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Abstract 

The safety of a Nuclear Power Plant (NPP) is verified by analyzing the system responses under normal 

and accidental conditions. This is done by resorting to a Best-Estimate (BE) Thermal-Hydraulic (TH) 

code, whose outcomes are compared to given safety thresholds enforced by regulation. This allows 

identifying the limit-state function that separates the failure domain from the safe domain. 

In practice, the TH model response is affected by uncertainties (both epistemic and aleatory), which 

make the limit-state function and the failure domain probabilistic. 

The present paper sets forth an innovative approach to identify the failure domain together with the 

safest plant operating conditions. The approach relies on the use of Reduced Order Models (ROMs) 

and K-D Tree. 

The model failure boundary is approximated by Support Vector Machines (SVMs) and, then, projected 

onto the space of the controllable variables (i.e., the model inputs that can be manipulated by the plant 

operator, such as reactor control-rods position, feed-water flow-rate through the plant primary loops, 

accumulator water temperature and pressure, repair times, etc.). The farthest point from the failure 

boundary is, then, computed by means of a K-D Tree-based nearest neighbor algorithm; this point 

represents the combination of input values corresponding to the safest operating conditions. 

The approach is shown to give satisfactory results with reference to one analytical example and one 

real case study regarding the Peak Cladding Temperature (PCT) reached in a Boiling Water Reactor 

(BWR) during a Station-Black-Out (SBO), simulated using RELAP5-3D. 

Keywords: Risk-Informed Safety Margins Characterization; Failure Boundary; Reduced-Order 

Models; Support Vector Machines; K-D Tree; Station Black Out Accident. 



2 

1. INTRODUCTION

The Risk-Informed Safety Margins Characterization (RISMC) pathway of the Light Water 

Reactors Sustainability (LWRS) program of the U.S. Department of Energy (DOE) [DOE, 

2009] aims at developing decision making methods and tools, for use in the process of licensing 

new nuclear technologies and evaluating existing Nuclear Power Plants (NPPs) for lifetime 

extension. 

One key aspect is the safety assessment, which is performed based on the calculations by a 

Thermal-Hydraulic (TH) - neutronic code of the nuclear system response in normal and 

accidental conditions. Specific outputs are selected as safety-significant parameters and their 

calculated values are compared with some threshold values, in order to check that sufficient 

safety margins are kept during accident [Gavrilas et al., 2004]. 

Traditionally, this safety assessment procedure has been performed on a small set of Design 

Basis Accidents (DBAs) and under tight conservative assumptions (i.e., on the phenomena 

dynamics described, physical models implemented, etc.) to protect against the uncertainties in the 

model and its parameters. 

In recent times, an extended and more realistic approach has been undertaken, including 

Beyond Design Basis Accidents (BDBAs) and relying on Best Estimate (BE) codes, in which more 

realistic assumptions are taken in the evaluation of the safety margins [Zio et al., 2010; Alvarenga 

et al., 2015]. Under this setting, an accurate and explicit treatment of the 

uncertainties is required, in order to provide confidence that plant safety margins are not 

actually reduced [Zio et al., 2008; Apostolakis, 1990; Schuëller et al., 2008]. 

Such uncertainty quantification has shifted the concept of safety margins to a probabilistic 

paradigm, whereby the code outcomes are treated as stochastic variables [Zio et al., 2008; 

Schuëller et al., 2008]. 

Mathematically, a BE-TH code for safety assessment may be seen as an ensemble of three 

elements: i) a set of equations coded to describe the system response ii) an n-dimensional input 

vector of stochastic variables  1 2
, , ,

n
X X X X  and iii) an o-dimensional output vector of 

stochastic variables  1 2
, , ,

o
Y Y Y Y . The input vector X consists of the model parameters and 

input variables that feed the coded equations to compute the model output vector Y  that 

represents the systems response. In mathematical words, a BE-TH code can be seen as the 

multidimensional and non-linear operator m  that maps the input vector X  into the output 

vector Y  [Bourinet et al., 2011]: 
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 Y m X (1) 

In general, uncertainties affecting the model outcome may be due to: inherent stochastic 

behavior of the process described by the model m (aleatory uncertainty), imperfect knowledge 

about the model input variables X  and lack of information on the underlying physical 

phenomena (epistemic uncertainty) [Apostolakis, 1990; Möeller et al., 2008; Helton et al., 

2011]. Then, mathematically, the input vector X is uncertain and, therefore, the output vector 

Y  is uncertain as well, with stochastic realizations (in the following, upper case letters are used 

to identify stochastic variables and lower case letters are used to identify their realizations, as 

usual): 

 1 2 1 2
{ , , , } ( , , , )

o n
y y y y m x m x x x   (2) 

With reference to a plant accident scenario 
FE (i.e., a sequence of events that can (or not) lead 

to system failure) and to a safety threshold yγ of the vector y  of safety thresholds, each one 

of these not to be exceeded by the respective safety parameter YY  , a limit-state function G

can be defined as: 

yy γXYγXGG  )(),( (3) 

The model is in safe operating conditions when 0),( yγXG  and fails when 0),( yγXG . 

Then, ),( yγXG separates the input variables space 
n  in a safe domain, { : ( , ) 0},

y
S X G X γ   

and a failure domain, }0),(:{  yγXGXF . The failure probability, i.e. the probability of 

occurrence of the plant accident scenario 
FE is, then, given by:

( , ) 0
( ) ( ( , ) 0) ( )

y
F y XG X γ

P E P G X γ f x dx


    (4) 

where )(xf
X

 is the joint Probability Density Function (PDF) of the stochastic input vector X

[Cadini et al., 2014]. The set of input values 0),(: yγXGX defines the failure boundary F



4 

within the input space (i.e., 
n ), for a given value of the safety threshold yγ . Because the 

)( FEP values are low for high-reliable systems (such as NPPs) and the BE-TH models of these 

systems are computationally expensive, these latter can be replaced by Reduced Order Models 

(ROMs) to allow the estimation of F  within a reasonable computational time [Zio et al., 2008; 

Chakraborty et al., 2015]. Indeed, ROMs are designed to capture the dominant non-linear 

behavior of the BE-TH models based on a simplified mathematical representation [Lucia et al., 

2004]. 

In this work, the model failure boundary F  is approximated by means of a Support Vector 

Machines (SVM)-based ROM [Basudhar et al., 2008; Cortes et al., 1995; Guyon et al., 1993] 

that is embedded in a K-D Tree-based nearest neighbors search algorithm [Bentley, 1975; 

Katayama et al., 2000; Maneewongvatana et al., 2001] to determine the farthest point from F  

inside the input space 
n : this point represents the optimal combination of the model input 

values that results in the safest plant operating conditions (farthest from the failure boundary) 

with reference to some given safety requirements expressed by yγ . The main advantage of 

adopting SVMs lies in their superior ability, with respect to other ROMs (such as Artificial 

Neural Networks (ANNs) and simple linear regression models), to define complex decision 

functions (i.e., hyper-planes) in a multidimensional space and exploit optimal separating 

functions in order to decompose multiple classes of data [Basudhar et al., 2008; Zio et al., 

2012]. On the other hand, the selection of the K-D Tree algorithm as searching algorithm is 

motivated by the fact that it helps finding the nearest neighbors faster than other brute-force 

searching approaches [Maneewongvatana et al., 2001]. It is worth pointing out that the K-

D Tree algorithm does not requires the SVM to be embedded, but, rather, this can be used 

as searching algorithm driven by any other ROM for the definition of F . 

Knowledge of the safest plant conditions offers practical benefits as X  is comprised of two 

different types of inputs: controllable and non-controllable [Mohsine et al., 2010]. The former 

identify the levers under control of the plant operator, which can be manipulated to increase 

plant safety (i.e., reactor control-rods position, feed-water flow-rate through the plant primary 

loops, accumulator-water temperature and pressure, repair times, etc.), whereas the latter define 

the random parameters that may (adversely) affect the model response by increasing the 

likelihood of an accident (i.e., pipelines friction factors, temperature and pressure of the final 

heat-sink, break section equivalent diameter, failure times, etc.). In this respect, it should be 

pointed out that were yγ not “a priori” known but, rather, obeying a probability distribution
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)( yγf
y

, the same input vector realization x  might imply failure, 0),( yγxg , or success,

0),( yγxg and, thus, the stochastic safety threshold y should be included in the non-

controllable input variables subset [Banks et al., 2011] so that the input space 
n  is expanded 

into
1 n
. 

F

)( FEP

Once the controllable variables are identified, we can project the failure boundary  on the 

controllable variables space so as to draw “first principles” guidelines for counteracting the 

incipient plant failure that depends on the occurred accident and the non-controllable variables. 

The rest of this paper is organized as follows. Section 2 illustrates the application of SVMs for 

the failure boundary estimation. Section 3 shows the approach used to identify the system safest 

operating conditions. In Section 4, the proposed approach is applied to an analytical example 

used as proof of concept and in Section 5 it is tested on a Loss of Offsite Power (LOOP) case 

followed by a Station Black Out (SBO) accident in a Boiling Water Reactor (BWR), whose 

behavior is simulated by a RELAP5-3D BE-TH code. In Section 6 conclusions are drawn. 

2. FAILURE BOUNDARY ESTIMATION

As already said, simulations for the safety assessment of NPPs are computationally expensive 

due to the small values of . As only limited computing resources are generally available, 

the investigation of an exhaustive set of simulation outcomes, accounting for all normal and 

accidental plant conditions, is impractical. For this reason, this work exploits a combination of 

two ROMs to minimize the computational time used to identify F  with sufficient accuracy 

(as later defined in terms of persistence): 

i. a Physical ROM (P-ROM): a SVM regresses the physical model response of the BE-

TH code (see Appendix A for more details on SVMs);

ii. a Boolean ROM (B-ROM): a SVM classifies the P-ROM outputs as belonging either

to the safe or failure domain for the identification of F . It is worth mentioning that the

B-ROM is not built directly on the physical model responses of the BE-TH code but on

the P-ROM responses as this allows speeding-up the B-ROM evaluations by making 

G  smoother and easier to handle. 

We adopt an adaptive sampling algorithm [Rabiti et al., 2014a] for the approximation of the 
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model failure boundary F : i) 
RN model responses are obtained from the original BE-TH

simulations, ii) a P-ROM is built to capture the general BE-TH model behavior, iii) a few new 

input values are sampled and the BE-TH responses are predicted by the P-ROM, iv) a B-ROM 

is built to classify the P-ROM outputs as failure or success, iii) new samples are selected based 

on the B-ROM constructed, v) the B-ROM is iteratively updated based on the P-ROM 

responses to the new sampled points, until F  is identified. This iterative algorithm allows 

focusing samples on risk-sensitive regions of the input space so that the number of expensive 

trials needed to localize the boundary is reduced. 

The strategy hereby described to estimate F  is implemented in the RAVEN code, within a 

project developed by the Idaho National Laboratory (INL) under the Nuclear Energy Advanced 

Modeling and Simulation (NEAMS) and Light Water Reactor Sustainability (LWRS) 

programs to provide software tools for the enforcement of the Risk Informed Safety Margins 

Characterization (RISMC) conceptual framework supported by the U.S. Department of Energy 

(DOE) [Rabiti et al., 2014b]. In more detail, the iterative algorithm is comprised of the 

following steps (without loss of generality, we consider a random safety threshold y and a 

single model output Y ): 

1. at the 1  iteration, a limited number 
0n  of points 

)(

21

)2(

21

)1(

21
0),,,,(,,),,,,(,),,,,(

n

ynynyn γxxxγxxxγxxx   is sampled from the 
1n

input space through a brute-force approach (i.e., Monte Carlo, grid, stratified sampling, 

etc.); The sampled 
0n  points are, in principle, more than (and different from) the set of 

input values that have generated the 
RN available BE-TH model responses;

2. at each ξ-th iteration, the P-ROM (previously trained on the 
RN  available BE-TH model 

responses) is employed to predict )()2()1( 0~,,~,~ n
yyy  , which reproduce the BE-TH code 

responses )()2()1( 0,,,
n

yyy   to the set of 
0n sampled points; 

3. a Boolean function ),,,,( 21 yn γxxxzz  is evaluated on each pair of points 

)(

21

)2(

21

)1(

21
0)~,,,,,(,,)~,,,,,(,)~,,,,,(

n

ynynyn yγxxxyγxxxyγxxx  : 

1 2

1 2

1 2

1,   ( , , , , ) 0
( , , , , )

1,   ( , , , , ) 0

n y

n y

n y

G x x x γ
z z x x x γ

G x x x γ


  

 

(5)
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4. a B-ROM is trained on the
0n points and used to predict

)()2()1( ~,,~,~ gn
zzz  , e.g., the 

Boolean responses  of ),,,,( 21 yn γxxxz  on a new set of gn input values

)(

21

)2(

21

)1(

21 ),,,,(,,),,,,(,),,,,( gn

ynynyn γxxxγxxxγxxx  that are sampled on a 

regular Cartesian grid in the input space; 

5. the failure domain F  is defined by the set of input values resulting in a B-ROM

response 1),,,,(~
21 yn γxxxz  . This allows identifying the failure boundary F  as 

the set of input values  ,),,,,(,),,,,( )2(

21

)1(

21 FynFyn γxxxγxxx   that determine the 

transition of ),,,,(~
21 yn γxxxz  from -1 to +1; 

6. among points  ,),,,,(,),,,,( )2(

21

)1(

21 FynFyn γxxxγxxx  , the farthest one from 

)(

21

)2(

21

)1(

21
0),,,,(,,),,,,(,),,,,(

n

ynynyn γxxxγxxxγxxx   is added to the 
0n training 

data and the algorithm is resumed at Step 2. By so doing, the B-ROM is retrained on a 

new point in the most risk-sensitive region of the input space (i.e., boundary between 

system safe and system failure), which is the farthest from the current training data; 

7. a persistence value )(
  is computed for each φ-th point of F : 

)()(

1

)( ~~ 






 zz   (6) 

If all )(
  are equal to 0 (i.e., any of the F  points have changed) for a pre-defined 

number of consecutive iterations: a) new input points are added to the training set to 

explore farther regions of the input space from F  and b) the process is resumed at Step 

2. 

When a pre-defined persistence requirement is met, the algorithm stops and F  is obtained as 

the set of input points of the B-ROM failure domain ( 1),,,,(~
21 yn γxxxz  ) and safe domain 

( 1),,,,(~
21 yn γxxxz  ), that determine the transition of ),,,,(~

21 yn γxxxz  from -1 to +1. 

3. SAFEST OPERATING CONDITIONS IDENTIFICATION

In the most general case, some model input variables are controllable (i.e., qXXX ,,, 21  ), 
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while some others are not (i.e., nqq XXX ,,, 21  ). The controllable and non-controllable input 

spaces are q and 1 qn , respectively, and the y  has been included in the non-controllable 

input space as, without loss of generality,  we consider the model safety threshold as a random 

variable. 

The herein proposed approach for the safest operating conditions identification requires in 

input: 

i. Fthe set of n+1-dimensional points of  (that can be estimated as in Section 2, by 

resorting to a P-ROM and a B-ROM, that in this case have been chosen to be SVMs for 

regression and classification, respectively);

ii. the distributions of the model input variables (i.e., )).(),(,),(),( 21 21 ynXXX γfxfxfxf
yn 

In particular, the available information on F  (shown in Figure 1 for 2n  controllable 

variables, where dots are safe points ( 1~ z ) and stars are failure points ( 1~ z ) is, then,

manipulated within a K-D Tree algorithm [Bentley, 1975; Katayama et al., 2000; 

Maneewongvatana et al., 2001], as follows, for a 31n -dimensional problem with 2q  

controllable (
21, XX ) and 11  qn  non-controllable ( y ) variables. 

In general terms, the K-D Tree algorithm is a space-partitioning data structure for organizing 

points in a K-Dimensional space [Bentley, 1975]. The K-D tree is a binary tree structure which 

recursively partitions the input space along the axes that divide it into nested orthotropic 

regions into which data points are filed. This is done to address the computational inefficiencies 

of the brute-force Nearest Neighborhood approaches and to reduce the required number of 

distance calculations by efficiently encoding aggregate distance information for the sample (the 

basic idea is, indeed, that if point A is very distant from point B, and point B is very close to 

point C, then, A is distant from C without calculating the distance between A and C). The 

construction of a K-D tree is very fast: because partitioning is performed only along the axes, 

no D-dimensional distances need to be computed. Rather, when a (2-D) point is assigned to a 

node of the tree, the two coordinates are chosen, alternatively, and their medians are calculated 

to define horizontal or vertical lines, that, recursively, define areas containing other data that 

are classified in the left and right branches thereby departing that are, respectively, on the left 

and right of the point corresponding to that node in the 2-D space. Figure 2 shows an intuitive 

2-D tree construction for the identification of the nearest safe point to any of the available 

safe
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conditions plotted in Figure 1 (i.e., only X1 and X2 are considered as input variables for the KD 

tree construction): the methodological generalization to a higher-dimensional problem is 

straightforward [Bentley, 1975]. 

Figure 1: failure boundary F  for 2n  controllable input variables (dots are safe points ( 1~ z ) and stars 

are failure points ( 1~ z )). 

Figure 2: KD tree construction for the identification of the nearest safe point to any of the available safe 

conditions plotted in Figure 1. 
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The proposed approach can be summarized as follows: 

1. One set of values (i.e.,  ,,,,,,,,,,, )2()1()2()1()2(

2

)1(

2

)2(

1

)1(

1 yynn γγxxxxxx ) is sampled for each 

input variable from its PDF (i.e., )(),(,),(),( 21 21 ynXXX γfxfxfxf
yn  ); 

2. the sampled values of the controllable variables (i.e.,  ,,,,,,,, )2()1()2(

2

)1(

2

)2(

1

)1(

1 qq xxxxxx ) 

are used to build a q-dimensional grid (hereafter called controllable grid), whereas the 

sampled values of the non-controllable variables (i.e., 

 ,,,,,,,,,,, )2()1()2()1()2(

2

)1(

2

)2(

1

)1(

1 yynnqqqq xxxxxx  ) are used to build a n-q+1-dimensional 

grid (hereafter called non-controllable grid) (shown in Figure 3 for 2n and 2q ); 

Figure 3: on the left side, a 2q -dimensional controllable grid; on the right side, a 11 qn -

dimensional non-controllable grid.

3. an exhaustive list of pairwise combinations ),,,,,,,,( 2121 ynqqq γxxxxxx   of the 

controllable and non-controllable  coordinates is built; 

4. for each point )),,,,(,,,,( 2121



ynqqq γxxxxxx   belonging to the set of entries 

),,,,,,,,( 2121 ynqqq γxxxxxx   , which is defined by the same ψ-th set of non-controllable 

variables 
)(

21 ),,,,( 

ynqq γxxx  , a K-D Tree-based nearest neighbor algorithm is 

employed to identify the closest point Fynqqq γxxxxxx  ),,,,,,,,( 2121  of F (Figure 4) 

for which  1)),,,,,,,,((~
2121  Fynqqq γxxxxxxz  . 

5. the projection d  on the controllable input space (i.e., q ) of the Euclidean distance   

between ),,,,,,,,( 2121 ynqqq γxxxxxx    and Fynqqq γxxxxxx  ),,,,,,,,( 2121  is 
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computed (Figure 5); 

6. the farthest point )),,,,(|,,,( )(

21

**

2

*

1

* 

 ynqqq γxxxxxxx    in the safe domain S  from the 

ψ-th  projection of F  on q is identified, which is the point such that }max{dd  In 

other words, 
*

x is the safest point of the controllable input space for the ψ-th set of non-

controllable values 
)(

21 ),,,,( 

ynqq γxxx  ; 

7. to each
*

x one probability value 
*

P is associated, which is computed as the product of all

the non-controllable variables marginal densities: 

)()()()( )()()(

22

)(

11

* 

 yynnqqqq γPxXPxXPxXPP    (7) 

8. the absolute safest position *x can be computed as one of the following quantities: 

i. mean:

 



*** xPx (8) 

ii. median:

5.0),,,,(: )()()(

22

)(

11

**  



 yynnqqqq γxXxXxXPxx  (9) 

iii. α-th percentile:

100
),,,,(: )()()(

22

)(

11

** 
   yynnqqqq γxXxXxXPxx  (10) 

As it is easy to see, both mean and median of the 
*

x population are solutions based on the 

most probable behavior of the non-controllable variables, whereas the α-th percentile defines 

a more or less risk-oriented solution depending on   and on what non-controllable variables 

are actually considered. 



12 

Figure 4: identification of the nearest neighbor of entry point )8,1,1(),,( 21 yγxx . 

Figure 5: projected Euclidean distance d  between entry point )8,1,1(),,( 21 yγxx  and its nearest neighbor 

)9,3,0(),,( 21 Fyγxx  on the controllable variables space. 
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4. PROOF OF CONCEPT USING AN ANALYTICAL EXAMPLE

4.1 Analytical Model Description 

The proposed approach is tested on an analytical model m , whose mathematical expression is 

given as: 

3

1

2

21

2

121 )1()2()3(8),(  XXXXXXmY (11) 

where inputs jX ( 2,1j ) are independent random variables obeying two truncated normal 

distributions:  10,101 X ~ )4,2(1N ,  10,102 X ~ )25.6,0(1N . The model limit-state

function G  can be written as: 

yyy XXXXYXGG  3

1

2

21

2

1 )1()2()3(8),( (12)

where the model safety threshold is distributed as a truncated normal variable 

 2500,500y ~ )2500,500(3N  and the model failure boundary is 

}0),,(:),,{( 2121  yy XXGXXF . 

4.2 Failure Boundary Estimation 

The methodological steps described in Section 2 have been applied to model m  to obtain the 

estimate F
~

 of the failure boundary, where:

1. an initial training set of 110250 n input points 

)(

21

)2(

21

)1(

21
0),,(,,),,(,),,(

n

yyy γxxγxxγxx  is sampled on a regular Cartesian grid 

     2500:125:50010:1:1010:1:10  ; 

2. then, a P-ROM should be trained to reproduce the model m  responses )()2()1( 0,,,
n

yyy 

to the input set of points 
)(

21

)2(

21

)1(

21
0),,(,,),,(,),,(

n

yyy γxxγxxγxx  . However, in this 

particular analytical example considered, the model m  of Eq. (11) and the 
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corresponding limit state function G of Eq. (12) are known, so that we resort directly to 

Eq. (11) to compute )()2()1( 0,,,
n

yyy  , instead of training the P-ROM; in other words, 

simulation data are directly used through Eq. (12) with a sampled safety limit γy to 

identify the set of inputs (x1, x2,..,xn| γy) that are on the limit surface; 

3. a B-ROM, i.e., an SVM-Classifier is trained on the available set of non-linearly

separable data with: i) a Gaussian kernel 












 











2

exp),(eK , where 

)(

2121 ),,,,,,,,( 

 ynqqq γxxxxxx   , 
00 n , is one of the 

0n training points and

 is the test point to be classified as belonging to the failure or safe domain; ii) a large

value of parameter 10  (to assign high influence to each training point 
 ); iii) a 

relatively low value of the misclassification cost 10C  (which ensures smoothness of 

the decision function [Maneewongvatana et al., 2001; Basudhar et al., 2008; Cortes et 

al., 1995; Guyon et al., 1993]) (see Appendix A for more details on SVMs); 

4. the persistence requirement on 
)(

  is set equal to 30. 

The B-ROM estimates the failure boundary F
~

 as shown in Figure 6 (where, for clarity, only 

points 1),,(~:
~

),,( 2121  yy γxxzFγxx  are shown): it is clear that F
~

 (dots) well approximates 

the actual failure boundary F  (continuous grid). 
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Figure 6: plot of the estimated F
~

 (i.e., dots) and of the actual failure boundary F (i.e., continuous grid) for 

the analytical model h  considered. 

For the case of interest, inputs jX  ( 2,1j ) are considered the model controllable variables 

and y is the only non-controllable variable. Accordingly, the controllable and non-

controllable input spaces are    10,1010,10   and  2500,500 , respectively. 

The model absolute safest operating conditions *x will be given as pairwise combinations of 

1X and 
2X values (i.e., points in the controllable space    10,1010,10  ), while )( yγf

y

will be exploited to assign a 
*

P probability value to each relative safest operating condition 

*

x (as shown in detail in Sections 3, Steps from 2 to 7). 

4.3 Safest Operating Conditions Identification 

In order to identify the safest operating conditions *x of the system whose behavior is modeled

by m , the approach proposed in Section 3 has been enforced on the failure boundary F
~

  

estimated in Section 4.2. 

The controllable and non-controllable grids are built on a Cartesian grid (i.e., 
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     2500:125:50010:5.0:1010:5.0:10  ). For each sampled value of y one 

projection of F
~

 is obtained on the controllable input space    10,1010,10  and one 

relative safest position 
*

x is computed. 

Figure 7 shows that: i) the ψ-th projection F
~

 of the estimated failure domain F
~

 changes in 

size and shape with y  (i.e., as y  increases F
~

 decreases as shown in Figure 8 ), ii) 
*

x

changes its position in the controllable input space as F
~

 changes (Figure 8), iii) different 

statistical quantities (i.e., mean, median, 20-th and 80-th percentiles) derived from the 

population of 
*

x (the relative safest operating conditions for each ψ-th set of non-controllable 

variables) and their associated 
*

P values result in different positions for *x (the safest 

operating conditions) in the controllable input space. 

In particular, it is worthwhile considering that when the system is operated under very stressful 

conditions (i.e., system response Y  is allowed to approach y upper limit) as y  is set equal 

to its 99-th percentile, for instance, the relative safest point 
*

x might actually be localized

within a failure region defined for conservative conditions, i.e., for small values of y  (Figure 

7). 

For this reason, different strategies should be defined to help the plant operator decide on what 

safest operating condition *x to select depending his/her attitude towards risk: 

i. risk-averse: *x is chosen as the 20-th percentile of the 
*

x population, which amounts 

to the safest operating conditions when the system is working under very conservative 

hypothesis (Y  is kept far below the upper limit of y ); 

ii. risk-prone: *x is the 80-th percentile of the 
*

x  population, which is the safest operating 

conditions determined for the system functioning in extreme conditions (Y  is allowed 

getting close to y  upper limit); 

iii. mean/median: both strategies aim at identifying *x based on the average behavior  of

y .
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Figure 7: projections F of F  on the controllable input space and computed absolute safest points
*x . 

Notice that F  contours are plotted in continuous lines even if they are only known pointwise, as shown in 

Fig. 6. 

Figure 8: projections of the failure boundary F on the controllable input space for: (a) 125yγ , (b) 

750yγ . Notice that F contours are plotted in continuous lines even if they are only known pointwise, as 

shown in Fig. 6. 

As a final remark on the analytical case considered in this Section, it is noted that the 2D cubit 

test function used is sufficiently non linear to provide a limit surface that has variable features 

that could be used to benchmark the K-D tree algorithm. For instance, a misclassification cost 

factor C=10 has been selected to ensure the smoothness of the decision function of the B-ROM. 
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To test the smoothness (or lack of overfitting) of the B-ROM, a random noise variable can be 

added to Eq. (11) and the analysis can be performed on several training sets with varying 

magnitudes of the noise variance. If the B-ROM is robust, the limit surface shown in Figure 6 

should be insensitive to random noise. However, the demonstration that the training of the B-

ROM is robust to random noise and that overfitting can be avoided is not the scope of the work, 

while it can be found in the literature [Xu et al., 2009]. 

5. CASE STUDY

5.1 Nuclear Power Plant and Accident Scenario Description 

The NPP considered for testing the proposed approach is a Boiling Water Reactor (BWR) with 

a Mark I containment (Figure 9a). The BWR dynamics has been modeled by the RELAP5-3D 

code based on the plant nodalization shown in Figure 9b. 

Figure 9: (a) overview and (b) RELAP5-3D nodalization of the BWR NPP with Mark I containment considered. 

The BWR Mark I primary containment includes the following main components [Mandelli et 

al., 2013]: 

1. a Drywell (DW) comprised of the Reactor Pressure Vessel (RPV) and of a pressurized

vessel containing the reactor core and the circulation pumps; within the RPV, a water
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level control system includes: 

a. a Reactor Core Isolation Cooling (RCIC) provides high-pressure injection water

from the Condensate Storage Tank (CST) to the RPV;

b. a High Pressure Coolant Injection (HPCI) that is similar to the RCIC but allows

for larger water flow rates;

2. a Wetwell (WW) that is a torus-shaped container filled with water that is used as

ultimate heat sink;

3. Reactor Circulation Pumps (RCPs).

4. Safety Relief Valves (SRVs) to depressurize the RPV;

5. an Automatic Depressurization System (ADS) that consists in a separate set of relief

valves.

The scenario under analysis is a Loss Of Offsite Power (LOOP) followed by the Diesel 

Generators (DGs) failure, that initiates a Station Black Out (SBO) accident. 

In more detail [Mandelli et al., 2013; Mandelli, 2014], LOOP condition occurs due to some 

Power Grid (PG)-related external failure; the recovery of the PG is started and LOOP 

emergency counteractions are undertaken by the plant operators as follows: 

1. the reactor is scrammed and put in sub-critical conditions through full insertion of the

control rods in the reactor core;

2. DGs are successfully started so that emergency Alternate Current (AC) power is

available;

3. core decay heat is removed by the AC-powered Residual Heat Removal (RHR) system.

SBO condition occurs due to internal DGs failure, which renders not possible the removal 

of decay heat by the RHR; the SBO emergency procedure is immediately enforced by the 

plant operators as follows [Mandelli et al., 2013]: 

1. batteries are activated so that emergency Direct Current (DC) power is available;

2. RPV water level is controlled by RCIC or HPCI;

3. RPV pressure is controlled by SRVs;

4. primary containment is monitored;

5. ADS is activated only if one of the following conditions is reached:

a. both RCIC  and HPCI are disabled;
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b. Heat Capacity Temperature Limits (HCTL) are crossed;

c. RPV is depressurized;

6. Firewater (FW) injection is activated only if both the following conditions are

fulfilled:

d. all other injection systems are disabled;

e. RPV pressure is below 100 [psi].

Furthermore, we assume that batteries can fail due to the running out of stored power or to 

external failure and, thus, DC power is unavailable. In this case, all control systems are offline 

causing the reactor core to heat and the PCT to rise. Hence, the DC power recovery process 

has to be triggered so that if the HPCI or RCIC turbine did not flood during the DC power 

failure and does not fail on demand, HPCI and RCIC resume normal operations. 

The available data consists in 10000RN  RELAP5-3D code runs that simulate the NPP 

thermal-hydraulic behavior during LOOP followed by SBO. For each BE-TH code simulation

i) 11 input variables (i.e., jX , 11,,2,1 j ) and the threshold y are sampled from their 

respective PDFs ( )(),(,),(),( 1121 1121 yXXX γfxfxfxf
y

 ) listed in Table 1, ii) the maximum PCT 

(i.e., Y ) during the SBO transient is computed as safety parameter before [Mandelli, 2014]: 

1. Y reaches y ; 

2. AC power is recovered by PG or DG resumption;

3. enough core cooling through FW is supplied.

Table 1: input variables list with their associated probability distributions as in [Mandelli, 2014]. 
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Following [Mandelli, 2014; Sherry et al., 2012], we assume y to be uncertain and 

characterized by a triangular probability distribution having: i) a lower limit of 1800 [F], ii) an 

upper limit equal to the Urbanic-Heidrick transition temperature of 2600 [F] [Urbanic et al., 

1981], iii) the Code of Federal Regulations (CFR) temperature limit of 2200 [F] as mode 

(Figure 10). 

Figure 10: PDF of the cladding failure temperature )( yγf
y

. 

Furthermore, a preliminary sensitivity analysis aimed at quantifying the contribution of 

1121 ,,, XXX   in affecting the uncertainty of model output Y  has been performed based on 

Sample Pearson Correlation Coefficients (SPCCs) j  between the j-th model input jX and Y

[Stigler, 1989]: 
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where jX ,  and 
Y  (

RN,,2,1  ) are the ω-th sample of jX and the ω -th computed value 

of Y , respectively, while: 


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N
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1


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According to the sensitivity analysis results shown in Table 2, the three most relevant input 

variables are found to be “DGs recovery time” (
1X ), “Offsite AC power recovery time after 

DGs failure” (
2X ) and “Battery failure time” (

7X ). It is worth mentioning that, among the 

remaining 8 input variables, the “RCIC and HPCI failure times after DG failure”, 
5

X and 
6

X

are considered negligible as compared to 
1X , 

2X and
7

X even if expected to affect the PCT 

because the RCIC and the HPCI are two steam-driven systems that inject water to the RPV. 

Thus, they would be kept constant to their mean values in case additional BE-TH code 

simulations were run to retrain and improve the P-ROM predictive accuracy. Based on this 

sensitivity analysis results, the P-ROM and B-ROM are built only on the selected set of input 

variables rather than on the whole set of 11 input variables listed in Table 1, so as to reduce the 

burned of additional BE-TH code runs for improving the P-ROM predictive accuracy 

(reduction of the dimensionality of the input deck of the code, from 11 to 3 input variables). 

Alternatively, a P-ROM function of all 11 sampled inputs could be obtained and used to 

generate the 4D data used to train the B-ROM with the remaining 8 variables held at mean 

values or limiting values, but, in this latter case, any additional BE-TH code run should be fed 

with an input deck of 11 inputs variables, sampled from the respective distributions, that would 

increase the computational demand with respect to the use of a P-ROM as a function of 3 

sampled inputs. 

Furthermore, despite the reduced dimension of the training space (from 11 to 3 input variables) 

and that the available 10000RN  RELAP5-3D code runs are not necessary for the training of 

the surrogate models with sufficient predictive accuracy, we carry on the analysis with all the 

R
N code runs. The reason is twofold: a very large data set can be very useful for benchmarking 

purposes and training the ROMs on a large dataset (when available) can overcome the presence 

of spurious results in the dataset due to RELAP5 numerical instability that provides unphysical 
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results in some flow regimes. 

Input variables Pearson coefficient 

7
X 0.331 

2
X 0.300 

1
X 0.148 

6
X 0.096 

11
X 0.063 

3
X 0.061 

10
X 0.046 

4
X 0.023 

9
X 0.018 

5
X 0.016 

8
X 0.010 

Table 2: Sensitivity analysis results. 

It is worthwhile pointing out that the plant emergency staff is free to decide when to start the 

failed DGs (i.e., 
1X ) and the offsite PG repair (i.e., 

2X ), but it is impossible for them to know 

when the DC batteries may fail (i.e., 
7X ) and which cladding temperature may cause the system 

failure (i.e., y ). Because of this, variables 
7X and y shall be considered non-controllable 

inputs that may adversely impact on the NPP safety, whereas inputs 
1X and 

2X should be 

identified with the model controllable variables. As a result, the controllable and non-

   29 0,029000,0     0,29000 1800,2600controllable input spaces are  and  (whose units00

are given in Table 1, 3rd column), respectively. 

Similar to the previous case solved in Section 4, the NPP safest operating conditions *x  will 

be identified on the controllable input space    29000,029000,0   as the safest pairwise 

combination of variables 
1X  and 

2X . On the other hand, the joint PDF ),( 7,7 yX γxf
y

 of 

variables 
7X and y will be used to compute a probability value

*

P for each relative safest

operating condition 
*

x . 

5.2 Failure Boundary Estimation 

The failure boundary estimation F
~

 is obtained as detailed in Section 2: 
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1. the training set of 119790 n sampled points 

)(

721

)2(

721

)1(

721
0),,,(,,),,,(,),,,(

n

yyy γxxxγxxxγxxx  is obtained from a regular grid 

       2600:100:180029000:2900:029000:2900:029000:2900:0  ; 

2. the P-ROM predicting the model responses )()2()1( 0~,,~,~ n
yyy   is a SVM-Regression 

trained on the 
RN values of variables 

1X , 
2X , 

7X and Y with: i) a Gaussian kernel, ii) 

25  and iii) 1500C   (see Section 4.1 and Appendix for more details); 

3. the B-ROM is a SVM-Classifier trained on a set of non-linearly separable data with the

same specifications as the P-ROM;

4. the persistence requirement on 
)(

  is set equal to 30. 

5.3 Safest Operating Conditions Identification 

The NPP safest operating conditions *x are found as in Section 3 on the failure boundary 

approximation F
~

 determined in Section 5.2, where: 

1. the controllable and non-controllable grids are built based on a regular grid

       2600:25:180029000:1000:029000:1000:029000:1000:0  ;

2. for each sampled value of y  one relative safest position 
*

x is computed and localized

on the controllable inputs space    29 0,029000,0  ; 

3. from the population of
*

x operating conditions and their associated 
*

P values, a 

manifold of absolute safest conditions *x is obtained:

i. the 20-th percentile of the population is selected as risk-averse solution: *x is 

identified with )0,0(* x that is found for the ψ-th combination 

)2100,6000(),( )(

7 

yγx  of the non-controllable variables; this means that AC 

10000RN

power has to be conservatively resumed right after the DGs failure. The 

maximum PCT that is reached for this risk-averse emergency strategy (equal to 

1011 [F]) is plotted with a star in Fig. 11, where the maximum PCT values 

reached for all the are plotted sorted in ascending order ( with 

continuous bold line), together with the uncertain failure threshold y (shaded 
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area). 

ii. the 80-th percentile of the population is selected as risk-prone solution: it

corresponds to the relative safest conditions * (1000,2200)x   obtained for

)2275,23000(),( )(

7 

yγx , which implies that AC power can be resumed even

1000 [s] after the DGs failure; the maximum PCT that is reached for this risk-

prone emergency strategy (equal to 2208 [F]) is plotted with a square in Fig. 11. 

It becomes clear that in in this case the plant operator accepts a greater risk, 

being the actual value of y  “a priori” unknown 

iii. the median of the population is a conservative solution given by )0,0(* x . 

For the case study here considered, Figures similar to Figures 7 and 8 are not provided: the 

equivalent of Figure 7 would be a 4D input plot (
1X , 

2X , 
7X  and PCT), with a failure boundary 

hardly visible, whereas the equivalent of Figure 8 would be a 3D input plot with a collection 

of points representing the failure boundary for a given PCT, that, on the other hand, would be 

not informative if not supported by the overall picture of the failure boundaries at different 

PCT values, as it is for the analytic case study (Figures 7 and 8 are, indeed, jointly described 

in Section 4.3). 

Figure 11: Maximum PCT values reached for the 10000RN RELAP runs. The maximum PCT that is 

reached for the risk-averse emergency strategy is plotted with a star, whereas the maximum PCT that is reached 

for the risk-prone emergency strategy is plotted with a square. Shaded area is the uncertain failure temperature. 
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One can also consider that the estimated failure domain F
~

 might not be a compact space and, 

then, larger percentile values of the 
*

x population might not necessarily correspond to larger 

values of *

1x  and *

2x , as in this particular case. 

As a final remark on the case study considered in this Section, it is noted that a possible 

demonstration of the efficiency of the adaptive sampling algorithm could be sought by the 

following methodology: 

1) Initialize the training with 50-100 RELAP5 simulations through LHS, grid or stratified

sampling (any space-filling experimental design). A total of 50-100 SBO simulations using a 

system TH code is a practical limit for the number of simulations that can be performed on any 

modern desktop computer in about one day and for the output to be easily verified by the 

analyst. 

2) Implement the adaptive sampling strategy using batches of 25-50 simulations per batch. The

existing 10000 data set is a good benchmark resource to compare with the evolving limit 

surface. 

3) Both the persistence requirement Eq. (6) and an engineering judgment should be used to

determine when the algorithm is to be stopped. If the P-ROM or B-ROM is suffering from 

overfitting, the limit surface may be identified but the algorithm will not converge. 

6. CONCLUSIONS

The RISMC program, sustained by the U.S. DOE, is engaged in the development of new 

methods and tools to support effective decision making on NPPs life extension and licensing 

of new nuclear technologies. 

The present paper represents a contribution to this vast and ambitious program, as it sets forth 

an adaptive sampling algorithm that embeds a support vector machine (SVM) for multivariate 

regression, a SVM for classification, and a K-D tree search algorithm for nearest neighbor 

search in multi-dimensional space to identify the NPP safest operating conditions in the 

subspace of controllable variables as a function of distance from a limit surface under aleatory 

and epistemic uncertainties. The partitioning of the model inputs into two subspaces of 

controllable and non-controllable variables allows, indeed, the non-controllable variables to be 

treated probabilistically and the safest operating conditions to be defined as a function of risk, 

being the ultimate goal of the analysis to guarantee the required plant safety margins in accident 
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scenarios. We demonstrate that multivariate parameter sampling, surrogate/reduced 

order/regression models, classification models and limit surface can yield practical, useful 

results for the NPPs safety assessment. 

The proposed approach has been applied to two case studies, i.e., a proof of concept using an 

analytical example and a Loss of Offsite Power (LOOP) followed by a Station Black Out (SBO) 

accident occurring in a Boiling Water Reactor with Mark I containment.  In particular, the SBO 

study involved a 3D SVM for regression, a 4D SVM for classification, and a 4D/2D K-D tree. 

Coherently with the RISMC main objective, as a result of the application of this suite of 

algorithms, various options are presented to the analyst to set the NPP in the safest operating 

conditions: risk-averse, risk-prone decisions have been defined and illustrated, together with a 

strategy that strikes a balance between these two extremes by identifying the plant “mean” 

safest operating conditions. Even if practically viable for this case, the extension of the 

presented approach to higher-dimensional problems should be further investigated from the 

computational point of view, the K-D tree suffering a curse of dimensionality when dealing 

with D larger than 20. In any case, as here proposed, a prior sensitivity analysis aimed at 

reducing the multi-dimensional controllable variable space would tackle the computational 

problem without the need to resort to other searching algorithms. 

ACKNOWLEDGEMENT 

The authors would like to thank all the reviewers for their valuable comments to improve the 

quality of this paper. 



28 

APPENDIX 

SVMs are a set of supervised learning methods that can be used for: i) classification, ii) 

regression, iii) outliers or novelty detection [Basudhar et al., 2008; Cortes et al., 1995; Guyon 

et al., 1993]. 

When a set of N  training points 
  (  N0 ) in a multi-dimensional space is given and 

each point is associated with one of two classes characterized by a value 1z , the SVM 

algorithm finds the boundary (i.e., decision function) that optimally separates the training data 

into the two classes [Basudhar et al., 2008]. 

In the case of linear decision functions (i.e., the training data is linearly separable), the idea is 

to maximize the margin between two parallel hyper-planes that separate the training data. The 

pair of hyper-planes is required to pass at least through one of the training points 
  of each 

class (i.e., support vectors) and no points are admitted inside the margin. The optimization 

problem whose solution determines the optimal pair of hyper-planes is [Basudhar et al., 2008]: 

2

, 2

1
min w

bw

(1A) 

subject to 01)(  bwz   , N0

where w  is the vector of the hyper-plane coefficients, b  the bias and 
2

2

w
  the distance 

between the two hyper-planes. Problem (1A) is a Quadratic Programming (QP) problem that 

can be solved through the method of Lagrange multipliers 
 . 

For the case of non-linear decision functions, non-negative slack variables 
 are introduced 

[Basudhar et al., 2008; Cortes et al., 1995]: 













N

bw
Cw

1

2

,, 2

1
min (2A) 

subject to 
   1)( bwz ,  N0
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The original set of variables can be mapped to a higher dimensional space, where the 

classification of any test point   is obtained by the sign of function: 

),(
1

 







e

N

Kzbs  


(3A) 

Where ),( eK  is a kernel function. Common types of kernel functions used with SVM are: 

Gaussian, polynomial kernels, multilayer perceptrons, Fourier series and splines [Basudhar et 

al., 2008; Guyon et al., 1993]. 
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