cT )) : σ ∈ RT00(T )

}
.



CROUZEIX-RAVIART TOTAL VARIATION 37

Appendix B. A variant with one node per pixel.
For imaging application, one drawback of our approach could be the need to

introduce more nodes in the representation than the number of pixels.
Given a (grey-level) n ×m image (ui,j)

j=1,...,m
i=1,...,n (to simplify, we assume that the

scale h = 1 in this section), even if one rotates the grid by 45◦ and considers the pixels
(i, j) as centers of edges of larger squares (for instance, (1, 1), (1, 2), (2, 1), (2, 2) would
be the centers of the edges of the square [(3/2, 1/2), (5/2, 3/2), (3/2, 5/2), (1/2, 3/2)]),
one still needs to introduce an additional node in the center of each square (in the
above example, at (3/2, 3/2)) and introduce fictitious values ui+1/2,j+1/2 (i, j both
even or both odd) at these nodes. On average, this increases the dimension of the
problems by roughly 50%.

Unfortunately, it seems there is no simple strategy to eliminate this additional
node. To illustrate this issue, let us first concentrate on one square. We consider the
four vertices {0, 1}2 as the middle points of the edges of the square (of area 2)

C =
[(

1
2 ,−

1
2

)
,
(

3
2 ,

1
2

)
,
(

1
2 ,

3
2

)
,
(
− 1

2 ,
1
2

)]
and a fifth vertex in (1/2, 1/2) in the middle, which is the middle of both the vertical
and horizontal edges cutting the square into two halves. Then, given the values
uα,β := u(α, β), (α, β) ∈ {0, 1}2, and c the value at the center, the Crouzeix-Raviart
total variation inside the square is

max
{√

2
√

(u00 − c)2 + (u10 − c)2 +
√

2
√

(u11 − c)2 + (u01 − c)2,

√
2
√

(u00 − c)2 + (u01 − c)2 +
√

2
√

(u11 − c)2 + (u10 − c)2
}
.

(Each gradient norm is multiplied by the area 1 of the corresponding triangle, and
we have used that the distance between a vertex of the cube and the center is 1/

√
2.)

A possibility to eliminate c is to minimize this quantity with respect to c. In the
“inpainting” problems of Fig. 8, this would give the same results (since this is precisely
what is done automatically by the minimization in this case). Unfortunately we have,
at this point, no idea of how to solve this problem explicitly. It means that to compute
the “proximity” operator of the corresponding energy on a whole image, we need to
solve subproblems which keep the additional central variable.

A simpler possibility is to first optimize with respect to the value c and then,
afterwards, pick the best orientation. In that case, one needs to solve

√
2 max

{
min
c

√
(u00 − c)2 + (u10 − c)2 +

√
(u11 − c)2 + (u01 − c)2,

min
c

√
(u00 − c)2 + (u01 − c)2 +

√
(u11 − c)2 + (u10 − c)2,

}
.

A careful analysis shows that this value is given by the function

(B.1) J4((u00, u10, u01, u11)) :=
√

2 max
{√

(u11 − u00)2 + (u10 − u01)2,
√

(u01 − u00)2 + (u11 − u10)2,√
(u10 − u00)2 + (u11 − u01)2

}
.

One can use (B.1) to define, given u defined by its pixel values (ui,j)
j=1,...,m
i=1,...,n , a
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discrete total variation as

(B.2) J(u) :=
∑

(i,j) even

J4((ui,j , ui+1,j , ui,j+1, ui+1,j+1))

+
∑

(i,j) odd

J4((ui,j , ui+1,j , ui,j+1, ui+1,j+1)).

We remark this is a variant of the energy defined in [22] (see also [24] for a theoretical
study), which can be optimized by an efficient alternating descent method as soon as
one knows how to solve explicitly the subproblems given by the proximity operator
of J4, on each square.

Fig. 13. Left: the variant (B.2), right: the ACR result of Fig. 8.

Unfortunately, our implementation shows that it does not perform as well as the
ACR technique introduced in this paper. Figure 13 compares this to the ACR result
in Fig. 8: we obtain a very diffusive solution, with practically no improvement over a
non-optimized Crouzeix Raviart implementation.

Fig. 14. Left: original “clock” image, middle: with a Gaussian blur of std. dev. 1.5 and a 1%
Gaussian noise, right: TV-regularised deblurred image with (B.2).

On the other hand, as is expected, this approximation (which in any case is
still based on a hidden, underlying Crouzeix-Raviart discretization), yields to a quite
precise approximation of the energy and is a reasonable regularizer for standard inverse
problems, cf. Fig. 14.

Appendix C. The proximity operator of (4.3).
We describe in this Section how to implement the proximity operator of the func-

tion f in (4.3). The problem we need to solve is as follows, given ξ̄ = (ξ̄mn)n=1,2
m=1,...,4 ∈

R4×2 and τ > 0:

(C.1) min
ξ=(ξmn)n=1,2

m=1,...,4∈R4×2

f(ξ) +
1

2τ
‖ξ − ξ̄‖2.
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We call prox τf (ξ̄) the solution of (C.1). We recall that the prox of the convex conju-
gate f∗ is also easily recovered, once (C.1) is solved, using Moreau’s identity:

x = prox τf (x) + τprox 1
τ f
∗(xτ ).

To solve (C.1) we first make the following obvious observation: denoting

x1 =
√
ξ2
1,1 + ξ2

2,1, (ξ1,1, ξ2,1)T = x1η1,

x2 =
√
ξ2
3,1 + ξ2

4,1, (ξ3,1, ξ4,1)T = x2η2,

x3 =
√
ξ2
1,2 + ξ2

2,2, (ξ1,2, ξ2,2)T = x3η3,

x4 =
√
ξ2
3,2 + ξ2

4,2, (ξ3,2, ξ4,2)T = x4η4,

(and the same for ξ̄), it is equivalent to solve:

min
(xi)≥0,(ηi)

max{|x1|+ |x2|, |x3|+ |x4|}+
1

2τ

4∑
i=1

|xiηi − x̄iη̄i|2.

We obtain at the minimum that ηi = η̄i, i = 1, . . . , 4 and the problem boils down to

min
x=(xi)4i=1∈R4

+

max{|x1|+ |x2|, |x3|+ |x4|}+
1

2τ
|x− x̄|2

where |x − x̄|2 =
∑4
i=1 |xi − x̄i|2. Remark that here, x̄i ≥ 0 and it is equivalent to

look for x ∈ R4
+ or in R4.

We now explain how to solve this 4-dimensional convex problem. We can rewrite
it as

min
x

max
µ12+µ34=1
µ12≥0,µ34≥0

µ12(|x1|+ |x2|) + µ34(|x3|+ |x4|) +
1

2τ
|x− x̄|2

and then we exchange min and max. We obtain 4 problems of the form

min
x1

µ12|x1|+
1

2τ
|x1 − x̄1|2.

This is well known to be solved by x1 = (x̄1 − τµ12)+ and with value

µ12(x̄1 − τµ12)+ +
1

2τ

{
|x̄1|2 if x̄1 ≤ τµ12

|τµ12|2 else.

When x̄1 ≤ τµ12, this is |x̄1|2/(2τ), otherwise

µ12x̄1 −
τ

2
|µ12|2 =

1

2τ
|x̄1|2 −

1

2τ
|x̄1 − τµ12|2.

We end up with the dual problem

max
µ12+µ34=1
µ12≥0,µ34≥0

1

2τ

( 4∑
i=1

|x̄i|2 −
(
|(x̄1 − τµ12)+|2 + |(x̄2 − τµ12)+|2

+ |(x̄3 − τµ34)+|2 + |(x̄4 − τµ34)+|2
))
,
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whose optimality reads, if 0 < µ12 < 1,

(x̄1 − τµ12)+ + (x̄2 − τµ12)+ = (x̄3 − τµ34)+ + (x̄4 − τµ34)+

with µ34 = 1− µ12.
Without loss of generality, assume that x̄2 ≥ x̄1 and x̄4 ≥ x̄3. We recast the

problem as

min
0≤µ≤1

|(x̄1 − τµ)+|2 + |(x̄2 − τµ)+|2 + |(x̄3 − τ + τµ)+|2 + |(x̄4 − τ + τµ)+|2

by letting µ := µ12 and µ34 = 1− µ.
By convexity of the objective, µ ∈ [0, 1] is optimal if and only if:

(C.2)(x̄1 − τµ)+ + (x̄2 − τµ)+ − (x̄3 − τ + τµ)+ − (x̄4 − τ + τµ)+ ≤ 0 if µ < 1 ;

(x̄1 − τµ)+ + (x̄2 − τµ)+ − (x̄3 − τ + τµ)+ − (x̄4 − τ + τµ)+ ≥ 0 if µ > 0.

Hence, one sees that if one knows which term are positive in the above sums, µ is
found by solving the above equations with “= 0” instead of “≥ / ≤ 0” and then
projecting the value onto the interval [0, 1]. For instance, if all values are positive,

(C.3) µ =

(
0 ∨ x̄1 + x̄2 − x̄3 − x̄4 + 2τ

4τ

)
∧ 1.

Whenever µ ∈ (0, 1), of course, (C.2) reads

(C.4) (x̄1 − τµ)+ + (x̄2 − τµ)+ = (x̄3 − τ + τµ)+ + (x̄4 − τ + τµ)+.

Hence, the problem is solved by exhaustion of the following cases:
1. if x̄2 + x̄4 ≤ τ , then clearly one can find µ ∈ [0, 1] such that all terms of the

sums in (C.2) are zero, hence the solution is x1 = x2 = x3 = x4 = 0.
2. if x̄2 + x̄4 > τ then:

(a) either both x̄2 − τµ > 0 and x̄4 − τ + τµ > 0,
(b) or one side of (C.4) is zero so that one must be in a case of strict

inequality in (C.2), and µ ∈ {0, 1}.
The second case 2b can be first easily eliminated by checking whether µ = 0
or µ = 1 is a solution of the optimality condition: one has

x̄1 + x̄2 ≤ (x̄3 − τ)+ + (x̄4 − τ)+ ⇔ µ = 0,

(x̄1 − τ)+ + (x̄2 − τ)+ ≥ x̄3 + x̄4 ⇔ µ = 1.

3. Otherwise, we must be in the first case 2a, where x̄2−τµ > 0 and x̄4−τ+τµ >
0, equality (C.4) holds, and which is then split into four possible cases:
(a) µ given by (C.3), and x̄1 ≥ τµ, x̄3 ≥ τ(1 − µ), then x1 = x̄1 − τµ,

x2 = x̄2 − τµ, x3 = x̄3 − τ(1− µ), x4 = x̄4 − τ(1− µ).
(b) µ = x̄1+x̄2−x̄4+τ

3τ and x̄1 ≥ τµ, x̄3 ≤ τ(1 − µ), x̄3 ≥ τ(1 − µ), then
x1 = x̄1 − τµ, x2 = x̄2 − τµ, x3 = 0, x4 = x̄4 − τ(1− µ);

(c) µ = x̄2−x̄3−x̄4+2τ
3τ and x̄1 ≤ τµ, x̄2 ≥ τµ, x̄3 ≥ τ(1 − µ), then x1 = 0,

x2 = x̄2 − τµ, x3 = x̄3 − τ(1− µ), x4 = x̄4 − τ(1− µ);
(d) µ = x̄2−x̄4+τ

2τ if all the previous cases fail to hold, and then x1 = x3 = 0,
x2 = x̄2 − τµ, x4 = x̄4 − τ(1− µ);


	Introduction
	Crouzeix-Raviart approximation of BV functions
	Discretization of the gradient of a BV function u
	Approximation of u
	Characterization of Crouzeix-Raviart gradients
	Further obvious remarks

	Definition of a Crouzeix-Raviart discrete total variation
	Definition, and approximation properties
	The measure of straight lines
	A general duality formula
	The bad news: diffuse solutions

	Implementation with adaptive meshes in 2D
	Total variation on a square mesh
	Application to image processing problems

	An error analysis
	Primal estimate
	First case: there exists a Lipschitz dual field

	Second case: simpler domain, u (slightly) regular

	Numerical experiments
	Comparisons to the state-of-the-art
	Rotational invariance
	A segmentation problem
	Computing the ROF problem for a square
	An example of image denoising

	References
	Appendix A. Proof of the duality Theorem 3.4
	Almost constant Crouzeix-Raviart functions
	Duality for discrete Sobolev semi-norms

	Appendix B. A variant with one node per pixel
	Appendix C. The proximity operator of (4.3)

