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Abstract. Currently, the best performance for Named Entity Recognition
in medical notes is obtained by systems based on neural networks. These
supervised systems require precise features in order to learn well fitted
models from training data, for the purpose of recognizing medical
entities like medication and Adverse Drug Events (ADE). Because it is
an important issue before training the neural network, we focus our
work on building comprehensive word representations (the input of the
neural network), using character-based word representations and word
representations. The proposed representation improves the performance
of the baseline LSTM. However, it does not reach the performances of
the top performing contenders in the challenge for detecting medical
entities from clinical notes [17].
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Introduction1

Patients are often subject to multiple treatments, which may be the cause of adverse
effects. Therefore, it is necessary to establish if an Adverse Event (AE) has occurred
after taking medicines. AE refers to any adverse event occurring at the time a drug
is used, whether it is identified as a cause of the event or not. In case one can
establish a relation between the AE and the drug, then the relation is considered as
an Adverse Drug Event (ADE) or Adverse Drug Reaction (ADR).

For the purpose of identifying ADE mentions, we use medical notes provided in
EHR (Electronic Health Records). These notes contain mentions of medical entities

1This work is partly funded by the French government labelled PIA program under its IDEX
UCAJEDI project (ANR-15-IDEX-0001).
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like medications, ADE (Adverse Drug Event) and symptoms. These terms have
to be identified and classified in the right category. This classification problem is
known as Named Entity Recognition (NER). It has been performed with Machine
Learning and Deep Learning algorithms to classify entities into categories such as
ADE and medications in medical notes. In this work neural networks are used for
NER in clinical notes, using several word representation together to improve the
performance. Section 1 presents some related works in the domain of NER. The
several features used as well as the network used are explained in Section 2. Finally,
in Section 3 the models performance using the dataset provided by the MADE1.0
Challenge [17] is presented.

1 Related Work

Conditional Random Fields (CRFs) is a machine learning algorithm used for ADR
extraction [10], with context features around the current word [15]. It takes every
neighbour word in a fixed window of words. Other Machine Learning algorithms
like Support Vector Machines (SVMs) are commonly used for NER. Gurulingappa
et. al. [5] built a system for the identification and extraction of potential adverse
events of drugs with SVM. Their dataset is an ADE corpus from MEDLINE (Medi-
cal Literature Analysis and Retrieval System Online) case reports that are manually
annotated. The corpus contains annotations for the mentions of drugs, ADE, and
relations between drugs and medical conditions representing clear adverse reac-
tions (relation drug-cause-condition).

The CLEF Challenge provides system performance for NER using the QUAERO
French Medical Corpus [12]. It has ten categories for annotations of medical entities,
with data collected from the EMEA (European Medicines Agency) documents and
titles of research articles indexed in the MEDLINE database. A Dictionary-based
concept recognition system overcame CRF and SVM classifiers in CLEF 2015 [13]
on the MEDLINE corpus, according to the Exact Match metric, which considers a
term (word or group of words that have a label) as correctly classified only if all
the words in the term received the correct label.

Deep learning models like CNN (Convolutional Neural Network) are used to
detect the presence of ADR [6], such as in binary classification problem on two
datasets (from Twitter and case reports [5]). Overall, CNN appears to perform
better compared to other more complex CNN variants that have a RNN (Recurrent
Neural Network) layer [5]. However, CCNA (Convolutional Neural Network with
Attention) is better on the dataset of case reports. Overall, results on the case reports
are better than those on the Twitter dataset. Tweets contain a lot of ill-grammatical
sentences and short forms [6] that hinders the performances, which highlights the
importance of de-noising the data.

The adverse event detection problem focused on clinical notes is a sequential
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problem, and RNN models are specialized for it because at time step t, the recurrent
node takes as input the outputs produced by the previous state. Simple RNN mod-
els can classify the input sequence taking into account the long time dependencies
[11], but they face the problem of vanishing gradients [1], instead another RNN
architecture known as Long Short-Term Memory (LSTM), reduces the impact of this
problem using a short memory connection along the sequence. LSTM was applied
to sequential problems such as Handwriting Recognition [11] and Named Entity
Recognition [8]. LSTM exploits the long term label dependencies for sequence
labelling in clinical text, e.g. in the sentence "the patient has internal bleeding
(ADE) secondary to warfarin (Medication)", the label for ADE is strongly related to
the label prediction of Medication, then Warfarin is labelled as Medication using
information of previous ADE tag (internal bleeding), which is stored in the memory
of LSTM cells.

LSTM was used with an annotated corpus of English Electronic Health Records
(EHR) from cancer patients in [7], with labels for several medical entities (like
Adverse Drug Event (ADE), drug name, dosage) and relations between entities.
The best LSTM version in [7] is the Approximate Skip Chain CRF-RNN network,
which implements a CRF algorithm after the bidirectional LSTM output. This
network has a high precision for DrugName detection, but a low precision for ADE,
probably because the dataset in unbalanced and has less ADE samples.

Results of NER algorithms dedicated to ADE detection are collected in the
review article [16]. This review shows that Machine learning and Deep Learning
algorithms are outstanding at this task. However, the performance presented in
this review were obtained on different datasets, making the comparison somewhat
unfair. Comparing the best result reported in [6] and [5] using the same dataset
(last lines of Table 1), one can observe that Gurulingappa et al. [5] obtained slightly
better results on Recall, Precision and F-score.

Table 1: Methods for ADE extraction.

Study Ref. Method Size Rec. Pre. F1
Nikfarjam [14] Lexical pattern-matching 1200 0.66 0.70 0.68

Nikfarjam [15] Supervised learning via
Conditional Random Fields (CRFs) 1559 0.78 0.86 0.82

Jagannatha [7] Bi-LSTM-CRF ( Skip-CRF-Approx.) 1154 0.83 0.81 0.82

Huynh [6]∗ CNNA (Convolutional
Neural Network with Attention) 2972 0.84 0.82 0.83

Gurulingappa [5]∗ SVM (Support Vector Machines) 2972 0.86 0.89 0.87
Note: ∗ Systems using the same dataset
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LSTM model has shown to be appropriate on the state of the art for sequential
problems. However, in order to improve performance, it is important to feed
the network with an appropriate input representation (an embedding) [3]. This
representation replaces each unique word with a dense vector representation, which
tries to provide closer vectors among word synonyms or related words. In [7] the
embedding layer values used were initialized using a skip-gram word embedding.
The skip-gram embedding was calculated using unlabelled data from PubMed
open access articles, English Wikipedia and an unlabelled EHR corpus. We can
also improve the precision of LSTM with additional features for its input, such as
character-level features from each word extracted using CNN or LSTM [10], and
then concatenate character and word representations inspired by the work of Chiu
et. al. [3]. All this was implemented in our work, as described in the following
section.

2 Model

In our final model, we use a comprehensive word representation, which concate-
nates character-level representations, word embedding and POS features. This
is described in the following subsections, as well as the full network using that
representation to solve the NER task.

2.1 Features
The character-level features can exploit prefix and suffix information about words
[9], to have closer representations among words of the same category. This is
particularly useful for terms that may be Out-Of-Vocabulary (OOV), i.e. words that
appear in the test data and not in the training data. OOV is a common issue with
domain specific words, and prefix and suffix representations can help a lot. For
example, the words "Clonazepam" and "Lorazepam" both belong to the medication
category in the medical context and may be OOV. However they share the same
suffix, making them closer to each other on a character-level feature. Therefore we
build a LSTM network (see subsection 2.2) that get representations of words based
on their characters.

Another feature used is Part-of-speech (POS), which tags the words with labels
like noun, verb, adjective, adverb, etc. It classifies words according to its roles
within the grammatical structure of the sentence. Medications for example will
always belong to the Noun category, making them close together with respect to
this feature. The tagging was performed using an Averaged Perceptron algorithm
2.

Finally, we also use word embeddings learned from a large corpus, to consider

2https://www.nltk.org/api/nltk.tag.html
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the contexts in which words appear usually. It can create similar vectors (represen-
tations) for words that appear in similar contexts, such as the names of different
countries. The word embedding of dimension 200 provided by [7] were used, as
well as another of 300 dimensions provided by FastText [2]. Both are pretrained
with skip-gram using unlabeled data mainly from Wikipedia.

2.2 Network Description
Long Short-term Memory Networks (LSTMs) can learn long term dependencies
among the words in the sentence [7]. LSTM keeps information in a memory-cell
that is updated using input and forget gates [9].

The character-level embedding for words was built by a Bi-LSTM network
(represented on the bottom left of Figure 1). First, each character takes an integer
value from a lookup table, then it is replaced by a one-hot vector. The final state
of the forward and backward LSTM is the representation of the suffix and prefix
of the word. The Character-level embedding is the concatenation of both LSTM
layers, so with LSTM layers of 20 cells (units), we get a vector of 40 dimensions.
This character-level representation is concatenated to the word embedding and the
POS feature to form the final comprehensive word representation (see Figure 1) [9].

The comprehensive word embedding is the input of a Bi-LSTM network, which
takes a sequence of words and returns a sequence of hidden states at every time step
(see Figure 2). The raw sentence is processed with a regular expression tokenizer
into sequence of tokens. Sentences longer than the sequence length were cropped
to size, and shorter sentences were pre-padded with masks. The forward and
backward LSTM layers get hidden state sequences, which represent the left and
right context of the sentence at every time step (word), and their concatenation is
the representation of a word in context [4].

The bidirectional LSTM provides scores for every possible label for each word, its
output (hidden states) feed the inference layer for tagging each word independently
(see Figure 2). For that, the hidden states are connected by a dense layer (i.e. fully
connected layer) to each possible label, and a Softmax function over the score of all
possible labels produces a probability for each label (values between 0 and 1 that
together sum 1), which is used to get the predicted label. The predictions (labels
probabilities) of the Softmax output is evaluated with the correct class (true labels).
The target labels consist in an integer vector where each element represents the
position of the number 1 in a one-hot encoding. Categorical Cross-entropy is the
loss function used, which penalizes the deviation between the predicted and target
(true) labels during training. Then the optimization function will minimize the loss
of the correct labels sequence.

For training, the input and output of the network will be the sequence of
words (each word replaced by its comprehensive word representation) and its
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corresponding labels (see Figure 2), and LSTM will try to learn a model that
minimize the error of the predicted label.

Figure 1: Comprehensive word representation

Figure 2: LSTM network for tagging

3 Results and Discussion

The dataset for our experiments was provided by the MADE1.0 Challenge [17].
It was created with 1092 EHR notes from 21 cancer patients [7]. It contains
annotations of ADEs, indications, other signs and symptoms, medication, dosage,
route, frequency, duration, severity. These annotations are used in the Named
entity recognition (NER) task, and the dataset also has relations among those
medical entities for the Relation Extraction task, like the relation Adverse between
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Medication and ADE annotations. In the NER task, the goal is identify and annotate
the medical entities found in the raw clinical notes.

The models were compared with the same parameters and training dataset as
those of the MADE challenge. The dataset is split into training (80% of the data)
and testing (20% of the data). The results are shown in Table 2, with results for
models with random initialization of word vectors (baseline), W2V of 200 dim [7],
W2V(FT) FastText of 300 dim [2], POS features (46 tags) and Character-level word
representation Char(LSTM) of length 40.

We improved the performance using the word embedding of FastText (W2V(FT))
more than using the one of W2V [7]: FastText (W2V(FT)) got about 0.22 more in F1
than W2V [7]. We observed the highest improvement over the baseline (randomly
initialized model) with character-level representations and POS tags together, it
increases the F1 of about 0.2. W2V(FT) only with the Char(LSTM) provides a small
increase in F1, while POS alone does not increase anything.

Table 2: Performances of models for NER.

Model Recall Prec. F1
Baseline 0,686 0,704 0,695
W2V[1] 0,668 0,689 0,678
Char(LSTM) + POS 0,659 0,678 0,668
W2V(FT) 0,694 0,721 0,707
W2V(FT) + POS 0,691 0,719 0,704
W2V(FT) + Char(LSTM) 0,692 0,724 0,708
W2V(FT) + Char(LSTM) + POS 0,700 0,721 0,710

Note: Parameters batch size 32, sequence length 60, 100 LSTM cells, learning rate 0.1

The best model (W2V+Char(LSTM)+POS) was trained with 100% of the training
files, then it created the predicted annotations for the test dataset of the MADE
Challenge. Table 3 shows the official results validated by the MADE challenge, the
best result of 2 runs for standard (W2V [7]) and extended evaluation (W2V(FT)). The
usage of more hidden units (200 or 300 LSTM cells) did not significantly influenced
the model performance, and big values (60, 70, 80) of the sequence length (number
of words by sequence) gave better results in our experiments with the clinical notes
of MADE dataset. The most appropriate initial value for the learning rate was
0.1, a smaller learning rate decreased the performance and increased the running
time. The results are good but an additional strategy is still necessary to reach top
performance systems (the best has 0.829 in F1). An additional layer of conditional
random fields used over the output of LSTM (in the tagging layer), which takes
into account the dependencies between labels to get an accurate score like in [7]
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would be interesting to test.

Table 3: Performances of models for NER task in MADE Challenge.

Model Recall Prec. F1
W2V[1] + Char(LSTM) + POS 0,720 0,681 0,700
W2V(FT) + Char(LSTM) + POS 0,748 0,716 0,732

Conclusions

We implemented a LSTM network to solve the named entity recognition problem
found on the Adverse Drug Reaction detection. This neural network requires
good input features for training, so we built character-level features extracted
with another LSTM, that were used in conjunction with word representations as
a comprehensive word representation. This conjunction of features increased the
performance of the LSTM, but it does not allow the LSTM alone to reach the best
performance achieved for the task. Therefore, as future work, investigating the use
of an additional technique for the network, as the Attentional model for RNN that
gives more weight to words that are more important, sounds promising.
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