Dr Francesco Di Maio 
email: francesco.dimaio@polimi.it
  
Alessandro Bandini 
  
Enrico Zio 
  
Andrea Alfonsi 
  
Cristian Rabiti 
  
Alfonsi Andrea 
  
An approach based on

Keywords: Risk-Informed Safety Margins Characterization, Failure Boundary, Reduced-Order Models, Support Vector Machines, K-D Tree, Station Black Out Accident

 

INTRODUCTION

The Risk-Informed Safety Margins Characterization (RISMC) pathway of the Light Water Reactors Sustainability (LWRS) program of the U.S. Department of Energy (DOE) [DOE, 2009] aims at developing decision making methods and tools, for use in the process of licensing new nuclear technologies and evaluating existing Nuclear Power Plants (NPPs) for lifetime extension.

One key aspect is the safety assessment, which is performed based on the calculations by a Thermal-Hydraulic (TH) -neutronic code of the nuclear system response in normal and accidental conditions. Specific outputs are selected as safety-significant parameters and their calculated values are compared with some threshold values, in order to check that sufficient safety margins are kept during accident [Gavrilas et al., 2004].

Traditionally, this safety assessment procedure has been performed on a small set of Design Basis Accidents (DBAs) and under tight conservative assumptions (i.e., on the phenomena dynamics described, physical models implemented, etc.) to protect against the uncertainties in the model and its parameters.

In recent times, an extended and more realistic approach has been undertaken, including Beyond Design Basis Accidents (BDBAs) and relying on Best Estimate (BE) codes, in which more realistic assumptions are taken in the evaluation of the safety margins [Zio et al., 2010;Alvarenga et al., 2015]. Under this setting, an accurate and explicit treatment of the uncertainties is required, in order to provide confidence that plant safety margins are not actually reduced [Zio et al., 2008;Apostolakis, 1990;[START_REF] Schuëller | [END_REF].

Such uncertainty quantification has shifted the concept of safety margins to a probabilistic paradigm, whereby the code outcomes are treated as stochastic variables [Zio et al., 2008;[START_REF] Schuëller | [END_REF].

Mathematically, a BE-TH code for safety assessment may be seen as an ensemble of three elements: i) a set of equations coded to describe the system response ii) an n-dimensional input vector of stochastic variables   12 , , , n X X X X  and iii) an o-dimensional output vector of stochastic variables

  12 , , , o Y Y Y Y 
. The input vector X consists of the model parameters and input variables that feed the coded equations to compute the model output vector Y that represents the systems response. In mathematical words, a BE-TH code can be seen as the multidimensional and non-linear operator m that maps the input vector X into the output vector Y [Bourinet et al., 2011]:

  Y m X  (1)
In general, uncertainties affecting the model outcome may be due to: inherent stochastic behavior of the process described by the model m (aleatory uncertainty), imperfect knowledge about the model input variables X and lack of information on the underlying physical phenomena (epistemic uncertainty) [Apostolakis, 1990;Möeller et al., 2008;[START_REF] Helton | [END_REF]. Then, mathematically, the input vector X is uncertain and, therefore, the output vector Y is uncertain as well, with stochastic realizations (in the following, upper case letters are used to identify stochastic variables and lower case letters are used to identify their realizations, as usual):

  1 2 1 2
{ , , , } ( , , , )

on y y y y m x m x x x    (2) 
With reference to a plant accident scenario F E (i.e., a sequence of events that can (or not) lead to system failure) and to a safety threshold y γ of the vector y  of safety thresholds, each one of these not to be exceeded by the respective safety parameter Y Y  , a limit-state function G can be defined as:
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The model is in safe operating conditions when
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and fails when
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separates the input variables space n  in a safe domain,

{ : ( , ) 0}, y S X G X γ  and a failure domain, } 0 ) , ( : {   y γ X G X F
. The failure probability, i.e. the probability of occurrence of the plant accident scenario F E is, then, given by:
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where ) (x f X is the joint Probability Density Function (PDF) of the stochastic input vector X [Cadini et al., 2014] values are low for high-reliable systems (such as NPPs) and the BE-TH models of these systems are computationally expensive, these latter can be replaced by Reduced Order Models (ROMs) to allow the estimation of F  within a reasonable computational time [Zio et al., 2008;[START_REF] Chakraborty | [END_REF]. Indeed, ROMs are designed to capture the dominant non-linear behavior of the BE-TH models based on a simplified mathematical representation [Lucia et al., 2004].

In this work, the model failure boundary F  is approximated by means of a Support Vector Machines (SVM)-based ROM [START_REF] Basudhar | [END_REF]Cortes et al., 1995;[START_REF] Guyon | Automatic Capacity Tuning of Very Large VC-Dimension Classifier[END_REF] that is embedded in a K-D Tree-based nearest neighbors search algorithm [Bentley, 1975;[START_REF] Katayama | [END_REF]Maneewongvatana et al., 2001] to determine the farthest point from F  inside the input space n  : this point represents the optimal combination of the model input values that results in the safest plant operating conditions (farthest from the failure boundary)

with reference to some given safety requirements expressed by y γ . The main advantage of adopting SVMs lies in their superior ability, with respect to other ROMs (such as Artificial

Neural Networks (ANNs) and simple linear regression models), to define complex decision functions (i.e., hyper-planes) in a multidimensional space and exploit optimal separating functions in order to decompose multiple classes of data [START_REF] Basudhar | [END_REF][START_REF] Zio | [END_REF]. On the other hand, the selection of the K-D Tree algorithm as searching algorithm is motivated by the fact that it helps finding the nearest neighbors faster than other brute-force searching approaches [Maneewongvatana et al., 2001]. It is worth pointing out that the K-D Tree algorithm does not requires the SVM to be embedded, but, rather, this can be used as searching algorithm driven by any other ROM for the definition of F  .

Knowledge of the safest plant conditions offers practical benefits as X is comprised of two different types of inputs: controllable and non-controllable [START_REF] Mohsine | [END_REF]. The former identify the levers under control of the plant operator, which can be manipulated to increase plant safety (i.e., reactor control-rods position, feed-water flow-rate through the plant primary loops, accumulator-water temperature and pressure, repair times, etc.), whereas the latter define the random parameters that may (adversely) affect the model response by increasing the likelihood of an accident (i.e., pipelines friction factors, temperature and pressure of the final heat-sink, break section equivalent diameter, failure times, etc.). In this respect, it should be pointed out that were y γ not "a priori" known but, rather, obeying a probability distribution  should be included in the non- controllable input variables subset [Banks et al., 2011] so that the input space n  is expanded

into 1   n . F  ) ( F E P
Once the controllable variables are identified, we can project the failure boundary on the controllable variables space so as to draw "first principles" guidelines for counteracting the incipient plant failure that depends on the occurred accident and the non-controllable variables.

The rest of this paper is organized as follows. Section 2 illustrates the application of SVMs for the failure boundary estimation. Section 3 shows the approach used to identify the system safest operating conditions. In Section 4, the proposed approach is applied to an analytical example used as proof of concept and in Section 5 it is tested on a Loss of Offsite Power (LOOP) case followed by a Station Black Out (SBO) accident in a Boiling Water Reactor (BWR), whose behavior is simulated by a RELAP5-3D BE-TH code. In Section 6 conclusions are drawn. G smoother and easier to handle.

FAILURE BOUNDARY ESTIMATION

We adopt an adaptive sampling algorithm [Rabiti et al., 2014a] 

n y n y n y n γ x x x γ x x x γ x x x     is sampled from the 1   n
input space through a brute-force approach (i.e., Monte Carlo, grid, stratified sampling, etc.); The sampled 0 n points are, in principle, more than (and different from) the set of input values that have generated the R N available BE-TH model responses; 2. at each ξ-th iteration, the P-ROM (previously trained on the
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4. a B-ROM is trained on the 0 n points and used to predict 
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is added to the 0 n training data and the algorithm is resumed at Step 2. By so doing, the B-ROM is retrained on a new point in the most risk-sensitive region of the input space (i.e., boundary between system safe and system failure), which is the farthest from the current training data; When a pre-defined persistence requirement is met, the algorithm stops and F  is obtained as

7. a persistence value ) (   is computed for each φ-th point of F  : ) ( ) ( 1 
) ( ~       z z    ( 
the set of input points of the B-ROM failure domain ( 1 ) , , , , ( ~2 1   y n γ x x x z  ) and safe domain ( 1 ) , , , , ( ~2 1  y n γ x x x z  ), that determine the transition of ) , , , , ( ~2 1 y n γ x x x z  from -1 to +1.

SAFEST OPERATING CONDITIONS IDENTIFICATION

In the most general case, some model input variables are controllable (i.e.,

q X X X , , , 2 1  ),
while some others are not (i.e.,

n q q X X X , , , 2 1   
). The controllable and non-controllable input spaces are q  and 1    q n , respectively, and the y  has been included in the non-controllable input space as, without loss of generality, we consider the model safety threshold as a random variable.

The herein proposed approach for the safest operating conditions identification requires in input: i.

F 

the set of n+1-dimensional points of (that can be estimated as in Section 2, by resorting to a P-ROM and a B-ROM, that in this case have been chosen to be SVMs for regression and classification, respectively);

ii. the distributions of the model input variables (i.e., )). ( ), ( , ), ( ), (

2 1 2 1 y n X X X γ f x f x f x f y n  
In particular, the available information on F  (shown in Figure 1 ) is, then, manipulated within a K-D Tree algorithm [Bentley, 1975;[START_REF] Katayama | [END_REF]Maneewongvatana et al., 2001], as follows, for a

3 1   n -dimensional problem with 2  q controllable ( 2 1 , X X
) and

1 1    q n non-controllable ( y  ) variables.
In general terms, the K-D Tree algorithm is a space-partitioning data structure for organizing points in a K-Dimensional space [Bentley, 1975]. The K-D tree is a binary tree structure which recursively partitions the input space along the axes that divide it into nested orthotropic regions into which data points are filed. This is done to address the computational inefficiencies of the brute-force Nearest Neighborhood approaches and to reduce the required number of distance calculations by efficiently encoding aggregate distance information for the sample (the basic idea is, indeed, that if point A is very distant from point B, and point B is very close to point C, then, A is distant from C without calculating the distance between A and C). The construction of a K-D tree is very fast: because partitioning is performed only along the axes, no D-dimensional distances need to be computed. Rather, when a (2-D) point is assigned to a node of the tree, the two coordinates are chosen, alternatively, and their medians are calculated to define horizontal or vertical lines, that, recursively, define areas containing other data that are classified in the left and right branches thereby departing that are, respectively, on the left and right of the point corresponding to that node in the 2-D space. Figure 2 shows an intuitive 2-D tree construction for the identification of the nearest safe point to any of the available safe conditions plotted in Figure 1 (i.e., only X1 and X2 are considered as input variables for the KD tree construction): the methodological generalization to a higher-dimensional problem is straightforward [Bentley, 1975]. The proposed approach can be summarized as follows:

1. One set of values (i.e.,
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) is sampled for each input variable from its PDF (i.e., ) ( ), ( , ), ( ), (
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2. the sampled values of the controllable variables (i.e.,

   , , , , , , , , ) 2 ( ) 1 ( ) 2 ( 2 ) 1 ( 2 ) 2 ( 1 ) 1 ( 1 q q x x x x x x )
are used to build a q-dimensional grid (hereafter called controllable grid), whereas the sampled values of the non-controllable
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) are used to build a n-q+1-dimensional grid (hereafter called non-controllable grid) (shown in Figure 3 ,,,( ,,,, (
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, which is defined by the same ψ-th set of non-controllable

variables ) ( 2 1 ) , , , , (  y n q q γ x x x   
, a K-D Tree-based nearest neighbor algorithm is employed to identify the closest point

F y n q q q γ x x x x x x    ) , , , , , , , , ( 2 1 2 1   of F  (Figure 4) for which 1 ) ) , , , , , , , , (( ~2 1 2 1     F y n q q q γ x x x x x x z   .
5. the projection d on the controllable input space (i.e., q  ) of the Euclidean distance between ) , , , , , , , , ( 
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8. the absolute safest position * x can be computed as one of the following quantities:

i. mean:

      * * * x P x (8)
ii. median:

5 . 0 ) , , , , ( : 
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iii. α-th percentile: 100 ) , , , , ( :
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As it is easy to see, both mean and median of the 

PROOF OF CONCEPT USING AN ANALYTICAL EXAMPLE

Analytical Model Description

The proposed approach is tested on an analytical model m , whose mathematical expression is given as:

3 1 2 2 1 2 1 2 1 ) 1 ( ) 2 ( ) 3 ( 8 ) , (         X X X X X X m Y (11)
where inputs j X ( 2 , 1  j ) are independent random variables obeying two truncated normal distributions:
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. The model limit-state function G can be written as:
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where the model safety threshold is distributed as a truncated normal variable 

     y y X X G X X F .

Failure Boundary Estimation

The methodological steps described in Section 2 have been applied to model m to obtain the estimate F  of the failure boundary, where: . However, in this particular analytical example considered, the model m of Eq. ( 11) and the corresponding limit state function G of Eq. ( 12) are known, so that we resort directly to Eq. ( 11) to compute

1. an initial training set of 11025 0  n input points ) ( 2 1 ) 2 ( 2 1 ) 1 ( 2 1 0 ) , , ( , , ) , , ( 
) ( ) 2 ( ) 1 ( 0 , , , n y y y 
, instead of training the P-ROM; in other words, simulation data are directly used through Eq. ( 12) with a sampled safety limit γy to identify the set of inputs (x1, x2,..,xn| γy) that are on the limit surface;

3. a B-ROM, i.e., an SVM-Classifier is trained on the available set of non-linearly separable data with: i) a Gaussian kernel
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, is one of the 0 n training points and  is the test point to be classified as belonging to the failure or safe domain; ii) a large value of parameter (which ensures smoothness of the decision function [Maneewongvatana et al., 2001;[START_REF] Basudhar | [END_REF]Cortes et al., 1995;[START_REF] Guyon | Automatic Capacity Tuning of Very Large VC-Dimension Classifier[END_REF]) (see Appendix A for more details on SVMs); 4. the persistence requirement on For the case of interest, inputs j X ( x (as shown in detail in Sections 3, Steps from 2 to 7).

Safest Operating Conditions Identification

In order to identify the safest operating conditions * x of the system whose behavior is modeled by m , the approach proposed in Section 3 has been enforced on the failure boundary x (the safest operating conditions) in the controllable input space.

In particular, it is worthwhile considering that when the system is operated under very stressful conditions (i.e., system response Y is allowed to approach y  upper limit) as y  is set equal to its 99-th percentile, for instance, the relative safest point * 

x might actually be localized within a failure region defined for conservative conditions, i.e., for small values of y  (Figure 7).

For this reason, different strategies should be defined to help the plant operator decide on what safest operating condition * x to select depending his/her attitude towards risk:

i. risk-averse: *

x is chosen as the 20-th percentile of the * 

x population, which amounts to the safest operating conditions when the system is working under very conservative hypothesis ( Y is kept far below the upper limit of y  );

ii. risk-prone: * x is the 80-th percentile of the * 

x population, which is the safest operating conditions determined for the system functioning in extreme conditions ( Y is allowed getting close to y  upper limit);

iii. mean/median: both strategies aim at identifying * x based on the average behavior of y  . As a final remark on the analytical case considered in this Section, it is noted that the 2D cubit test function used is sufficiently non linear to provide a limit surface that has variable features that could be used to benchmark the K-D tree algorithm. For instance, a misclassification cost factor C=10 has been selected to ensure the smoothness of the decision function of the B-ROM.

To test the smoothness (or lack of overfitting) of the B-ROM, a random noise variable can be added to Eq. ( 11) and the analysis can be performed on several training sets with varying magnitudes of the noise variance. If the B-ROM is robust, the limit surface shown in Figure 6 should be insensitive to random noise. However, the demonstration that the training of the B-ROM is robust to random noise and that overfitting can be avoided is not the scope of the work, while it can be found in the literature [Xu et al., 2009].

CASE STUDY

Nuclear Power Plant and Accident Scenario Description

The NPP considered for testing the proposed approach is a Boiling Water Reactor (BWR) with a Mark I containment (Figure 9a). The BWR dynamics has been modeled by the RELAP5-3D code based on the plant nodalization shown in Figure 9b. The BWR Mark I primary containment includes the following main components [Mandelli et al., 2013]:

1. a Drywell (DW) comprised of the Reactor Pressure Vessel (RPV) and of a pressurized vessel containing the reactor core and the circulation pumps; within the RPV, a water level control system includes: a. a Reactor Core Isolation Cooling (RCIC) provides high-pressure injection water from the Condensate Storage Tank (CST) to the RPV; b. a High Pressure Coolant Injection (HPCI) that is similar to the RCIC but allows for larger water flow rates; 2. a Wetwell (WW) that is a torus-shaped container filled with water that is used as ultimate heat sink; 3. Reactor Circulation Pumps (RCPs).

4. Safety Relief Valves (SRVs) to depressurize the RPV; 5. an Automatic Depressurization System (ADS) that consists in a separate set of relief valves.

The scenario under analysis is a Loss Of Offsite Power (LOOP) followed by the Diesel Generators (DGs) failure, that initiates a Station Black Out (SBO) accident.

In more detail [Mandelli et al., 2013;Mandelli, 2014], LOOP condition occurs due to some Power Grid (PG)-related external failure; the recovery of the PG is started and LOOP emergency counteractions are undertaken by the plant operators as follows:

1. the reactor is scrammed and put in sub-critical conditions through full insertion of the control rods in the reactor core; 2. DGs are successfully started so that emergency Alternate Current (AC) power is available; 3. core decay heat is removed by the AC-powered Residual Heat Removal (RHR) system. SBO condition occurs due to internal DGs failure, which renders not possible the removal of decay heat by the RHR; the SBO emergency procedure is immediately enforced by the plant operators as follows [Mandelli et al., 2013 Furthermore, we assume that batteries can fail due to the running out of stored power or to external failure and, thus, DC power is unavailable. In this case, all control systems are offline causing the reactor core to heat and the PCT to rise. Hence, the DC power recovery process has to be triggered so that if the HPCI or RCIC turbine did not flood during the DC power failure and does not fail on demand, HPCI and RCIC resume normal operations.

The available data consists in 10000  R N RELAP5-3D code runs that simulate the NPP thermal-hydraulic behavior during LOOP followed by SBO. For each BE-TH code simulation i) 11 input variables (i.e., j X ,

11 , , 2 , 1   j
) and the threshold y  are sampled from their respective PDFs ( ) ( ), ( , ), ( ), (

11 2 1 11 2 1 y X X X γ f x f x f x f y  
) listed in Table 1, ii) the maximum PCT (i.e., Y ) during the SBO transient is computed as safety parameter before [Mandelli, 2014]:

1. Y reaches y  ;

2. AC power is recovered by PG or DG resumption;

3. enough core cooling through FW is supplied.

Table 1: input variables list with their associated probability distributions as in [Mandelli, 2014].

Following [Mandelli, 2014;Sherry et al., 2012], we assume y  to be uncertain and characterized by a triangular probability distribution having: i) a lower limit of 1800 [F], ii) an upper limit equal to the Urbanic-Heidrick transition temperature of 2600 [F] [Urbanic et al., 1981], iii) the Code of Federal Regulations (CFR) temperature limit of 2200 [F] as mode (Figure 10).  between the j-th model input j X and Y [Stigler, 1989]:

           R R R N N i j N j j i Y Y X X Y Y X X 1 2 1 2 , 1 , ) ( ) ( ) )( (         (13) where j X ,  and  Y ( R N , , 2 , 1   
) are the ω-th sample of j X and the ω -th computed value of Y , respectively, while:

   R N j R j X N X 1 , 1   (14)    R N R Y N Y 1 1   (15) 
According to the sensitivity analysis results shown in Table 2, the three most relevant input variables are found to be "DGs recovery time" ( 1 X ), "Offsite AC power recovery time after DGs failure" ( 2 X ) and "Battery failure time" ( 7X ). It is worth mentioning that, among the remaining 8 input variables, the "RCIC and HPCI failure times after DG failure", 5 X and 6

X

are considered negligible as compared to 1 X , 2 X and 7

X even if expected to affect the PCT because the RCIC and the HPCI are two steam-driven systems that inject water to the RPV.

Thus, they would be kept constant to their mean values in case additional BE-TH code simulations were run to retrain and improve the P-ROM predictive accuracy. Based on this sensitivity analysis results, the P-ROM and B-ROM are built only on the selected set of input variables rather than on the whole set of 11 input variables listed in Table 1, so as to reduce the burned of additional BE-TH code runs for improving the P-ROM predictive accuracy (reduction of the dimensionality of the input deck of the code, from 11 to 3 input variables).

Alternatively, a P-ROM function of all 11 sampled inputs could be obtained and used to generate the 4D data used to train the B-ROM with the remaining 8 variables held at mean values or limiting values, but, in this latter case, any additional BE-TH code run should be fed with an input deck of 11 inputs variables, sampled from the respective distributions, that would increase the computational demand with respect to the use of a P-ROM as a function of 3 sampled inputs.

Furthermore, despite the reduced dimension of the training space (from 11 to 3 input variables)

and that the available ii.

the 80-th percentile of the population is selected as risk-prone solution: it corresponds to the relative safest conditions * (1000, 2200) x   x .

For the case study here considered, Figures similar to Figures x , as in this particular case.

As a final remark on the case study considered in this Section, it is noted that a possible demonstration of the efficiency of the adaptive sampling algorithm could be sought by the following methodology:

1) Initialize the training with 50-100 RELAP5 simulations through LHS, grid or stratified sampling (any space-filling experimental design). A total of 50-100 SBO simulations using a system TH code is a practical limit for the number of simulations that can be performed on any modern desktop computer in about one day and for the output to be easily verified by the analyst.

2) Implement the adaptive sampling strategy using batches of 25-50 simulations per batch. The existing 10000 data set is a good benchmark resource to compare with the evolving limit surface.

3) Both the persistence requirement Eq. ( 6) and an engineering judgment should be used to determine when the algorithm is to be stopped. If the P-ROM or B-ROM is suffering from overfitting, the limit surface may be identified but the algorithm will not converge.

CONCLUSIONS

The RISMC program, sustained by the U.S. DOE, is engaged in the development of new methods and tools to support effective decision making on NPPs life extension and licensing of new nuclear technologies.

The present paper represents a contribution to this vast and ambitious program, as it sets forth an adaptive sampling algorithm that embeds a support vector machine (SVM) for multivariate regression, a SVM for classification, and a K-D tree search algorithm for nearest neighbor search in multi-dimensional space to identify the NPP safest operating conditions in the subspace of controllable variables as a function of distance from a limit surface under aleatory and epistemic uncertainties. The partitioning of the model inputs into two subspaces of controllable and non-controllable variables allows, indeed, the non-controllable variables to be treated probabilistically and the safest operating conditions to be defined as a function of risk, being the ultimate goal of the analysis to guarantee the required plant safety margins in accident For the case of non-linear decision functions, non-negative slack variables   are introduced [START_REF] Basudhar | [END_REF]Cortes et al., 1995]: Gaussian, polynomial kernels, multilayer perceptrons, Fourier series and splines [START_REF] Basudhar | [END_REF][START_REF] Guyon | Automatic Capacity Tuning of Very Large VC-Dimension Classifier[END_REF].

  0 (i.e., any of the F  points have changed) for a pre-defined number of consecutive iterations: a) new input points are added to the training set to explore farther regions of the input space from F  and b) the process is resumed at Step 2.

Figure 1 :

 1 Figure 1: failure boundary F  for 2  n controllable input variables (dots are safe points ( 1 ~ z ) and stars are failure points ( 1 ~  z )).

Figure 2 :

 2 Figure 2: KD tree construction for the identification of the nearest safe point to any of the available safe conditions plotted in Figure 1.

  Figure 3: on the left side, a 2 

xP

  is the safest point of the controllable input space for the ψ-th set of non-is associated, which is computed as the product of all the non-controllable variables marginal densities:

x

  population are solutions based on the most probable behavior of the non-controllable variables, whereas the α-th percentile defines a more or less risk-oriented solution depending on  and on what non-controllable variables are actually considered.

Figure 4 :

 4 Figure 4: identification of the nearest neighbor of entry point ) 8 , 1 , 1 ( ) , , ( 2 1

Figure 5 :

 5 Figure 5: projected Euclidean distance d between entry point ) 8 , 1 , 1 ( ) , , ( 2 1

  the controllable variables space.

  , a P-ROM should be trained to reproduce the model m responses)

  high influence to each training point   ); iii) a relatively low value of the misclassification cost 10  C

  equal to 30.The B-ROM estimates the failure boundary F  as shown in Figure6(where, for clarity, : it is clear that F  (dots) well approximates the actual failure boundary F  (continuous grid).

Figure 6 :

 6 Figure 6: plot of the estimated F  (i.e., dots) and of the actual failure boundary F  (i.e., continuous grid) for the analytical model h considered.

Figure 7

 7 Figure7shows that: i) the ψ-th projection 

Figure

  Figure 7: projections

Figure 8 :F

 8 Figure 8: projections of the failure boundary F  on the controllable input space for: (a)

Figure 9 :

 9 Figure 9: (a) overview and (b) RELAP5-3D nodalization of the BWR NPP with Mark I containment considered.

Figure 10 :

 10 Figure 10: PDF of the cladding failure temperature

  code runs are not necessary for the training of the surrogate models with sufficient predictive accuracy, we carry on the analysis with all the R N code runs. The reason is twofold: a very large data set can be very useful for benchmarking purposes and training the ROMs on a large dataset (when available) can overcome the presence of spurious results in the dataset due to RELAP5 numerical instability that provides unphysical area).

  7 and 8 are not provided: the equivalent of Figure 7 would be a 4D input plot ( 1 X , 2 X , 7 X and PCT), with a failure boundary hardly visible, whereas the equivalent of Figure 8 would be a 3D input plot with a collection of points representing the failure boundary for a given PCT, that, on the other hand, would be not informative if not supported by the overall picture of the failure boundaries at different PCT values, as it is for the analytic case study (Figures 7 and 8 are, indeed, jointly described in Section 4.3).

Figure 11 :

 11 Figure 11: Maximum PCT values reached for the

  w is the vector of the hyper-plane coefficients, b the bias and hyper-planes. Problem (1A) is a Quadratic Programming (QP) problem that can be solved through the method of Lagrange multipliers   .

  of variables can be mapped to a higher dimensional space, where the classification of any test point  is obtained by the sign of function: function. Common types of kernel functions used with SVM are:

  

results in some flow regimes. It is worthwhile pointing out that the plant emergency staff is free to decide when to start the failed DGs (i.e., 1 X ) and the offsite PG repair (i.e., 2 X ), but it is impossible for them to know when the DC batteries may fail (i.e., 7 X ) and which cladding temperature may cause the system failure (i.e., y  ). Because of this, variables 7 X and y  shall be considered non-controllable inputs that may adversely impact on the NPP safety, whereas inputs 1 X and 2 X should be identified with the model controllable variables. As a result, the controllable and non- x .

Failure Boundary Estimation

The failure boundary estimation  is set equal to 30.

Safest Operating Conditions Identification

The NPP safest operating conditions *

x are found as in Section 3 on the failure boundary approximation F  determined in Section 5.2, where:

1. the controllable and non-controllable grids are built based on a regular grid We demonstrate that multivariate parameter sampling, surrogate/reduced order/regression models, classification models and limit surface can yield practical, useful results for the NPPs safety assessment.

The proposed approach has been applied to two case studies, i.e., a proof of concept using an analytical example and a Loss of Offsite Power (LOOP) followed by a Station Black Out (SBO) accident occurring in a Boiling Water Reactor with Mark I containment. In particular, the SBO study involved a 3D SVM for regression, a 4D SVM for classification, and a 4D/2D K-D tree.

Coherently with the RISMC main objective, as a result of the application of this suite of algorithms, various options are presented to the analyst to set the NPP in the safest operating conditions: risk-averse, risk-prone decisions have been defined and illustrated, together with a strategy that strikes a balance between these two extremes by identifying the plant "mean" safest operating conditions. Even if practically viable for this case, the extension of the presented approach to higher-dimensional problems should be further investigated from the computational point of view, the K-D tree suffering a curse of dimensionality when dealing with D larger than 20. In any case, as here proposed, a prior sensitivity analysis aimed at reducing the multi-dimensional controllable variable space would tackle the computational problem without the need to resort to other searching algorithms.
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APPENDIX

SVMs are a set of supervised learning methods that can be used for: i) classification, ii) regression, iii) outliers or novelty detection [START_REF] Basudhar | [END_REF]Cortes et al., 1995;[START_REF] Guyon | Automatic Capacity Tuning of Very Large VC-Dimension Classifier[END_REF]. [START_REF] Basudhar | [END_REF].

In the case of linear decision functions (i.e., the training data is linearly separable), the idea is to maximize the margin between two parallel hyper-planes that separate the training data. The pair of hyper-planes is required to pass at least through one of the training points   of each class (i.e., support vectors) and no points are admitted inside the margin. The optimization problem whose solution determines the optimal pair of hyper-planes is [START_REF] Basudhar | [END_REF]: