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Abstract 

The safety verification of nuclear systems can be done by analyzing the outputs of Best-Estimate 

Thermal-Hydraulic (BE-TH) codes, which allow predicting the system response under safe and 

accidental conditions with greater realism as compared to conservative TH codes. In this case, it is 

necessary to quantify and control the uncertainties in the analysis, which affect the estimated safety 

margins. This can be achieved by Sensitivity Analysis (SA) and Uncertainty Analysis (UA) techniques 

tailored to handle the large computational costs of TH codes. This work presents an Ensemble-Based 

Sensitivity Analysis (EBSA) based on Finite Mixture Model (FMM) as an effective solution to keep low 

the code runs and handle the uncertainty in the SA methods. The approach proposed is challenged 

against a situation of a very low number of code runs: the Bootstrap method is, then, used in support. 

Three different strategies based on EBSA and Bootstrap are set forth (i.e., bottom-up, all-out and filter 

strategies). An application is provided with respect to a Large Break Loss of Coolant Accident 

(LBLOCA) simulated by a TRACE model of the Zion 1 Nuclear Power Plant (NPP). 

Keywords: Safety Margins; Uncertainty and Sensitivity Analysis; Finite Mixture Model; Ensemble of 

Methods; Bootstrap Method; Large Break Loss Of Coolant Accident. 

1. INTRODUCTION

Safety of Nuclear Power Plants (NPPs) is verified by accurate Thermal-Hydraulic (TH) 

models that reproduce the system functional response in normal and accidental conditions. 

Traditionally, conservative calculations of a small set of pre-defined accidental scenarios (i.e., 

Design Basis Accidents) are made and few safety-significant parameters (i.e., fuel cladding 
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temperature, containment pressure, etc.) are compared with predetermined safety thresholds. 

The (positive) differences between the prescribed safety thresholds and the conservatively 

computed safety parameters values are the so-called safety margins [1].  

Recently, a more realistic approach has been advocated, whereby the calculations of the 

plant safety margins are based on Best-Estimate (BE) TH models, within a probabilistic 

framework that allows accounting for the uncertainties in the model and its parameters [2]. 

Indeed, proper quantification and control of the uncertainties affecting the best-estimated safety 

margins are necessary conditions [3-7]. 

Several methods have been proposed for the quantification of TH codes uncertainties, 

e.g., Code Scaling, Applicability and Uncertainty (CSAU) [8-10], the State-of-the-Art Reactor 

Consequence Analyses (SOARCA) project [11-14], the Automated Statistical Treatment of 

Uncertainty Method (ASTRUM) and Integrated Methodology for Thermal Hydraulics 

Uncertainty Analysis (IMTHUA) [15], and for the uncertainty analysis of a reactor physics 

codes, e.g., by the introduction of surrogate models trained on a limited number of calculations 

to limit the computational burden, like in [16]. In [17], some of the authors have proposed to 

combine Order Statistics (OS) [18; 19] with Artificial Neural Networks (ANN) to speed up 

the calculation for uncertainty analysis by reducing the computational cost associated to 

the repeated simulations of a TH-BE code. 

The methods listed above are limited in that they do not provide the whole distribution 

of the model response, nor indications on the sensitivity of the model to the inputs variability 

[20; 21].  

With respect to the latter issue, Sensitivity Analysis (SA) is the way for determining how 

the uncertainty in the model output is apportioned among the model inputs uncertainties. 

In other words, SA allows finding out which input variables most influence the model output 

and, thus, in our case, are most relevant for the safety margins quantification. 

The manifold of SA techniques presented in the literature can be sorted into three main 

categories: local, regional and global. 

Local and regional sensitivity analyses consider inputs variations on subsets of their 

overall ranges. Local methods evaluate the effects on the system response of small 

perturbations of the model input variables in the neighbourhood of some fixed, nominal values, 

at low computational costs [22; 23]. Thus, local SA provides information about the sensitivity 

of model output to the inputs variability only at some fixed points. Regional SA methods focus 

on the contribution of the inputs ranges of variability to the uncertainty of model output [24; 

25]. But, they do not give a complete representation of the uncertainty of the model, in terms 
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of distribution [17]. 

Global sensitivity analysis (GSA) methods explore the whole distribution range of the 

model inputs and the effects of their mutual combination. Examples of GSA methods are 

Response Surface Methodology (RSM), Fourier Amplitude Sensitivity Test (FAST), Delta 

and Variance Decomposition Method and various concepts based on the functional 

ANOVA expansion of the input-output mapping [26-30]. Resorting to GSA is most 

desirable when dealing with complex codes, thanks to its ability to handle non-linear 

and non-monotone models [31-33]. On the other hand, GSA methods can be 

computationally expensive if not based on a limited number of TH simulations [25; 34; 35]. 

In the present work, we consider three GSA methods (Input Saliency (IS) [36], 

Hellinger Distance (HD) [37; 38], Kullback-Leibler Divergence (KLD) [37; 38]) to form a 

bootstrapped ensemble for: i) exploiting the capability of global SA methods to provide 

knowledge on the sensitivity of model output uncertainty to the entire inputs distributions 

ranges and ii) limiting their potentially large computational burden. Indeed, when the TH 

calculation data are limited, an Ensemble-Based Sensitivity Analysis (EBSA) has been 

shown to give satisfactory results with limited computational cost [39]. 

In this work, we resort, in particular, to a bootstrapped ensemble-based approach. The 

basic idea herein set forth is to rely on the information available in the multi-modal 

Probability Density Function (PDF) of the bootstrapped model output in order to perform 

GSA of a TH code. Then, the amount of code calls that are demanded by the EBSA is 

reduced as compared to standard GSA techniques, since the amount of simulations needed is 

simply that required to reconstruct the estimated model output PDF [39]. In this paper, this is 

achieved by means of a Finite Mixture Model (FMM) [40], whereby the natural clustering 

generated by the FMM on the TH code output is exploited to estimate global sensitivity 

measures [38; 41]. The ensemble of three SA indicators is, then, employed for ranking the 

input factors which most affect the output uncertainty.  

The EBSA paradigm enables to combine the output of the three different SA methods 

and generate reliable and robust rankings, compensating the individual biases of each method, 

which shows to be particularly effective when the number of TH code runs available is small 

[42]. 

The Bootstrap method is used to (artificially) increase the amount of data obtained from 

the few TH code runs, without altering the original information therein contained [17]. It is a 

distribution-free inference method, which relies on no prior knowledge about the distribution 

function of the underlying population [17]. The idea is to generate alternative populations by 
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sampling with replacement from the original dataset. 

Three strategies combining EBSA and the Bootstrap method are here proposed and 

compared with each other. A bottom-up strategy (ES1) computes a ranking order of the input 

variables out of each bootstrapped dataset and combines them a posteriori to generate a final 

aggregated ranking order. An all-out strategy (ES2) merges a priori the information from the 

bootstrapped datasets into three ranking orders that are, then, combined together. A filter 

strategy (ES3) computes the expected value and variance of the importance of each input 

variable over all the bootstrapped datasets. 

These strategies have been developed and tested on a real case study that entails a Large 

Break Loss of Coolant Accident (LBLOCA) [43; 44], which is simulated by the TRACE code 

[45] of the Zion 1 NPP [43; 44]. The results obtained have been compared with other standard

methods of literature. 

The rest of the paper is organized as follows. Section 2 briefly recalls the three SA 

techniques used and explains how the Bootstrap-based information is processed for multiple 

ranking aggregation. In Section 3, the three ensemble strategies (i.e., bottom-up, all-out and 

filter) are defined. Section 4 is devoted to the presentation of the case study. Section 5 shows 

the results of the application of the proposed strategies to the data of the case study. Section 6 

presents the comparison of the results obtained to those of other methods of literature. 

Conclusions are drawn in Section 7. 

2. BOOTSTRAPPED EBSA

In the originally proposed EBSA [35], the output values of the original set of TH code 

runs is processed by a set of SA methods directly and, then, input ranking aggregation is 

performed. However, when the number of available TH code runs is small, the results of the 

sensitivity analysis are likely to be biased and the final aggregated ranking not realistic. 

Bootstrap (described in Section 2.1) is expected to help improve the reliability of the final 

aggregated ranking [17], by creating purpose-built bootstrapped datasets out of the initial 

dataset available. 

2.1 Bootstrapped-replications of TH Code Runs 

In practice, every bootstrap replication of the available TH code data is generated by 

sampling with replacement from the original dataset. For the sake of clarity and without loss 
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of generality, let us assume that the original dataset consists in a bi-dimensional matrix D  

with RN  rows, where RN  is the number of performed code runs, and on   columns, 

where n  is the number of code inputs and o  is the number of output variables. Every newly 

generated bootstrapped-dataset is, thus, the assembly of RN rows, which are randomly 

sampled with replacement from matrix D  [17]. 

2.2 Ensemble-based Sensitivity Analysis 

Let y  denote the output of the TH model m : 

),,,,( 1 nj xxxmy  , nj ,,2,1  (1) 

where jx is the j-th model input variable with probability distribution ( | )
j j

f x 

charachterised by a set of parameters j
 . The random output variable y  follows (i.e., can be

expanded into) a finite number of K  PDF models that are merged into one PDF )(yf if 

[40]: 

)|(=)(
=1

kkk

K

k

yfyf  (2) 

where )|( kk yf   are K  different PDFs (for example, Gaussian distributions), k is the set

of parameters of the k-th model of the mixture (for example, mean and standard deviation of 

the Gaussian distribution) and k are the mixing probabilities that fulfil:

1=
1=

k

K

k

 (3) 

where 0k , k .

Mixture models parameters   and   are computed by Expectation Maximization 

(EM) algorithm, for optimal approximation of the model output PDF through the (small 

number) RN of TH code simulation outcomes (the interested reader may refer to [41; 46]).

“Natural” clusters can be associated with each model PDF )|( kk yf  of the mixture 
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density )( yf  [47]. Such clusters are called “natural” because they reflect the way the TH 

input variables combine in the model m to provide the output y, according to the physics (i.e., 

the “nature”) that is reproduced in the code. Some clusters might be representative of input 

variables values that keep the system in normal operative conditions, whereas some others of 

values leading the system into accidental conditions. Such clusters are, then, exploited for 

calculating three SA measures: Input Saliency (IS), Hellinger Divergence (HD), Kullback-

Leibler Distance (KLD). For EBSA [39], the results of each SA method are eventually 

aggregated.  

For the sake of completeness, the basics of the three used SA methods are briefly 

summarized below. 

2.2.1 Input Saliency 

Once the model output PDF )( yf is reconstructed by means of the K  PDF models 

( | )
k k

f y  as in Eq.(2), and assuming that all the jx model inputs are mutually independent, 

)( yf can be written as follows: 

=1 =1 =1

( ) = ( | ) = ( ( | ) (1 ) ( | ))
nK K

k k k k j k j j j j j

k k j

f y f y m f x q x      
 

  
 

   (4)

where the model m is fed with a realization of each j-th input variable taken from )|( jjk xf 

that is the PDF of the j-th input variable inside the “natural” k-th cluster (i.e., the overlapping 

area between the the j-th input variable and the k-th model of the output variable distributions, 

that is large when the distributions have similar parameters j and k , respectively), to

which corresponds )|( jjxq  that is the so-called “common” PDF that the j-th input variable 

follows when it does not affect the distribution of the k-th cluster [48; 49] (e.g., when the j-th 

input variable follows an Uniform distribution whereas the output has a Gaussian distribution), 

properly weighted by j , that is the saliency index that measures the importance of input jx

in affecting the shape of the distribution of y . The values of j , j=1,2,…, n, that solve Eq.(4) 

can be estimated resorting to an EM algorithm as the one presented in [36]. 

Basically, if j  is large, then the j-th input variable is relevant in affecting the output 

variability (i.e., the j-th input variable has the same distribution of at least one of the K models 
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j

of the FMM representing the of the output variable distribution), whereas in the opposite case, 

i.e.  is small, the input variable follows the so-called common probability distribution 

throughout all the clusters and it does not contribute in shaping the output y . 

2.2.2 Hellinger Distance 

Based on the formulation (4) of )( yf , the Hellinger Distance 
jkH ,

quantifies the gap 

length (i.e., the functional similarity) between the j-th input PDF )|( jjk xf  and its associated

common distribution )|( jjxq  . One way to define 
jkH ,

is the following [37; 38]: 

 
1

2 2

,

1
= ( | ) ( | )

2
k j k j j j j j

H f x q x dx 




 
 

 
 (5)

For example, if we were to assume )|( jjxq  to be an Uniform distribution and 

)|( jjk xf   a Gaussian distribution, 
jkH ,

would be large because their functional difference is 

large; on the contrary, if both )|( jjxq  and )|( jjxf  were Uniform (due to the fact that 

the j-th input variable does not affect the characteristics of the k-th distribution), then 
jkH ,

would be small. Overall, the importance index of the j-th input variable measuring how much 

it affects the model output y  (i.e., how much its PDF distribution is similar to the output PDF 

distribution) is given by the sum of the index values jkH , over the whole set of K models: 

kj

K

k

j HHD ,

1=

= (6) 

2.2.3 Kullback-Leibler Divergence 

Along the lines of the Hellinger Distance, the Kullback-Leibler SA method strives to 

identify a disparity in the information carried by the two PDFs of the j-th input )|( jjk xf  and

)|( jjxq  by calculating: 

j

jj

jjk

jjkkj dx
xq

xf
xfKLD


















 )|(

)|(
log)|(=,




 (7)
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The Kullback-Leibler Divergence is a measure of the different location of the masses of 

the two probability distributions [37; 38]: the closer to 0, the more similar the information 

brought by the two PDFs (i.e., the log(·) term approaches 0), that is to say the the j-th input 

follows its “common” PDF rather than the PDF of the k-th “natural” cluster. 

Similarly to the Hellinger Distance importance index, the j-th input relevance in affecting 

the model output y  is described by: 

kj

K

k

j KLDKLD ,

1=

= (8)

2.3 Multiple Rankings Aggregation 

The inputs rankings provided by Input Saliency, Hellinger Distance and Kullback-Leibler 

Divergence (Sections 2.2.1, 2.2.2 and 2.2.3, respectively) can be aggregated. In this work, two 

aggregation methods are used, i.e. the Borda and Schulze ranking aggregation methods [50]. 

The Borda ranking method computes the so-called Borda count of any input variable [48]. 

The Borda count ( jBC ) of input variable jx is the sum of its positions in all input rankings. 

Denoting by ,jp the j-th variable order inside the ϑ-th ranking, the Borda count for the input 

variable jx is given by: 





rn

jj pBC
1

,



 (9)

where 
rn is the total number of rankings; a small value of jBC means that the j-th input 

variable is among the most important, top-ranked, input variables. 

The Schulze method follows the Condorcet criterion [50]: for each pair x and x of 

input variables (where n,,2,1  , n,,2,1  ,   ), the method counts how many 

methods rank x above x and, conversely, how many methods do the opposite: if the 

former amount is larger, then x is considered dominant over x , and viceversa.
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3. BOOTSTRAPPED-EBSA STRATEGIES

As introduced in Section 2.2, 
j , 

jHD and 
jKLD are the SA indexes for ranking the 

model input variables. Our original idea is to compute them for bootstrapped datasets. Then, 

ji, , 
jiHD ,

and 
jiKLD ,

are input saliency, Hellinger Distance and Kullback-Leibler 

Divergence importance indexes of the j-th input variable ( nj ,,1,2=  , where n is the 

number of model inputs), calculated on the i-th bootstrapped dataset iBD (
Bni ,,2,1  ): 

 
 
 










niii

niii

niii

i

KLDKLDKLD

HDHDHDBD

,,1

,,1

,,1

,,=

,,=

,,=





 

(10) 

Three strategies are explored to combine EBSA and Bootstrap in order to aggregate the 

bootstrapped rankings into a final model inputs rank.  

3.1 The Bottom-Up Strategy (ES1) 

Each i-th bootstrapped dataset ( iBD ) is treated separately from the others to generate one 

ensemble-aggregated input ranking and, then, the set of input rankings obtained from all the 

bootstrapped datasets is processed a posteriori to give the final (bottom-up) aggregated ranking 

order (Figure 1). 



10 

Figure 1: scheme of the proposed bottom-up strategy (ES1). 

Practically, from the i-th bootstrapped-dataset ( iBD ) the measures i , iHD  and iKLD , 

are computed and three input ranking orders are correspondingly obtained by sorting in 

ascending order. Borda and Schulze methods (Section 2.3) are, then, applied to get the 

ensemble aggregated input ranking ir for each i-th bootstrapped-dataset.

Borda and Schulze methods are, then, applied again to obtain the final (bottom-up) input 

ranking order r . 

3.2 The All-Out Strategy (ES2) 

The idea is to merge a priori the (all-out) information coming from the bootstrapped-datasets 

(Figure 2). 
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Figure 2: scheme of the proposed all-out strategy (ES2). 

For each input variable jx , the expected values of the three measures of importance 

ji, , jiHD , , jiKLD , over the population of 
Bn bootstrapped-datasets are computed: 

  ji

B
n

iB

ijij
n

,

1=

,

1
==   (11) 

  ji

B
n

iB

ijij HD
n

HDHD ,

=1

,

1
==  (12) 

  ji

B
n

iB

ijij KLD
n

KLDKLD ,

=1

,

1
==  (13)

These values, sorted in ascending order, provide three model input rankings, which are, 

then, aggregated by the Borda or Schulze methods (Section 2.3). 

3.3 The Filter Strategy (ES3) 

We compute the mean value 
j

T and the variance 
2

j
T of the importance measures

ji, , jiHD , , jiKLD , obtained from the i-th bootstrapped dataset for each input variable jx , 

viz: 
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1=

2 )(
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1
=

j
T

l
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l

B
n

iB

j
j

T t
n

TVar  


  (15)

where l

jit , (
Bni ,,2,1  , nj ,,1,2=  , KLDHDISl ,, ) is a realization of a random 

variable jT such that:





n

j

ji

jiIS

jit

1

,

,

,




(16) 

ji

n

j

jiHD

ji

HD

HD
t

,

1=

,

, =


(17) 

ji

n

j

jiKLD

ji

KLD

KLD
t

,

1=

,

, =


(18)

Figure 3: scheme of the proposed filter strategy (ES3). 
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4. CASE STUDY

Among all BE-TH codes employed in nuclear safety, RELAP-5 and TRAC have 

traditionally been used to reproduce transients of Pressurized Water Reactors (PWRs) and 

Boiling Water Reactors (BWRs), respectively. Nowadays, the TRACE code (TRAC/RELAP 

Advanced Computational Engine) is being developed to make use of the most favorable 

characteristics of the RELAP-5 and TRAC codes to simulate both, PWR and BWR, 

technologies. In this paper, the TRACE code has been used to simulate a LBLOCA occurring 

in one of the four cold legs of the Zion 1 NPP [43; 44]. 

The model of the plant for the TRACE code has been supplied with the TRACE V05 patch 

3 version distribution, which has been adapted for the case study. The plant model consists of 

97 hydraulic volumes, 36 heat structures and the necessary controls to perform the simulation 

of a cold leg LBLOCA as shown in Figure 4. 

Figure 4: view of the TRACE model for the Zion 1 NPP LBLOCA simulation. 

The Zion 1 NPP is a four-loop Westinghouse design PWR located in Zion (Illinois, USA). 

The system parameters values and distibutions are listed in Table 1, taken from [45]. 

In general, when a LBLOCA occurs the emergency shut-down of the reactor (SCRAM) is 

triggered and the scenario develops along three phases: i) blowdown, that begins with a cold 

leg break of size S23 (Table 1) and ends when the Emergency Core Cooling System (ECCS) 
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starts injecting water in the remaining intact loops; ii) refill, that begins when the water 

injection starts and ends when the mixture level in the lower plenum reaches the core inlet; iii) 

reflood, that begins when the liquid level in the core increases and ends when the core is totally 

quenched. In the PWR here considered, the actuation of two ECCS is taken into account: one 

is a passive safety system consisting of one large accumulator per loop, containing borated 

water under a blanket of nitrogen at mean pressure S10 = 4.16 [MPa] (see Table 1), which is 

poured into the vessel cold legs; the other system is an electrically driven Low-Pressure coolant 

Injection System (LPIS) that discharges water into the hot legs of the primary loops. In more 

detail, the accident scenario here analyzed consists in: 

1. start of the transient with the break opening followed by a mean blowdown period of

13 [s];

2. injection from the accumulators when the pressure in the primary circuit falls below S10 

= 4.16 [MPa]. In particular, the pressure set point considered in the simulation is 4.14

[MPa] [45];

3. start of LPIS injection when the primary pressure reaches 1.42 [MPa] with a mean delay

of S16 = 15 [s] (Table 1) for the LPIS activation;

4. mean refill phase (started about 13 [s] after the break) period of 26 [s], when the core

is filled again with liquid;

5. core quenching completed at about 460 [s] after the break.

Furthermore, as the pressure drop at the start is too sharp, the actuation of the High Pressure 

Injection System (HPIS) is not considered in the simulations. 

The original available dataset consists of 96RN  runs of the tailored TH code: for each 

simulation, a batch of the 23 input variables listed in Table 1 is sampled and the maximum 

Peak Cladding Temperature (PCT) reached during the transient is collected as model output 

safety parameter. 

The first PCT, reached during blowdown, has a value of about 1000 [K], whereas the 

second larger PCT is reached during the reflood phase, about 170 [s] after the initiation of the 

transient. The threshold of the PCT not to be reached during the LBLOCA is set equal to 1477 

[K]. 
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Table 1: model input variables list with their associated distributions [45]. 

5. RESULTS

5.1 Application of the Bootstrapped-EBSA to the Zion 1 NPP Case Study 

The original dataset of TH simulations has been replicated by Bootstrap to generate 

1000Bn datasets iBD , Bni ,,2,1  (Section 2.1), which ensures a sufficiently large total

number of code runs as claimed in [35]. Each iBD  data matrix is comprised of 96=RN  

rows and 24=on  columns, each containing the values of one of the model variables (Table 

1). 

The analytical reconstruction of the model output PDF )( yf  has been performed by 

Finite Mixture Models (FMMs) for each i-th iBD , where the number K of FMMs clusters is 

set equal to 2 (i.e., the PDFs )(yf i
, Bni ,,2,1  , is a Gaussian bimodal distribution) as a 

result of a best-fitting procedure to the experimental model outputs, although an automatic 

optimization of the number K  is also possible [51]. As an example, Figure 5 shows the 

bimodal output PDF (solid line) of a two-cluster FMM based on the experimental model output 
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distribution (histogram) of one generic i-th dataset. 

The bimodal nature of the distribution is explained by the values taken by the ”Break 

section equivalent diameter” (S23) input variable which turns out to be the input variable that 

affects the transient evolution the most, as shown quantitatively in what follows: code runs 

with large break sizes (i.e., break section equivalent diameter between 30 and 40 inches) 

generate transients with poor core refrigeration capability, which lead the PCT to reach high 

values, thus giving rise to the high mode of the FMM, whereas code runs fed with small break 

sizes (i.e., break section equivalent diameter between 20 and 30 inches) originate the low mode 

of the FMM. 

Figure 5: reconstructed PDF of the model output based on a two-cluster FMM (solid line) for the generic i-th 

bootstrapped dataset. 

As already explained in Section 2.2, the greater the contribution of an input variable in 

shaping the K  clusters of the reconstructed PDF is, the larger the importance of this input is 

in affecting the model output variability.  

The sensitivity of the PCT output to the 23n  input variables considered is quantified 

by calculating ji, , jiHD , and jiKLD , for each j-th input, nj ,,1,2=  , on each i-th 

bootstrapped dataset, Bni ,,2,1  . As an example, Figures 6, 7 and 8 show ji, , jiHD , and

jiKLD , respectively, for the generic i-th bootstrapped dataset of Figure 5. 
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Figure 6: saliencies (Eq. 4) of all the 23 model input variables for the generic i-th bootstrapped dataset. 

Figure 7: Hellinger Distances (Eq. 6) of all the 23 model input variables for the generic i-th bootstrapped 

dataset. 
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Figure 8: Kullback-Leibler Divergences (Eq. 8) of all the 23 model input variables for the generic i-th 

bootstrapped dataset. 

In what follows, the results of the bottom-up (Section 3.1), all-out (Section 3.2) and filter 

(Section 3.3) strategies for bootstrapped-EBSA are presented and compared in Sections 5.2, 

5.3, 5.4 and 5.5, respectively. 

For the sake of completeness, in Section 6 the obtained results are compared with those 

achieved by the EBSA of [39] and the BEMUSE project [43]; benefits and limitations of the 

proposed bootstrapped-EBSA are highlighted with respect to these other methods. 

5.2 Results of the Bottom-Up Strategy (ES1) 

The application of the ensemble strategy ES1 (Section 3.1) results in the two final input 

rankings that are shown in Table 2, obtained by the Borda and Schulze aggregation methods. 

It can be observed that: 

1. 5 input variables (S23, S13, S2, S12, S21) occupy the same position for both aggregation

methods;

2. the first 9 positions are held by the same input variables (S23, S8, S4, S13, S10, S1, S2, S18,

S22);
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3. input variables S23, S13 and S2 are ranked in the same order by both methods;

4. S8 and S4, S10 and S1, S18 and S22 are switched in position in the two methods;

5. below position 10 the two final rankings disagree: for instance, input variable S19 is

ranked 10th by the Schulze method and 21st by the Borda method.

Table 2: Borda and Schulze model input final rankings obtained through ensemble strategy ES1. 

Judging from the Borda and Schuze aggregation results, we can conclude that the bottom-

up strategy ES1 identifies the following 9 input variables as the most important in affecting the 

model output: 

1. S23: “Break section equivalent diameter”;

2. S8: “Surge line coefficient of friction”;

3. S4: “Rector core power peaking factor”;

4. S13: “LPIS water mass flow rate”;

5. S10: “Accumulator initial pressure”;

6. S1: “Reactor core initial power”;

7. S2: “UO2 specific heat capacity”;

8. S18: “Cold leg initial temperature”;

9. S22: “Reactor core power after SCRAM multiplier”.

5.3 Results of the All-Out Strategy (ES2) 

The ensemble strategy ES2 (Section 3.2) yields the results reported in Table 3, with final 

rankings obtained by the Borda and Schulze methods. As Table 3 shows: 

1. 9 input variables (S23, S8, S18, S22, S11, S3, S9, S17, S21) occupy the same position for both

the aggregation methods;

2. the first 2 positions are held by the same input variables (S23, S8);

3. changes in rank positions can be spotted (i.e., position 3 of the Schulze method is

occupied by input variable S4 that is placed in position 7 by the Borda ranking);

4. beyond position 10 the ranking orders disagree.



20 

Table 3: Borda and Schulze model input final rankings obtained through ensemble strategy ES2. 

We can conclude that ES2 suggests 10 input variables as relevant for the model output 

variability: 

1. S23: “Break section equivalent diameter”;

2. S8: “Surge line coefficient of friction”;

3. S13: “LPIS water mass flow rate”;

4. S1: “Reactor core initial power”;

5. S2: “UO2 specific heat capacity”;

6. S10: “Accumulator initial pressure”;

7. S4: “Rector core power peaking factor”;

8. S18: “Cold leg initial temperature”;

9. S22: “Reactor core power after SCRAM multiplier”;

10. S11: “Accumulator liquid initial temperature”.

5.4 Results of the Filter Strategy (ES3) 

The major limitation of ES1 and ES2 is that the model input rankings provided do not 

tell neither how large the difference in importance is between two consecutive positions nor 

they allow identifying the “stopping criterion” for deciding the last important input variable to 

be considered in the ranking.  

Indeed, as can be seen in Tables 2 and 3, the ES1 and ES2 rankings are very similar to 

each other, with negligible disagreement until position 10. We could be driven by such results 

to consider all of the first 10 input parameters to be relevant. 

The filter strategy (ES3) of Section 3.3 allows computing the mean value 
j

T and

variance 
2

jT of the importance metrics (Eq. 14, 15, 16) for each j-th input. In Table 4, the 

values of 
j

T , 
j

T and 

j

j

T

T




are reported for all the 23 model input variables. 
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Table 4: values of 
j

T , 
j

T and

j

j

T

T




for 23,,2,1 j . 

In Figure 9 
j

T and 

j

j

T

T




are plotted against one another for each j-th input variable. The 

parameter 

j

j

T

T




is used as a discriminating feature to explain the variability of the input 

variables importance: a large 

j

j

T

T




value means that the j-th input importance varies a lot in 

the bootstrapped datasets, whereas a small 

j

j

T

T




value means that the j-th input variable varies 

little. Judging from the results obtained, variable S23 stands out as the most important input 

since 625.0
23
T  and 030.0

jT  for 22,,2,1 j . The zoom-in on the bottom of Figure

9 reveals two clusters of model inputs: variables S8, S13, S4, S1, S10, S2, S18 and S11 occupy the 

region where 
j

T and 

j

j

T

T




are large and small, respectively, whereas variables S22, S15, S17, 

S20, S6, S14, S9, S5, S7, S12, S16, S3, S21 and S19 exhibit small 
j

T and large 

j

j

T

T




values. 
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Figure 9: 
j

T against

j

j

T

T




plot for the 23 model input variables. 

We can conclude that all input variables contained in the first cluster (solid line) can be 

judged as relevant, while those belonging to the second cluster (dotted line) shall be neglected. 

Note that in the case at hand, the identification of the clusters turns out to be quite 

straightforward, thus allowing a qualitative and visual grouping of the 23 model input 

variables; in less straighforward cases, one may resort to  unsupervised clustering techniques 

(e.g., Spectral Clustering [52]) for identifying clusters in the structure of the input variables 

data. 

In summary, ensemble strategy ES3 identifies the following variables as important in 

determining the model output: 

1. S23: “Break section equivalent diameter”;

2. S8: “Surge line coefficient of friction”;

3. S13: “LPIS water mass flow rate”;

4. S4: “Rector core power peaking factor”;

5. S1: “Reactor core initial power”;

6. S10: “Accumulator initial pressure”;
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7. S2: “UO2 specific heat capacity”;

8. S18: “Cold leg initial temperature”;

9. S11: “Accumulator liquid initial temperature”;

10. S15: “Reactor vessel pressure”;

11. S22: “Reactor core power after SCRAM multiplier”.

Considering all the final aggregated ranking results, one can observe that all the ensemble 

strategies identify variable S23 as the most important among all the model inputs, i.e., the 

“Break section equivalent diameter”. This is physically reasonable for the accidental scenario 

under analysis: the rupture in question occurs in one of the primary coolant loops and the break 

cross-sectional area in the cold leg determines the decrease in coolant mass flow through the 

reactor core that, in turn, greatly affects the increase in the PCT.  

Moreover, all the ensemble strategies agree on variable S8 as the second most relevant 

input of the model, i.e., the coefficient of friction on the inside wall of the surge line: this affects 

the pressure losses that are exerted on the cold mass flow on its way from the pressurizer to the 

reactor. In the event of a LOCA, the unexpected drop in coolant flow results in a quick 

depressurization of the reactor vessel that is, in part, hindered through the discharge of water 

from the pressurizer to the reactor hot leg and, eventually, through the fuel rods in the attempt 

to reduce uncovering and overheating: a larger coefficient of friction may endanger the cooling 

capability of the system. 

Among the other input variables ranked as important by ES1 and ES2 it is worth 

mentioning S22, i.e., the reactor core power multiplier after the emergency shut-down: this 

influences the transient evolution as it defines the initial power that the ECCS has to remove 

from the core to prevent the fuel rods from melting. Finally, ES3 (but not ES1 and ES2) 

identifies as important S11, i.e., the temperature of the liquid stored in the accumulator tanks 

that are used as sinks of borated water to be injected in the reactor after the blowdown phase 

of the LOCA. 

6. COMPARISON WITH OTHER METHODS

6.1 Comparison with Input Saliency, Hellinger Distance and Kullback-Leibler 

Divergence Methods 

Figures 10, 11 and 12 show the computed values of j , jHD and jKLD based on 
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the original dataset for each j-th model input. All three of the SA methods assign to variable 

S23 the largest value of importance, but they show lack of agreement on the other inputs 

ranking: i) the Input Saliency method identifies S8 and S1 as the second and third most important 

variables, respectively, ii) the Hellinger Distance and Kullback-Leibler methods suggest S4 as 

the second most important variable and rank inputs S8 and S1 both in third position of the 

ranking. As j , jHD and jKLD are extremely low for the remaining inputs, any other 

variable could be judged as non-important. 

Figure 10: saliencies (Eq. 4) of all the 23 model input variables for the original set of data. 
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Figure 11: Hellinger Distances (Eq. 6) of all the 23 model input variables for the original set of data. 

Figure 12: Kullback-Leibler Divergences (Eq. 8) of all the 23 model input variables for the original set of data. 
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Summarizing, the results of the three metrics applied separately to the original set of data 

agree on identifying only three input variables as relevant (S23, S8, S1) and rank them in a 

different order. 

6.2 Comparison with EBSA 

If the Input Saliency, Hellinger Distance, Kullback-Leibler Divergence are directly 

computed on the original set of data as in Section 6.1, without bootstrapping, and the ensemble 

aggregated rankings by Borda and Schulze methods are applied, the results shown in Table 5 

are obtained. It can be seen that these rankings somewhat differ one another and very little can 

be inferred from them as overall conclusion. One certainty is that input variable S23 holds 

position 1 in both rankings and, thus, is the most relevant. But, after this the two rankings 

provide inconsistent information, due to the limited data they are built on, only 96RN  

LBLOCA trasients. 

Table 5: Borda and Schulze model input rankings derived from the original dataset, without bootstrapping. 

6.3 Comparison with Other Methods of Literature 

The findings reported in Section 5 have been further compared with SA results of the 

BEMUSE programme - phase V (Best Estimate Methods - Uncertainty and Sensitivity 

Evaluation) promoted by the Working Group on Accident Management and Analysis 

(WGAMA) of OECD [43]. This reference work is considered as a benchmark for validation of 

the proposed bootstrapped-ensemble-based methodology.  

The BEMUSE programme consisted in a comparative exercise of different BEPU (Best 

Estimate Plus Uncertainty) methods by fourteen different groups of participants. Everyone of 

them was requested to perform individual GSA and to assign a score equal to 3 to the most 

important input parameters and 0 to the negligible ones [43]. Table 6 shows the aggregated 

ranking scores associated to each non-negligible input. 
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Table 6: aggregated ranking score of the BEMUSE programme [39]. 

It can be seen that the set of input variables considered as important (aggregated ranking 

score > 0) is somewhat larger than that obtained in Section 5 by the three ensemble strategies: 

the BEMUSE programme results identify 13 relevant inputs, whereas ES1 recognizes 9 inputs 

as important, ES2 10 and ES3 11, respectively. Furthermore, the BEMUSE programme agrees 

with: 

1. ES1 on 6 input variables: S22, S4, S1, S13, S10, S2;

2. ES2 on 7 input variables: S22, S4, S1, S11, S13, S10, S2;

3. ES3 on 7 input variables: S22, S4, S1, S11, S13, S10, S2.

The bottom-up strategy (ES1) misses to identify variable S11, i.e., the “Accumulator liquid 

initial temperature”. The results of ES3 enable to also quantify the difference in importance 

between the inputs and the stability of each input ranking position (Section 3.3), thus, allowing 

a “stopping criterion” in identifying the relevant parameters of the model. The three major 

differences between the findings of the filter strategy (ES3) and those of BEMUSE are: 

1. ”Break section equivalent diameter” (S23) is not included in Table 6, probably due to

the straigthforward judgement of S23 as an important parameter in BEMUSE, thus

deemed as not necessary to be mentioned among the results of data manipulation;

2. “Surge line coefficient of friction” (S8) is the second most important input variable

according to ES1, ES2 and ES3, but it plays a minor role in BEMUSE. It is likely that

the LPIS mass flow rate and delay are respectively larger and smaller in the two cases.
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This would explain why the “Surge line coefficient of friction” (S8) is considered to be 

more important. Indeed, the resulting larger difference in pressure between the 

pressurizer and the reactor would amplify the influence of the coefficient of friction on 

the mass flow rate of water that is discharged in the hot legs of the vessel and, thus, on 

the temperature of the fuel cladding, which is refrigerated by that flow of water; 

3. ”UO2 thermal conductivity” (S3) is neglected in the rankings of ES1, ES2 and ES3,

while it is the most relevant for BEMUSE in Table 6. Nevertheless, the fuel thermal

characteristics are represented and taken into account by S2, i.e., “UO2 specific heat

capacity”, which is identified as a relevant input by all the ensemble strategies ES1,

ES2 and ES3.

Finally, it is worth mentioning that BEMUSE programme made use of a large amount of 

code runs (3000), for the identification of the important model variables, against the 96RN  

code runs of the three ensemble strategies: the proposed bootstrapped-EBSA strategies are, 

thus, capable to achieve effective results in much less computational time (Table 7).

Table 7: computational time employed by the three proposed ensemble strategies (i.e., bottom-up, all-out and 

filter). 

7. CONCLUSIONS

The identification of the variables that most affect the response of a BE-TH code is an 

important task in the performance of safety analyses of nuclear systems. 

In this paper we have presented an original framework that exploits a combination of 

EBSA and the Bootstrap method to address this issue when a very limited amount of code runs 

are available. 

This framework consists in bootstrapping the initial available dataset and building an 
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ensemble of sensitivity analysis metrics to arrive at an aggregated ranking. In this work, three 

strategies, bottom-up, all-out and filter, have been proposed, developed and compared for the 

ensemble aggregation of three SA metrics (Input Saliency, Hellinger Distance, and Kullback-

Leibler Divergence). The framework has been applied to 96RN  TRACE TH code 

simulations reproducing the response of the Zion 1 NPP undergoing a LBLOCA accident.

The results obtained have been compared with other SA methods of literature and the 

filter strategy (ES3) emerges as most effective. With respect to all the others, ES3 indeed: i) 

allows defining a “stopping criterion” to distinguish the important variables and those that can 

be neglected, ii) reproduces similarly satisfactory results as other much more computationally 

burdensome methods. 
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