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The challenge of Risk-Informed Safety Margin Characterization (RISMC) is to develop a methodology for estimating system safety margins in presence of stochastic and epistemic uncertainties affecting the system dynamic behavior. This is useful to support decision-making for licensing purposes. In the present work, safety margin uncertainties are handled by Order Statistics (OS) (with both Bracketing and Coverage approaches) to jointly estimate percentiles of the distributions of the safety parameter and of the time required for it to reach these percentiles values during its dynamic evolution. The novelty of the proposed approach consists in the integration of dynamic aspects (i.e., timing of events) into the definition of a dynamic safety margin for a probabilistic Quantification of Margin and Uncertainties (QMU). The system here considered for demonstration purposes is the Lead-Bismuth Eutectic-eXperimental Accelerator Driven System (LBE-XADS).
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INTRODUCTION

Risk assessment and safety analysis are traditionally supported by a Deterministic Safety Analysis (DSA) of a limited set of Design Basis Accidents (DBAs) under largely conservative assumptions [NUREG CR-6042, U.S. NRC, 1994]. For this, IAEA defines four possible options that combine differently computer codes availability, realism of assumptions and boundary conditions [IAEA SSG-2, 2008]. Among these options, traditional DSA using Best Estimate (BE) Thermal-Hydraulic (TH) codes based on conservative (pessimistic) assumptions on the system dynamics and physical models (i.e., IAEA option 3) is limited in the consideration of system failure modes and sequences, timing and order of failure events. Probabilistic Safety Assessment (PSA) overcomes the limitation of considering only DBAs by extending the set of accidents through a systematic analysis of the failure events and sequences (e.g., by Event Trees (ETs) / Fault Trees (FTs)). Yet, PSA does not give full account to the timing of failure events and to the magnitude of component failures, which can be important especially when the system dynamics significantly influences the system failure behavior [START_REF] Rutt | Distributed Dynamic Event Tree Generation for Reliability and Risk Assessment[END_REF].

Dynamic reliability approaches [Siu, 1994;Devooght, 1997;[START_REF] Marseguerra | A concept paper on dynamic reliability via Monte Carlo simulation[END_REF][START_REF] Labeau | Dynamic Reliability: Towards an Integrated Platform for Probabilistic Risk Assessment[END_REF][START_REF] Dufour | Dynamic reliability: A new model[END_REF]Di Maio et al., 2009;Aldemir, 2013] have been developed, aimed at giving explicit account to the interactions among the physical parameters of the process (such as temperature, pressure, speed, etc.), the human operators actions and the failures of the hardware and software components. This creates the opportunity of DSA and PSA integration into one framework of Integrated Deterministic and Probabilistic Safety Analysis (IDPSA) [Aldemir, 2013;[START_REF] Zio | [END_REF] and as a by-product for the quantification of operational safety margins within a dynamic reliability scheme [START_REF] Zio | Needs and dreams for methodologies of Integrated Deterministic and Probabilistic Safety Analysis (IDPSA)[END_REF].

Traditionally, a safety margin is defined as the minimum distance between the system "loading" and its "capacity" [US D.O.E., 2009]. The challenge is the effective representation of the uncertainties inherent in the TH code parameters, correlations and approximations.

Uncertainty is typically distinguished into two types: randomness due to inherent variability in the system behavior and imprecision due to lack of knowledge and information on the system [Apostolakis, 1990]. The former type of uncertainty is often referred to as objective, aleatory, stochastic, whereas the latter is often referred to as subjective, epistemic, state of knowledge [Apostolakis 1990;Helton, 2011]. To deal with these uncertainties, traditional safety margins quantification in DSA analysis has implied conservatism in both the analysis of the TH code outputs and the evaluation criteria [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF]. Best Estimate (BE) methodologies have reduced the amount of conservatism for the evaluation of safety margins, but do not take into account all aleatory and epistemic uncertainties in the physical models stochastic behavior and model parameter values [US D.O.E., 2009].

In order to more realistically quantify the uncertainty of TH code outcomes, a probabilistic safety margin definition has been proposed for PSA, which better deals with epistemic uncertainties [START_REF] Zio | Safety margins confidence estimation for a passive residual heat removal system[END_REF]. However, the effect of timing, order and magnitude of the component failures on the system dynamics is not considered.

In this respect, a Dynamic probabilistic Safety Margin (DSM) approach is proposed in this paper, based on time-dependent phenomenological models of stochastic system evolution including possible dependencies between failure events [Aldemir, 2013]. For this, we introduce a novel definition of a DSM by the combined quantification of a percentile (e.g., 95 th ) of the safety parameter distribution (e.g., oil temperature, peak cladding temperature) and a percentile (e.g., 5 th ) of the distribution of the earliest time required to the safety parameter to reach the given percentile value. The uncertainties affecting the DSM are treated using Order Statistics (OS) (i.e., Bracketing and Coverage approach) [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF]. By doing so, we are able to compute the confidence that, for a selected accidental scenario of a Dynamic Event Tree (DET) obtained by a IDPSA analysis, the estimated 95 th percentile of the safety parameter cannot be reached before the 5 th percentile of the estimated time: if these estimated percentiles meet the safety criteria with the required confidence, the NPP can be licensed as "safe" to withstand the selected accidental scenario.

The rationale behind the choice of the selection of the 95 th and the 5 th percentiles for the safety parameter and the estimated time, respectively, lies in the attempt of assuring that there is no significant evidence of exceedance of the safety parameter threshold which could lead to a higher than accepted probability of failure within an extremely unavoidable (fast) time (i.e., the unlikely condition that the safety parameter reaches the threshold within the 5 th percentile value of the time distribution). With these assumptions, the proposed definition of DSM provides the analyst with the additional resilience information on the available time for counteracting the occurrence of an accidental scenario, rather than only quantifying to which extent the selected combination of failure events can be harmful for the NPP.

The proposed framework of analysis is developed with reference to a Lead Bismuth Eutectic-eXperimental Accelerator Driven System (LBE-XADS) model, in which the average oil temperature (𝑇 𝑜 𝑎𝑣,𝑆 ), of the secondary coolant loop is taken as the safety parameter [START_REF] Cammi | Modelling and control strategy of the Italian LBE-XADS[END_REF]Di Maio et al., 2009]. A SIMULINK model of the LBE-XADS system is used for the estimation of the percentiles of the maximum oil temperature (𝑇 𝑜,𝑚𝑎𝑥 ) distribution and of the distribution of the time required to reach 𝑇 𝑜,𝑚𝑎𝑥 . A Monte Carlo (MC)-driven fault injection engine is used for randomly sampling the model parameters values, the components failures times and magnitudes. The illustration of the analysis is given with respect to one accidental scenario of a DET generated in an IDPSA.

The paper is organized as follows. In Section 2, the concept of probabilistic safety margin is explored and that of DSM is introduced. In Section 3, a brief explanation is given of the OS approaches (bracketing and coverage) used for the definition of the number of TH code runs for uncertainty analysis with a required confidence (e.g., 95%) in the quantification of the DSM. In Section 4, a short description of the LBE-XADS system and its failure modes is given, along with the SIMULINK model used. The MC driven fault injection engine, used for sampling the physical parameters affecting the system behavior (epistemic uncertainties) and the components failure times and magnitudes (aleatory uncertainties), is also presented, the effects of the uncertainties on the dynamic evolution of 𝑇 𝑜,𝑚𝑎𝑥 are discussed, and the results are shown and analyzed. Conclusions of the whole study are drawn in Section 5.

DYNAMIC PROBABILISTIC SAFETY MARGIN

Traditionally, for an accidental scenario '𝑎', the safety margin 𝑀(𝑦 𝑗 , 𝑎) is defined as the difference between the conservatively computed values reached by a selected safety parameter 𝑦 𝑗 (𝑎), j=1,2,…J, and a predefined upper (lower) threshold 𝑈 𝑗 (𝐿 𝑗 ) during an accidental scenario [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF][START_REF] Secchi | Quantifying uncertainties in the estimation of safety parameters by using bootstrapped artificial neural networks[END_REF][START_REF] Martorell | An approach to integrate thermal-hydraulic and probabilistic analyses in addressing safety margins estimation accounting for uncertainties[END_REF].

For the upper threshold 𝑈 𝑗 , it is defined as: 

where 𝑦 𝑗 𝑟𝑒𝑓 is a reference value for 𝑦 𝑗 (𝑎), which can also be considered as the nominal value of the safety parameter 𝑦 𝑗 . However, a safety margin so defined ends up to be too conservatively computed not accounting explicitly for the uncertainties in the estimation of safety margin [Martorell et al., 2006; Zio et al., 2008 b ].

To overcome this conservatism, the safety margin can be defined in probabilistic terms as the difference between 𝑈 𝑗 (𝐿 𝑗 ) and the value of a specific 𝛾 1 percentile of the distribution of the safety parameter 𝑦 𝑗 (𝑎), accounting for both the aleatory and epistemic uncertainties that effect 𝑦. Without loss of generality, we only refer to an upper threshold 𝑈 𝑗 , the extension to 𝐿 𝑗 being straightforward. By regulation, 𝛾 1 is usually set equal to the 95 th percentile. Despite that, the estimation of the probability density function of y, 𝑓(𝑦), and of its 𝛾-th percentile 𝑦 𝛾 1 , 𝑓(𝑦 𝛾 1 ), is a non-trivial task that requires guaranteeing a confidence 𝛽 1 (e.g., 95% confidence), viz [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF][START_REF] Zio | Safety margins confidence estimation for a passive residual heat removal system[END_REF]: Figure 1 shows that 𝑀(𝑦 𝑗 , 𝑎) > 0 if y γ 1 < 𝑈 𝑗 . Since 𝑦 ̂𝛾1 > y γ 1 with confidence 𝛽 1 , if y γ 1 < 𝑈 𝑗 , then 𝑀(𝑦 𝑗 , 𝑎) > 0. After the distribution of the values of the safety parameter 𝑦 and the point estimates of the percentiles (i.e., 𝑦 𝛾 1 (real) and 𝑦 ̂𝛾1 (estimated)) are obtained, the probabilistic safety margin can be calculated from equation ( 5) [Nutt et al., 2004; Zio et al., 2008 a ]: The definition of probabilistic safety margin of equation ( 5) can be enriched by taking into account the resilience information related to the time required for reaching 𝑦 𝛾 1 .

𝛾 1 = Pr{𝑦 < 𝑦 𝛾 1 } (3) 𝛽 1 = 𝑃𝑟{𝑦 𝛾 1 < 𝑦 ̂𝛾1 } (4)
𝑀(𝛾 1 , 𝛽 1 ) = { 𝑈 𝑗 -𝑦 ̂𝛾1 𝑈 𝑗 -𝑦 𝑗 𝑟𝑒𝑓 𝑖𝑓 𝑦 ̂𝛾1 ≤ 𝑈 𝑗 0 𝑖𝑓 𝑈 𝑗 < 𝑦 ̂𝛾1 1 𝑖𝑓 𝑦 ̂𝛾1 < 𝑦 𝑗 𝑟𝑒𝑓 } (5)
Similarly to 𝑦, if we consider the pdf 𝑓(𝑦 𝑡 ) of time 𝑦 𝑡 required to reach 𝑦 𝛾 1 , 𝑦 𝑡 𝛾 2 a specific percentile (e.g., 5 th percentile) of 𝑦 𝑡 and 𝑦 ̂𝑡𝛾2 its estimate, then we can define (see Figure 2):

𝛾 2 = Pr {𝑦 𝑡 < 𝑦 𝑡 𝛾 2 } (6) 𝛽 2 = 𝑃𝑟 {𝑦 𝑡 𝛾 2 > 𝑦 ̂𝑡𝛾 2 } (7)
The dynamic probabilistic safety margin can, thus, be defined as a probabilistic safety margin with respect to the safety parameter 𝑦 together with the information on the earliest (grace) time 𝑡 required to reach that margin (i.e., the available time for counteracting the occurrence of an accidental scenario a).

𝑀(𝛾 1 , 𝛾 2 , 𝛽 1 , 𝛽 2 ) = { 𝑈 𝑗 -𝑦 ̂𝛾1 𝑈 𝑗 -𝑦 𝑗 𝑟𝑒𝑓 𝑖𝑓 𝑦 ̂𝛾1 ≤ 𝑈 𝑗 0 𝑖𝑓 𝑈 𝑗 < 𝑦 ̂𝛾1 1 𝑖𝑓 𝑦 ̂𝛾1 < 𝑦 𝑗 𝑟𝑒𝑓 } with grace time 𝑦 ̂𝑡𝛾2 (8)
where, the 𝛾 2 -th percentile of the grace time, 𝑦 ̂𝑡𝛾2 , provides the twofold information regarding: the resilience of the system not to exceed the safety threshold and the available time for undertaking counteraction measures. In other words, it provides the dynamic information for the computed probabilistic safety margin.

ORDER STATISTICS FOR PERCENTILES ESTIMATION

Order statistics (OS) is a non-parametric statistical quantification approach that has been shown useful in for various nuclear applications: evaluation of fuel densification [U.S. , 1978], evaluation of the reliability of an Emergency Core Cooling System (ECCS)

NRC

[U.S. NRC, 1996] and a Loss of Coolant Accident (LOCA) best estimate plus uncertainty nuclear safety analysis [START_REF] Martin | Perspectives on the application of order-statistics in best-estimate plus uncertainty nuclear safety analysis[END_REF]. The invaluable advantage of OS is that an unlimited number of model uncertainties can be explicitly considered simultaneously, especially when the Nutt-Wallis method [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF] is enforced (as done in this work) for capturing the uncertainties in multivariate cases: this is, indeed, the only approach for multivariate cases that can determine their individual coverage with a specified confidence level and an expression of the probability distribution is not required [START_REF] Martin | Perspectives on the application of order-statistics in best-estimate plus uncertainty nuclear safety analysis[END_REF].

In this study, the estimates 𝑦 ̂𝛾1 and 𝑦 ̂𝑡𝛾2 are quantified using OS [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF] methodology to get the optimal number of samples 𝑁 of the TH code simulations to be run to guarantee confidences 𝛽 1 and 𝛽 2 in the estimation of 𝑦 ̂𝛾1 and 𝑦 ̂𝑡𝛾2 , respectively. This is done to avoid the computational costs for running complex TH models for obtaining the full distributions of 𝑦 and 𝑦 𝑡 . [Zio et al., 2008 a ; Nutt et al., 2004]. Order

Statistics and Finite Mixture Models (FMMs) [Carlos et al., 2013;Di Maio et al., 2014 ) will do so, too [Nutt et al., 2004; Wald, 1943; Zio et al.,2008 a,b ]. It is worth noticing that the m th member 𝑦 𝑡,𝑚 of the 𝑁 sorted outputs 𝑦 𝑡 is required to guarantee a confidence (𝛽 2 ) of not exceeding (i.e., being smaller than) the unknown true 𝛾 2 𝑡ℎ percentile 𝑦 𝑡 𝛾 2 .

Two non-parametric approaches (namely Bracketing and Coverage) can be embraced to calculate 𝑁 and to deal with a multi-dimensional output 𝑦 ̅ and 𝑦 ̅ 𝑡 and their uncertainties.

Both approaches entail two sets of outputs to be sequentially sorted. Then, from the regulatory bodies point of view, the two approaches fundamentally differ in the way they demand the outputs to satisfy their specific safety criteria. The Bracketing approach only guarantees a certain fraction of the possible nuclear safety codes outputs to be simultaneously considered, which does not guarantee adherence to all safety criteria simultaneously, but they are guaranteed to be satisfied by each output independently (or by a subset of outputs) [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF]. Coverage, on the other hand, provides a confidence that all outputs will simultaneously meet the criteria and, thus, it is expected to better conform to the regulatory conservative guidelines [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF].

Bracketing

The Bracketing approach provides the confidence that each value of the outputs from the sorted lists will be covered by the specified ranges of the cumulative probability distribution of all possible results of that output [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF]. Let 𝛾 1 be the probability that 𝑦 lies below 𝑦 𝛾 1 in any of the 𝑁 runs, whatever the value of 𝑦 𝑡 ; 𝛾 2 is the corresponding probability for the other output 𝑦 𝑡 . The 𝑦 and 𝑦 𝑡 sets of outputs are assumed to be uncorrelated for the purpose of simplification. For uncorrelated outputs and assuming 𝑚 = 1, we can calculate 𝑁 from equation ( 9), where 𝑁 is expressed as a function of 𝛾 and 𝛽 [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF]:

𝛽 = (1 -𝛾 𝑁 ) 2 (9) 
A value 𝑁 = 72 allows calculating the 𝛾 = 95 th percentile of 𝑦 ̅ (i.e., 𝑦 ̂𝛾1 ) with a 𝛽 = 95% confidence; similarly, 𝑦 ̂𝑡𝛾 2 can be found by sorting 𝑁 = 72 values of 𝑦 ̅ 𝑡 [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF].

Coverage

The Coverage approach provides the confidence that each value of the sorted outputs will be covered by the specific ranges of the joint probability distribution of the outputs [Wilks, 1941;Wald, 1943;[START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF]. The coverage approach requires knowledge on the correlation between the outputs 𝑦 and 𝑦 𝑡 . It is assumed after investigation that the sets of outputs 𝑦 and 𝑦 𝑡 are found to be uncorrelated. Shortly, for uncorrelated outputs and 𝑚 = 1, we calculate 𝑁 = 89 resorting to equation ( 10) [START_REF] Nutt | Evaluation of Nuclear Safety from the outputs of Computer Codes in the Presence of Uncertainties[END_REF]:

𝛽 = 1 -𝛾 𝑁 + 𝑁𝛾 𝑁 ln (𝛾) (10) 
where 𝛽 = 0.95 and 𝛾 = 0.95. This value confirms that the Coverage approach requires larger number of runs as compared to the Bracketing approach. This is because in the Coverage approach (contrarily to the Bracketing approach) one output (e.g., 𝑦) is sorted jointly with the other output (e.g., 𝑦 𝑡 ) and both percentiles 𝑦 𝛾 1 and 𝑦 𝑡 𝛾 2 are required to simultaneously lie within the estimated percentiles 𝑦 ̂𝛾1 and 𝑦 ̂𝑡𝛾 2 to guarantee the confidence 𝛽 1 and 𝛽 2 .

THE LBE-XADS SYSTEM

The Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) is a sub-critical, fast reactor in which the fission process for providing thermal power 𝑃(𝑡) is sustained by an external neutron source through spallation reaction by a proton beam 𝑄(𝑡) accelerated by a synchrotron on a lead-bismuth eutectic target: a simple scheme of the system is given in Figure 3 [ [START_REF] Cammi | Modelling and control strategy of the Italian LBE-XADS[END_REF].

The primary cooling system is of pool-type with Lead-Bismuth Eutectic (LBE) liquid metal coolant leaving the top of the core, at full power nominal conditions, at temperature 𝜏 𝐿𝐵 𝐶,𝑃 equal to 400 [°C] pushed by natural circulation enhanced by argon gas injection into the heat exchangers of the secondary cooling circuit and then re-entering the core from the bottom through the down-comer at temperature 𝜏 𝐿𝐵 𝑃,𝐶 equal to 300 [°C]. The average in-core temperature of the LBE 𝑇 𝐿𝐵 𝑎𝑣,𝐶 is taken as the mean of 𝜏 𝐿𝐵 𝐶,𝑃 and 𝜏 𝐿𝐵 𝑃,𝐶 [Di Maio et al., 2009]. The secondary cooling system is a flow of diathermic oil at 290-320 [°C], at full power conditions. Cooling of the diathermic oil is obtained through an airflow Γ 𝑎 (𝑡)

provided by three air coolers connected in series [Di Maio et al., 2009]. A dedicated, dynamic simulation model, as shown by a block diagram in Figure 4, has been implemented in SIMULINK for providing a simplified, lumped and zerodimensional description of the coupled neutronic and thermo-hydraulic evolution of the system [START_REF] Cammi | Modelling and control strategy of the Italian LBE-XADS[END_REF]. The interested reader may refer to [START_REF] Cammi | Modelling and control strategy of the Italian LBE-XADS[END_REF] for further details of the model considered. 

Epistemic Uncertainty

The physical input parameters that are fed to the SIMULINK model have been randomly sampled from their respective distributions as given in Table 1, where the chosen distributions have been taken from the listed references. The result of the random sampling of the physical parameters fed to the SIMULINK model of the LBE-XADS is given in Figure 6 where a large set of transients are plotted whose evolution is affected by the sampled values of input parameters. The randomness of the evolution of the oil average temperature ( ) in comparison with its nominal case (shown in Figure 5) is due to the inherent variability and combination of the sampled physical variables. Nevertheless, the inherent uncertainties of the physical variables do 

MC fault injection

The dynamics of the failures of the LBE-XADS system are explained focusing on four faults, as shown in Figure 7 Within the mission time 𝑇 𝑀 of 3000 s, the transients can lead to three end states:

1. Low-temperature failure mode (𝑇 𝑜 𝑎𝑣,𝑆 <𝑇 𝑜 𝑡ℎ,𝑙 ) 2. Safe mode (𝑇 𝑜 𝑡ℎ,𝑙 <𝑇 𝑜 𝑎𝑣,𝑆 <𝑇 𝑜 𝑡ℎ,𝑢 ) 3. High-temperature failure mode (𝑇 𝑜 𝑎𝑣,𝑆 >𝑇 𝑜 𝑡ℎ,𝑢 )

A comprehensive quantitative reliability assessment of the system is expected to involve all system components and failure modes and the dynamic effects arising from the complex interactions of all system elements, including the software and the human (here not modeled) [Di Maio et al., 2009]. However, to reduce the computational burden and to avoid the complexity of combinatorial explosion of a DET in such situation [Di Maio, 2009], we consider the ad-hoc case study hereafter described and sketched in Figure 8.

As an example of a dynamic evolution of an accidental scenario among the infinite number of scenarios that might be considered in a DET for IDPSA, we limit our analysis to those scenarios leading to high-temperature failure mode (the upper safety threshold is equal to 𝑈 𝑗 = 𝑇 𝑜 𝑡ℎ,𝑢 = 613.15 [K]) and, among these, to the scenarios that consist in multiple successive failures of the air coolers getting stuck at random times and magnitudes (whose distributions are given in Table 2). The set of failure events that occur during this accidental scenario are not Prime Implicants (PIs) (i.e., these are not the minimum combination of failure events, with certain order and timing, that could lead the system to failure) [Di Maio et al., 2015;[START_REF] Garret | Context in the risk assessment of digital systems[END_REF]). Thus, this set of failure events does not unequivocally determine the end-state of the system as a failure, but, rather, it is a 'near-miss' scenario [Di Maio et al., 2009]. These failure events make the temperature 𝑇 𝑜 𝑎𝑣,𝑆 approach the upper safety threshold 𝑇 𝑜 𝑡ℎ,𝑢 without exceeding it, as shown in Figure 9, where the evolution of 104 safe transients of 𝑇 𝑜 𝑎𝑣,𝑆 towards 𝑇 𝑜 𝑡ℎ,𝑢 are plotted, when the selected accidental scenario of Table 2 (and sketched in bold line in Figure 8) is injected into the SIMULINK model of the LBE-XADS along with the uncertainties of its physical variables (as given in Table 1). It is worth pointing out that the random timings and magnitudes of successive failures cause randomness in the system dynamics (as shown in Table 3, where, the maximum temperature reached 𝑇 𝑜,𝑚𝑎𝑥 and the time 𝑦 𝑡 at which this is reached are listed for each transient that is plotted in Figure 9). The need of assessing the risk related to the occurrence of this scenario, in terms of both the capability of the system to keep below 𝑇 𝑜 𝑡ℎ,𝑈 and the availability of time for counteracting the temperature rise, calls for the quantification of a DSM.

To do this, we aim at estimating, with a given confidence 𝛽, the 95 th percentiles of the distribution of 𝑇 𝑜,𝑚𝑎𝑥 and the 5 th percentile of the distribution of the time required to reach these temperatures. 

Results and Discussions

For applying the Bracketing and Coverage approaches to 𝑦 = 𝑇 𝑜,𝑚𝑎𝑥 and 𝑦 𝑡 , 𝑁 = 72 and 𝑁 = 89 samples are randomly selected from the 104 safe transients plotted in Figure 9 and listed in Table 3. In both cases, 𝑚 has been chosen to be equal to 1, 𝛾 1 equal to 0.95, 𝛾 2 equal to 0.05 and 𝛽 1 and 𝛽 2 equal to 95%. In practice, we want to quantify the dynamic probabilistic safety margin for the selected accidental scenario by quantifying a reasonable grace time 𝑦 ̂𝑡𝛾 2 before the estimated temperature 𝑦 ̂𝛾1 is reached. Indeed, the value of 𝛾 2 = 5 th percentile with 𝛽 2 = 95% will allow the operator to know the time at his disposal with large confidence for mitigating the risk of the onset of the selected accidental scenario.

Results using Bracketing approach

Using the 𝑁 = 72 samples, the results of the point estimates of the 95 th percentile (γ1) of Maximum Oil Temperature and the 5 th percentile (γ2) of the time taken to reach the The DSM for the safety parameter y is calculated using equation ( 8 

Results using Coverage approach

The same analysis is done using the Coverage approach on 𝑁 = 89 selected samples. The outcomes of the point estimates of the 95 th percentile (𝛾 1 ) of 𝑇 𝑜,𝑚𝑎𝑥 and the 5 th percentile (𝛾 2 ) of the time taken to reach the maximum temperature, as computed by the Coverage OS method on the sample 𝑦 ̅ = {𝑦 1 , 𝑦 2 , … … , 𝑦 𝑁 } and 𝑦 ̅ 𝑡 = {𝑦 𝑡 1 , 𝑦 𝑡 2 , … … . , 𝑦 𝑡 𝑁 }, are given in Table 5. The two sets of outputs 𝑦 ̅ and 𝑦 ̅ 𝑡 are jointly sorted in descending order for the 𝑦 ̅ set of values and its corresponding time from the 𝑦 ̅ 𝑡 set as given in Table 3. The 𝑚 -th value of the sorted 𝑦 ̅ of the 𝑁 =89 𝑇 𝑜,𝑚𝑎𝑥 values samples from Table 3 is assumed (according to OS theory) to exceed the real 95 th percentile of 𝑦 ̅ with a probability of 95% while also, simultaneously for 𝑦 ̅ 𝑡 , the 𝑚 -th value of the sorted 𝑦 ̅ 𝑡 is considered to be that time which with a probability of 95% underestimates the 5 th percentile of 𝑦 ̅ 𝑡 .

The DSM for the safety parameter y is again calculated using equation ( 8), where the reference value 𝑦 𝑟𝑒𝑓 is taken equal to 577.12 [K] and the real 𝑦 𝛾 1 is calculated as the 𝛾 1 𝑡ℎ percentile (95 th ) of the distribution of 𝑦 ̅ that turns out again to be a Weibull distribution by Anderson-Darling (AD) statistical hypothesis test [Ali, 2012]. The Weibull probability distribution of the 𝑇 𝑜,𝑚𝑎𝑥 has a 𝑦 𝛾 1 equal to 611.76 [K] which is smaller than 𝑦 ̂𝛾1 = 612.99 [K] and, thus, also smaller than 𝑈 = 613.15 [K]. The real 𝑦 𝑡 𝛾 2 is calculated as the 𝛾 2 𝑡ℎ percentile (5 th ) of the distribution of 𝑦 ̅ 𝑡 that turns out to be a Gamma distribution by the AD statistical hypothesis test [Won, 1996]. It is to be observed that the point estimates of the 95 th percentile and the 5 th percentile (as shown in Table 4 andTable 5, respectively) guarantee the dynamic probabilistic safety margin to be positive in both cases of Bracketing and Coverage, and provide additional integrated information about the grace time before 𝑇 𝑜,𝑚𝑎𝑥 is reached.

As a concluding remark, it is worth noticing that both the dynamic probabilistic safety margins of Tables 4 and5 result to be equal to 0.0044 with Bracketing and Coverage approaches, respectively. This is not surprising, because these results have been obtained

with a different number 𝑁 of simulations. The Coverage approach is more computationally burdensome (𝑁 =89 samples required) as compared to the Bracketing approach (𝑁 =72 samples required). This is because the Bracketing approach provides a safety margin when both outputs (𝑇 𝑜 𝑎𝑣,𝑆 and 𝑡) are tested to independently meet the safety criteria, while the Coverage approach guarantees for both outputs to simultaneously fall into the acceptable criteria.

CONCLUSION

In this work, we address the problem of the estimation of dynamic probabilistic safety margin for taking into account the aleatory and epistemic uncertainties affecting the physical behavior of dynamic systems. We adopt by using Order Statistics and Finite Mixture Models approaches to jointly estimate percentiles of the distributions of the safety parameter and of the time required for the safety parameter to reach these percentiles values. This information, here originally provided within the framework of safety margin, is quite important in practice.

The computational framework has been developed with respect to an accidental sequence considered in an IDPSA that might occur in the LBE-XADS system. The result of the OS approaches of Bracketing and Coverage for the LBE-XADS case study confirms the capability of the proposed framework for the quantification of the safety margin and the estimation of the grace time with a given confidence. Using an optimal number of samples 𝑁 as proposed by the OS theory, the point estimates of the percentiles of the

Figure 1

 1 Figure 1 Sketch of the probability distribution of the values of safety parameter 𝒚, the probabilistic safety margin, the real 𝑦 𝛾 1 and estimated 𝑦 ̂𝛾1 values of a given percentile (e.g., 95 th ).

Figure 2

 2 Figure 2 Sketch of the probability distribution of the values of time 𝒕, the real 𝒚 𝒕 𝜸 𝟐 and estimated 𝒚 𝒕 ̂𝜸𝟐 , values of a given percentile (e.g., 5 th )

Figure 3

 3 Figure 3 LBE-XADS simplified schematics. A = Accelerator; C = core; P = primary heat exchanger; S = secondary heat exchanger [Cammi et al., 2006]

  The control system aims to keep the average oil temperature value approximately around 300 [°C] (573.15 [K]), which is the optimum working temperature of the diathermic oil under steady state, nominal condition at full power 80 [MWTh].

Figure 4 Figure 5

 45 Figure 4 Block diagram representing the SIMULINK model of the LBE-XADS [Cammi et al., 2006]

  system to failure (none of the transients exceeds the upper and lower thresholds at 340 °C (613.15 K) and 260 °C (533.15 K), respectively).

Figure 6

 6 Figure 6 Oil Average Temperature with physical variables uncertainties and no initiating events

  , which are:  The PID controller fails stuck with a random flow rate output value m1 sampled from a uniform distribution in [0,797] [kg/s].  The air coolers fail stuck in a random position that provides a corresponding air flow mass m2 uniformly distributed in [0,1000] [kg/s].  The feedforward controller fails stuck with a corresponding flow rate value m3 uniformly distributed in [0,797] [kg/s]. The communication between air coolers actuators and PID controller fails so that the PID is provided with the same input value of the previous time step. The choice of a mission time 𝑇 𝑀 of 3000 [s] has been made, because it is a long enough interval of time to allow the complete development also of slow dynamic accident scenarios occurring at early/medium times[Di Maio et al., 2009].

Figure 7

 7 Figure 7 Sketch of the faults that can be injected into the system: the PID controller fails stuck at a random output value, the air coolers fails stuck at a random position, the feedforward control fails stuck a random output value, the communication between air coolers actuators and the PID controller is interrupted

Figure 8 .

 8 Figure 8. A conceptual sketch of a DET. The bold line indicates one of the infinite sequences that can take place.

Figure 9

 9 Figure 9 Different evolutions of 𝑻 𝒐 𝒂𝒗,𝑺 during the accidental scenario described in Table 2

  b ] are used for the quantification of the uncertainties of the outputs. FMM provides a natural "clustering" of the TH code outputs, by reproducing them providing information pertaining to the most important input variables which affect the output uncertainty, whereas OS focuses on characterizing the PDFs of certain percentiles and providing approximate estimation of safety limits. This latter can also be integrated with Artificial percentile 𝑦 𝛾 1 (𝑦 𝑡 𝛾 2). Then, one has a level of confidence 𝛽 1 (𝛽 2 ) that the actual value of 𝑦 𝛾 1 (𝑦 𝑡 𝛾 2 ) is less (more) than the value obtained for 𝑦 𝑚 (𝑦 𝑡,𝑚 ): if 𝑦 𝑚 (𝑦 𝑡,𝑚 ) meets the criterion of being less than the safety threshold 𝑈, then the unknown 𝑦 𝛾 1 (𝑦 𝑡 𝛾 2

Neural Network (ANNs) for speeding up the computation by substituting the TH code with a simpler and faster surrogate

[Di Maio et al., 2015; Zio et al., 2008 b ; Mclachlan et al., 2000]

. Therefore, OS allows obtaining the optimum number of samples 𝑁 to be used for properly estimating the percentiles 𝑦 ̂𝛾1 and 𝑦 ̂𝑡𝛾 2 with high confidences 𝛽 1 and 𝛽 2 , respectively.

Let us assume we have a collection of two output vectors 𝑦 ̅ = {𝑦 1 , 𝑦 2 , … … , 𝑦 𝑁 } and 𝑦 ̅ 𝑡 = {𝑦 𝑡 1 , 𝑦 𝑡 2 , … … . , 𝑦 𝑡 𝑁 } that are obtained from N runs of the TH code, each one with a different input deck 𝑥̅ . Let 𝑦 ̅ * = {𝑦

(1) 

, 𝑦

(2) 

, … , 𝑦

(𝑁) 

} and 𝑦 ̅ 𝑡 * = {𝑦 𝑡

(1) 

, 𝑦 𝑡 (2) , … , 𝑦 𝑡 (𝑁) } be the ordered set of values of the two outputs. Without loss of generality, with reference to only the safety parameter 𝑦 (or the time 𝑦 𝑡 ) to be limited from above by U, the approach aims at showing that the m th member 𝑦 𝑚 (𝑦 𝑡,𝑚 ) of the 𝑁 sorted output 𝑦 ̅ * (𝑦 ̅ 𝑡 * ) has a certain probability 𝛽 1 (𝛽 2 ) of exceeding (undershooting) the unknown true 𝛾 1 -𝑡ℎ (𝛾 2 -𝑡ℎ)

Table 1 Distributions of physical parameters
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	Parameter	Range of parameter distribution	Mean	Standard	Probability
		Min	Max	μ	Deviation σ	distribution
	βdelayed (Fraction of delayed neutrons) [%]	0.0033	0.0037	0.0035	6.42E-05	Normal
	[Cammi et al., 2006]					
	Ca (Air Specific heat capacity) [kJ/kg-K]	0.973	1.027	0.999	0.0089	Normal
	[Panasiti et al., 1999]					
	Cf (Fuel specific heat capacity) [kJ/kg-K]	0.234	0.265	0.250	0.0052	Normal
	[ORNL, 2000]					
	Gammaa0 (Initial air mass flow rate)	694.11	910.85	802.48	36.12	Normal
	[kg/s]					
	[Agostini et al., 2005]					
	Gammao (Oil Mass Flow rate) [kg/s]	699.60	965.50	832.55	44.32	Normal
	[Agostini et al., 2005]					
	Gammap (Lead Mass Flow rate) [kg/s]	4630.54	6254.78	5442.66	270.71	Normal
	[Agostini et al., 2005]					
	Ma (Mass of air) [kg]	139.79	185.18	162.48	7.56	Normal
	[Cammi et al., 2006]					
	Mf (Mass of fuel) [kg]	3540.14	3750.65	3645.39	35.09	Normal
	[Cammi et al., 2006]					
	Mo1 (Mass of oil in Loop 1) [kg]	1505.12	2008.12	1756.62	83.83	Normal
	[Cammi et al., 2006]					
	Mo2 (Mass of oil in Loop 2) [kg]	3651.55	4780.99	4216.27	188.24	Normal
	[Cammi et al., 2006]					
	Mp1 (Mass of lead in Loop 1) [kg]	9469.96	13673.72	11571.84	700.63	Normal
	[Anderson et al., 1986]					
	Mp2 (Mass of lead in Loop 2) [kg]	56160.75	82239.52	69200.13	4346.46	Normal
	[Anderson et al., 1986]					
	Tfave_0 (Average initial temperature of	972.36	1162.90	1067.63	31.76	Normal
	fuel) [K]					
	[D' Angelo et al., 2003]					
	Tpin_0 (LBE temperature entering	530.15	617.49	573.82	14.56	Normal
	Primary HX-Core Loop) [K]					
	[NEA, OECD, 2011]					
	Tpout_0 (LBE temperature leaving	623.79	727.85	675.82	17.34	Normal
	Primary HX-Core Loop) [K]					
	[NEA, OECD, 2011]					
	Q (Source value)	0.0943	0.1061	0.1002	0.002	Normal
	[Negrini et al., 2003]					
	Po (Total thermal power of XADS in	80000	82682.42	80000	-	Uniform
	steady state) [kWth](assumed)					
	K (Multiplication factor, nominal	0.95	0.99	0.97	-	Uniform
	power, BOC)					
	[Negrini et al., 2003]					
	Tain [Air inlet temperature from air	281.48	318.02	299.75	6.09	Seasonal
	coolers) [K]					

Table 2 Uncertainty distributions of failure time and magnitude for the DET scenario considered.
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Table 2
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	Simulation#	𝑻 𝒐,𝒎𝒂𝒙	Time 𝒚 𝒕 (s)	Simulation#	𝑻 𝒐,𝒎𝒂𝒙	Time 𝒚 𝒕 (s)
	1	586.20	1088	53	593.63	1142
	2	600.16	1114	54	608.09	1295
	3	579.50	1079	55	604.14	1199
	4	603.24	1110	56	605.03	3001
	5	594.18	1133	57	599.73	1222
	6	600.06	1232	58	584.17	1109
	7	584.67	1049	59	581.69	1139
	8	594.03	1189	60	581.56	1194
	9	595.27	1157	61	593.31	1128
	10	604.31	1223	62	612.64	1188
	11	603.64	1282	63	601.61	1243
	12	596.68	1112	64	600.87	3001
	13	608.01	1234	65	602.65	1123
	14	582.46	1021	66	597.07	1263
	15	610.94	1251	67	608.83	1209
	16	580.56	1105	68	596.54	1170
	17	588.56	1064	69	585.51	1110
	18	595.52	1191	70	611.99	1255
	19	611.12	3001	71	611.19	1123
	20	601.19	1278	72	584.12	1156
	21	593.56	1251	73	610.45	1222
	22	598.68	1124	74	596.84	1181
	23	588.28	1158	75	580.99	1001
	24	609.73	1211	76	588.67	1097

Table 3 List of the maximum value of the average oil temperature that is reached in the simulations of Figure 9 and the respective times.
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parameter y (maximum oil temperature To,max [K]) Estimated 95 th percentile value, 𝒚 ̂𝜸𝟏 Real 95 th percentile value,

  maximum temperature, as computed by the Bracketing OS method on the sample 𝑦 ̅ = {𝑦 1 , 𝑦 2 , … … , 𝑦 𝑁 } and 𝑦 ̅ 𝑡 = {𝑦 𝑡 1 , 𝑦 𝑡 2 , … … . , 𝑦 𝑡 𝑁 } are given in Table4. The two sets of outputs 𝑦 ̅ and 𝑦 ̅ 𝑡 are independently sorted in descending and ascending order, respectively. The 𝑚 -th value of the sorted 𝑦 ̅ of the 𝑁 = 72 𝑇 𝑜,𝑚𝑎𝑥 values sampled from Table3is assumed (according to OS theory) to exceed the real 95 th percentile of 𝑦 ̅ with a probability of 95%. Similarly for 𝑦 ̅ 𝑡 , the 𝑚 -th value is considered to be that time which with probability 95% underestimate the 5 th percentile of 𝑦 ̅ 𝑡 . 𝒚 𝜸 𝟏

		Safety Upper safety	Nominal	DSM	Distribution
			threshold U	value, yref		
	612.99	611.89	613.15	577.12	0.0044	Weibull
			Distribution of time [s] to reach To,max		
	Estimated 5 th percentile value 𝒚 𝒕 ̂𝜸𝟐	Real 5 th percentile value 𝒚 𝒕 𝜸 𝟐	Distribution
	1088		1102.56		Normal	

Table 4 Point estimates of the percentiles of the 𝑻 𝒐,𝒎𝒂𝒙 and the time to reach the maximum temperature with the Bracketing approach
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  ), where the reference value 𝑦 𝑟𝑒𝑓 is taken equal to 577.12[K]. The real 𝑦 𝛾 1 is calculated as the 𝛾 1 𝑡ℎ percentile (95 th ) of the distribution of 𝑦 ̅, that turns out to be a Weibull distribution by Anderson-Darling (AD) statistical hypothesis test[Ali, 2012]. The Weibull probability distribution of the 𝑇 𝑜,𝑚𝑎𝑥 has a 𝑦 𝛾 1 equal to 611.89 [K], which is smaller than 𝑦 ̂𝛾1 = 612.99 [K] and, thus, also smaller than 𝑈 = 613.15[K]. The real 𝑦 𝑡 𝛾 2 is calculated as the 𝛾 2 𝑡ℎ percentile (5 th ) of the distribution 𝑦 ̅ 𝑡 that turns out to be a Normal distribution, identified using AD statistical hypothesis test[START_REF] Jäntschi | Cramser-von-Misses and Jarque-Bera statistics[END_REF].Thus, the Normal distribution of 𝑦 ̅ 𝑡 at which 𝑇 𝑜,𝑚𝑎𝑥 is reached has the value 𝑦 𝑡 𝛾 2 =

1102.56

[s]

, which is larger than the 𝑦 ̂𝑡𝛾 2 = 1088 [s].

Safety parameter y (maximum oil temperature To,max [K]) Estimated 95 th percentile value, 𝒚 ̂𝜸𝟏 Real 95 th percentile value, 𝒚 𝜸 𝟏 Upper safety threshold U Nominal value, yref DSM Distribution

  

	612.99	611.76	613.15	577.12	0.0044	Weibull
			Distribution of time [s] to reach To,max		
	Estimated 5 th percentile value 𝒚 𝒕 ̂𝜸𝟐	Real 5 th percentile value 𝒚 𝒕 𝜸 𝟐	Distribution	
	1031		1076		Gamma	

Table 5

 5 Point estimates of the percentiles of the 𝑻 𝒐,𝒎𝒂𝒙 and

the time to reach the maximum temperature with the Coverage approach 25

  Thus, the Gamma distribution of 𝑦 ̅ 𝑡 at which 𝑇 𝑜,𝑚𝑎𝑥 is reached has the value 𝑦 𝑡 𝛾 2 = 1076[s], which is larger than the 𝑦 ̂𝑡𝛾 2 = 1031 [s].

distributions of a safety parameter and of the earliest time required for the safety parameter to reach this percentile can be computed for estimating the dynamic probabilistic safety margins with a given confidence. The authors would like to thank all the reviewers for their valuable comments to improve the quality of this paper.
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