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ABSTRACT 

The use of Echo State Networks (ESNs) for the prediction of the Remaining Useful Life (RUL) of 

industrial components, i.e. the time left before the equipment will stop fulfilling its functions, is attractive 

because of their capability of handling the system dynamic behavior, the measurement noise, and the 

stochasticity of the degradation process. In particular, in this paper we originally resort to an ensemble of 

ESNs, for enhancing the performances of individual ESNs and providing also an estimation of the 

uncertainty affecting the RUL prediction. The main methodological novelties in our use of ESNs for RUL 

prediction are: i) the use of the individual ESN memory capacity within the dynamic procedure for 

aggregating of the ESNs outcomes; ii) the use of an additional ESN for estimating the RUL uncertainty, 

within the Mean Variance Estimation (MVE) approach. With these novelties, the developed approach 

outperforms a static ensemble and a standard MVE approach for uncertainty estimation in tests performed 

on a synthetic and two industrial datasets.  
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 1. INTRODUCTION 

Prognostics is the engineering discipline concerned with the prediction of the time left before the 

equipment will no longer perform its intended function, i.e., its Remaining Useful Life (RUL). Such 

prediction is typically performed starting from the current health state of the equipment and taking into 

account its past history and future operation. The capability of RUL prediction enables the possibility of 

identifying equipment problems at an early stage and timely performing maintenance to anticipate failures 

(Pecht, 2008; Kan et al., 2015; Pipe, 2008). In this view, prognostics represents an important opportunity 

for industry, in terms of efficient and agile maintenance management, in principle providing the right part 

to the right place at the right time, with the necessary resources (Compare et al., 2017).  

Prognostics requires the availability of models capable of providing accurate RUL predictions and the 

associated uncertainty (Wang et al., 2012; Kramer et al., 2013). Prognostics models should take into 

account the different sources of uncertainty affecting RUL predictions (Li et al., 2005; Baraldi et al., 

2013a; Sankararaman et al., 2015; Vandawaker et al., 2015): (i) randomness in the equipment future 

degradation path, due to the intrinsic stochasticity of the degradation process and the unknown future 

operation and environmental conditions; (ii) inaccuracy of the prognostic model; (iii) measurement noise; 

and (iv) imperfect knowledge of the degradation initiation time. 

Prognostic methods are typically classified as model-based, data-driven and hybrid (Brotherton et al., 

2000). Model-based methods use an explicit mathematical model of the degradation process to predict the 

future evolution of the degradation state and, thus, the RUL of the system (Luo et al., 2008). In practice, 

even when the model of the degradation process is known, the RUL estimate may be difficult to obtain, 

since the degradation state of the system may not be directly observable and/or the measurements may be 

affected by noise and disturbances. In these cases, model-based estimation methods aim at inferring the 

dynamic degradation state and provide a reliable quantification of the estimation uncertainty on the basis 
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of the sequence of available noisy measurements (Doucet, 1998; Doucet et al., 2001; Anderson et al., 

1979; Kitagawa, 1987). 

On the other side, data-driven methods are used when an explicit model of the degradation process is not 

available, but sufficient historical data have been collected. These methods are based on statistical models 

that ‘learn’ trends from the data (Schwabacher, 2005). In this respect, Artificial Neural Networks (ANNs) 

are often used (Brotherton et al., 2000; Goebel et al., 2008; Peel, 2008); other examples are Autoregressive 

Moving Average techniques (Saha et al., 2009), Relevance Vector Machines (Goebel et al., 2008; Saha et 

al., 2009; Di Maio et al., 2012), fuzzy similarity-based methods (Zio et al., 2010). Finally, hybrid 

approaches combine physics-based models of the degradation process with the use of historical data 

collected from degrading components (Schwabacher, 2005). 

Among these data-driven approaches, ANNs have often been used for time series forecasting, due to their 

capability of approximating non-linear complex functions (Goebel et al., 2008). Feedforward ANNs have 

been used in prognostics for the prediction of rotating machineries (Mahamad et al., 2010) and Lithium-

ion batteries (Saxena et al., 2009) RUL. However, the use of feedforward ANNs in prognostics is limited 

by the fact that they are direct models characterized by oriented connections among neurons, without 

feedback and loop connections. Therefore, since the output of any layer does not affect the same layer, 

feedforward ANNs are not able to catch the system dynamic behaviors. An attempt to provide the system 

dynamics in input to feedforward ANNs has been proposed in (Yang et al., 2016), where the models 

receive in input the current and past signal values collected in a time window. The main limitations of this 

approach are the difficulty in identifying the proper lengths of the time window and the largely increased 

number of model inputs. 
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Local field NNs (Hopfield, 1982; Xu et al., 2004), whose dynamics is based on the local field states of 

their neurons, have also been exploited for time series predictions. Their local associative memory 

properties have been applied with success to the problem of predicting groundwater levels (Zhou et al., 

2016), but, at the best of the authors knowledge, they have not been applied to prognostic problems. 

Alternatively, Spiking NNs, based on the use of spiking neurons characterized by internal states which 

change with time, are attractive for inherent dynamic problems such as those typical of prognostics 

(Maass, 1997). General shortcomings of SNNs are the computational burden and the sensitivity of gradient 

descent-based learning algorithms to the SNN initial state (Maass, 1997). Although significant advances 

have recently been made, these issues have not been fully resolved (Ghosh-Dastidar and Adeli, 2009). 

An alternative solution to the problem of learning the system dynamic using ANNs is given by Recurrent 

Neural Networks (RNNs). Since the RNNs internal states are characterized by cyclic connections and 

feedbacks among neurons, they are capable of encapsulating into their neurons a nonlinear transformation 

of the input history (Funahashi et al., 1993; Kosmatopoulos et al., 1995; Cadini et al., 2007; Lukoševičius 

et al., 2009; Cheng et al., 2014; Lun et al., 2015). This provides memory properties to RNNs, enabling 

them to handle sequential tasks, such as time series prediction (Schmidhuber, 2015). RNNs have been 

applied to different prognostic problems, such as the prediction of machine deterioration evolution using 

vibration data (Tse et al., 1999) and of helicopter drivetrain system gearbox (Samantaet al., 2003) and 

turbofan engines (Heimes, 2008) RULs. However, the application of traditional RNNs in time series 

forecasting problems is limited by the difficulty of optimizing their numerous internal parameters and the 

significant computational effort of the training process (Lukoševičius et al., 2009). To overcome this 

problem, we exploit the use of Echo State Networks (ESNs), a relatively new type of RNNs. An ESN is a 

RNN trained by using a Reservoir Computing (RC) method based on the random generation of a RNN, 

called reservoir, which remains unchanged during the training phase and is passively excited by the input 
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patterns. Since the only weights of the ESN to be optimized are those of the connections among the 

reservoir internal states and the output, RNN training is computationally more efficient (Lukoševičius et 

al., 2009). 

Although ESNs have been shown to provide good generalization capabilities (Jaeger, 2001; Lukoševičius 

et al., 2009), few applications of ESNs for RUL prediction have been proposed. In (Morando et al., 2013), 

an ESN-based approach for the prediction of the RUL of industrial Fuel Cells has been developed. In 

(Fink et al., 2013), a hybrid approach combining ESN and Conditional Restricted Boltzmann Machines 

(CRBM) for predicting the occurrence of railway operation disruptions has been proposed. A possible 

reason for the limited use of ESNs in prognostics is the difficulty of setting of the ESN architecture 

parameters, which heavily influence the ESN modeling capability and typically requires a high level of 

expertise.   

Ensemble of models have been used in many application fields for prediction accuracy improvement and 

uncertainty quantification (Chiang et al., 2001; Polikar, 2006; Baraldi et al., 2011; Bonissone et al., 2011; 

Khosravi et al., 2011a, Liu et al., 2015). The basic idea is that the diverse models in the ensemble 

complement each other by leveraging their strengths and overcoming their drawbacks. Thus, the 

combination of the outcomes of the individual models in the ensemble improves the accuracy of the 

predictions compared to the performance of a single model (Brown et al., 2005; Bonissone et al., 2011; 

Hu et al., 2012; Baraldi et al., 2013b). Also, the distribution of the individual model outcomes provides 

information on the ensemble modeling error (Nix et al., 1994; Heskes et al., 1997; Zio, 2006; Khosravi et 

al., 2011a). Different methods, such as ANN (Baraldi et al., 2013c), Support Vector Machine (SVM) (Liu 

et al., 2006) and kernel learning (Liu et al., 2015), have been used with success to build the individual 

models. For example, it has been shown that the use of an ensemble of just-in-time kernel learning models 



6 

has allowed reducing the root mean square error of the prediction of the crystal size distribution in 

crystallization processes by 26% with respect to an individual model (Liu et al., 2015). 

With respect to improving accuracy in prognostics, an ensemble of feedforward Artificial Neural Network 

(ANN) has been embedded into a Particle Filter (PF) for the prediction of crack length evolution (Baraldi 

et al., 2013c) and an ensemble of data-driven regression models has been exploited for the RUL prediction 

of lithium-ion batteries (Xing et al., 2013).  

As far as the authors know, the only application of ensembles of RNNs in prognostics has been presented 

in (Hu et al., 2012), where the RUL predicted by various data-driven models, including a RNN, were 

aggregated considering three different methods, and the developed procedure was applied to RUL 

prediction of turbofan engines, power transformers, and cooling fans. RNN-based ensembles have also 

been used for time series forecasting in (Assaad et al., 2008), (Smith et al., 2014) and in (Yao et al., 2013), 

where the considered RNN models were ESN.  

In this work, we develop an ensemble of ESNs, whose model architecture is optimized by Multi-Objective 

Differential Evolution (DE) (Storn et al., 1997; Rigamonti et al., 2016). Differently from (Rigamonti et 

al., 2016), where the ESN architecture corresponding to the DE chromosome giving the most accurate 

RUL predictions is selected, a novelty of this work is the use of the ensemble of ESNs whose architectures 

are given by the chromosomes of the Pareto front reached at DE convergence. This allows increasing 

prediction accuracy and estimating prediction uncertainty (Bonissone et al., 2011). 

Once the individual models of the ensemble have been generated, it is also necessary to define a strategy 

for the aggregation of their outcomes. Aggregation methods are typically classified into static or local 

(Bonissone et al., 2011): a static ensemble assigns the same weight to each model, regardless of the input 

pattern under test, whereas a local ensemble assigns a dynamic weight to each model according to its local 
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performance measured considering input patterns similar to that under test, such as the nearest neighbors 

in a validation set. The accuracy of local ensembles has been reported to be more satisfactory than that of 

static ensembles in several applications (Ott et al., 2004; Su et al., 2009; Bonissone et al., 2011, Liu et al., 

2015). The challenge for the application of local aggregation methods to ensembles of recurrent models, 

such as ESNs, is the evaluation of the local performances of the individual models. Since the ESN output 

does not depend only from the current input pattern but also from the previous input pattern history, due 

to its memory property, the identification of similar patterns is not straightforward. For example, if a ESN 

has large memory, i.e., the current output depends on a large input history, the input time window to be 

considered for the identification of the test pattern nearest neighbors should be long. On the contrary, if a 

ESN has low memory, i.e., the current output depends on a short input history, the input time window to 

be considered should be short. This problem has been here overtaken by proposing a novel local 

aggregation method which associates to each ESN a specific input time window whose width is directly 

related to its memory property, computed according to the method proposed in (Jaeger, 2001b). According 

to the author best knowledge, the memory property has never been used for the aggregation of the 

ensemble individual model outcomes. 

The second challenge addressed in this work is the quantification of the uncertainty affecting the RUL 

predictions. This is typically accomplished by providing Prediction Intervals (PIs), i.e. intervals of values 

within which the actual RUL is expected to lie with a predetermined probability (Khosravi et al., 2011a; 

Khosravi et al., 2011b; Ak et al., 2013; Akusok et al., 2017). In (Heskes, 1997) and (Zio, 2006), a method 

to quantify the ensemble prediction uncertainty has been proposed, which distinguishes between the 

contributions due to the modeling error, estimated considering the distribution of the individual model 

outcomes, and to the other sources of uncertainty, estimated by a properly developed neural model. In 

(Nix et al., 1994) the Mean Variance Estimation (MVE) method has been proposed, which directly 
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estimates the output uncertainty using a feedforward ANN. Practical applications of PI estimations can be 

found in (Secchi et al., 2008), where the uncertainty of the estimation of safety parameters is quantified 

using bootstrapped ANNs; in (Rana et al., 2013), where the Lower Upper Bound Estimation method 

(Khosravi et al., 2011b) is applied to electricity load prediction for separately estimating the lower and the 

upper bound of the prediction interval; in (Baraldi et al., 2012), where the PIs of the predicted turbine 

blade creep growth are estimated; in (Ak et al., 2013), where a ANN is trained to provide the PIs of scale 

deposition rate in oil & gas equipment; in (Hosen et al., 2015), where an ANN ensemble procedure 

embedding the Lower Upper Bound Estimation approach and Genetic Algorithm is used to improve the 

quality of PIs by optimizing the aggregation weights; in (Ak et al., 2015), where an ANN is used for the 

uncertainty quantification of short-term wind speed prediction. For a comprehensive review of ANN-

based PIs, the interested reader can refer to (Khosravi et al., 2011a). 

The main difficulty to be tackled for quantifying the uncertainty affecting the RUL prediction provided 

by an ensemble of ESNs is the definition of the input of the model dedicated to the PI estimate, which 

should take into account the previous input history. The novelty of this work with respect to the estimation 

of the uncertainty associated to the RUL prediction is the use of an ESN model for the PIs estimation 

which, thanks to its memory property, allows automatically taking into account the memory of the 

ensemble. According to the authors best knowledge, RNNs have never been used within ensemble local 

aggregation methods nor for PIs estimation. 

The proposed approach is verified with respect to synthetic, experimental and industrial case studies. The 

experimental case study concerns the prediction of the RUL of a fleet of turbofan engines working under 

variable operating conditions, whose data are taken from the NASA Ames Prognostics CoE Data 

Repository (Saxena et al., 2008). The industrial case study concerns the RUL prediction of a set of 

industrial knives used for packaging applications. 
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The results obtained on the considered case studies in terms of prediction accuracy and uncertainty 

estimation are compared to those obtained by using a static ensemble and the feedforward ANN-MVE 

approach, respectively.   

The remaining part of the paper is organized as follows: Section 2 illustrates the work objectives and states 

the problem. Section 3 illustrates the developed method for RUL prediction and PI estimation, providing 

also a basic background on ESN and MVE. Section 4 shows the application of the proposed methodology 

to the two considered case studies and discusses the obtained results. Finally, in Section 5, some 

conclusions and remarks are drawn. 

 2. NOTATION AND WORK OBJECTIVES 

We assume the availability of R run-to-failure trajectories describing the degradation of R similar 

components. The generic r-th run-to-failure trajectory, r=1,..,R, consists of the time series of L signals 

collected through sensors from the degradation onset until the component failure time r

ft . For the r-th 

trajectory, the measurement of the L signals at the generic time t after the onset of the degradation process 

are indicated by: 

]....[ ,2,1, Lr
t

r
t

r
t

r
t x    xxx 


      r

ftt ,..,1          (1) 

The objective of this work is the development of a prognostic model for the prediction of the RUL of a 

degrading industrial component (Pan et al., 2016), i.e., time span between the current time t and the time 

at which the component will not be able to perform its intended function. Therefore, the model receives 

in input r
tx :1


, i.e. the measurements of the signals collected from the degradation onset until the present 

time t and provides in output an estimation tLUR ˆ of the component groundtruth RUL 
GT
tRUL . 

Furthermore, this work also aims at estimating the uncertainty of the RUL prediction in the form of a PI 
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[L; U], i.e. an interval of values within which the groundtruth RUL, 
GT
tRUL , is expected to lie with a 

predetermined probability (1-). 

 3. METHOD 

We have developed a method for RUL prediction and PI estimation based on an ensemble of ESNs. 

Section 3.1 describes the individual ensemble models and how diversity among the models is obtained; 

Section 3.2 illustrates the procedure used to aggregate the individual model outcomes and Section 3.3 

presents the method for the estimation of the RUL prediction uncertainty. 

3.1. Individual Models 

The individual models considered in this work are ESNs. The choice of this modeling technique is due to 

the capability of encapsulating the dynamic temporal behavior and preserving information about the input 

time history; this is obtained by using feedback connections between the neurons of a layer and those of 

the preceding layers (Moustapha et al., 2008). Thanks to this, ESNs have intrinsic memory properties, i.e., 

the system output depends on the observed input time history (Jaeger, 2001), which is a desirable 

characteristic for prognostic models of dynamic degradation processes. 

ESNs are a relatively new type of RNNs (Jaeger, 2001). The difference from the traditional RNNs lies in 

the conceptual separation between the reservoir, a randomly created RNN used as nonlinear temporal 

expansion function, and a linear recurrence-free readout for synthesizing the expansion and producing the 

desired output (Figure 1); notice that this latter is the only part of the ESN to be trained, which brings 

significant computational savings (Lukoševičius et al., 2009). The critical part of the ESN is the reservoir, 

which is suggested to be generated of large dimension N but with sparse connections among the internal 

neurons in order to produce a rich set of dynamics (Jaeger, 2001; Jaeger, 2002).  
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Figure 1. Basic architecture of the ESN (Peng et al., 2012). 

In this work, we consider a discrete-time ESN with L input units receiving at time t the current signal 

measurements ]....[ 21 L

tttt xxxx     


. The reservoir is characterized by N internal network units whose 

internal states are represented by the vector ]...[ 21 N

tttt uuuu     


 and one output unit producing the 

output signals yt=RULt. The activation of internal units ut at time t is obtained using:  

tu


 = f (Win
tx


+W 1tu


+Wback 1ty )                                 (2) 

Where f = (f1… fN) are the internal units activation functions, which are typically sigmoidal, Win= ( in

ijw ) 

is the N×L input weights matrix, W=( ijw ) is the N×N internal weights matrix, and Wback=( back

ijw ) is the 

N×P output feedback weights matrix, where P represents the output channels (in this case P=1, i.e. the 

component RUL). The input weights Win and the output feedback weights Wback are randomly generated 

from a uniform distribution. In order to deal with a specific task, both Win and Wback can be scaled: the 

scaling of Win (IS) and shifting of the input (IF) depend on how much nonlinearity of the processing unit 

the task needs. If the inputs are close to 0, the sigmoidal neurons tend to operate with activations close to 

0, where they are essentially linear, while inputs far from 0 tend to drive them more towards saturation, 

where they exhibit more nonlinearity; the same idea drives the choice of the output scaling (OS) and 
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shifting (OF), whose values affect the range of the trained Wout and might lead to an unstable condition. 

Finally, the scaling of Wback (OFB) is, in practice, limited by a threshold at which the ESN starts to exhibit 

an unstable behavior, i.e., the output feedback loop starts to amplify the output entering into a diverging 

generative mode (Jaeger, 2001b). The output provided by the ESN is: 

  1,,  ttt
out

outt yuxWfy


                      (3) 

where  P
outoutout fff   ...1  are the output units activation functions, which are typically linear, and                

Wout= ( out

ijw ) is the P×(L+N+P) output weights matrix. The ESN training aims at finding optimal values 

for Wout and is performed through a Least Squares linear regression step to minimize the error between the 

network output and a target signal on a set of training data. Once the ESN has been trained, it can be used 

to predict the output yt=RULt, applying Eqs. (2) and (3) to the input tx


.  

The ESNs are characterized by the echo state property (Jaeger, 2001), which states that the effect of a 

previous state tu


 and a previous input tx


on a future state jtu 


 should vanish gradually as time passes, and 

not persist or even get amplified. This property is practically assured if the reservoir weight matrix W is 

scaled so that its spectral radius (SR) (W) (i.e., the largest absolute eigenvalue of W) satisfies (W)< 1. 

For a detailed description of the ESN theory and application, the interested reader can refer to (Jaeger, 

2001; Jaeger, 2002; Lukoševičius et al., 2009) 

3.1.1. Multi-Objective Differential Evolution for ESN Architecture Optimization  

One main difficulty for developing a ESN model is the setting of the architecture parameters (Table 1); 

according to (Jaeger, 2002), this task requires a great level of expertise.  
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Table 1. ESN architecture parameters 
ESN Architecture Parameters 

Size of the reservoir (S) 

Spectral radius (SR) 

Connectivity (C) 

Input Scaling (IS) and shifting (IF) 

Output Scaling (OS) and shifting (OF) 

Output Feedback (OFB) 

 

We adopt a Multi-Objective Differential Evolution (MO-DE)-based approach for the optimization of the 

ESN architecture. MO-DE is a parallel, direct, genetic-algorithm-based search method which manipulates 

a population of NP vectors of decision variable values vi,G, i = 1, 2, . . ., NP, called chromosomes, through 

an iterative search for solutions optimal with respect to some objective functions (Storn et al., 1997). The 

initial population of chromosomes is sampled randomly from uniform probability distributions covering 

the decision variables range of values. Then, the DE approach is based on a three-step procedure: (i) 

mutation, which generates new chromosomes by adding the weighted difference between two 

chromosomes to a third chromosome, where each of these three chromosomes has been randomly selected; 

(ii) crossover, which mixes the mutated chromosome values with those of another predetermined 

chromosome, the target chromosome, to yield the so-called trial chromosome; and (iii) selection, which 

evaluates the objective functions of the trial chromosome and, if their values are better than those obtained 

with the target chromosome, keeps the trial chromosome in the population for the new generation in 

replacement of the target one. Details on DE can be found in (Storn et al., 1997). 

As objective functions to be maximized, in this work we consider the Cumulative Relative Accuracy 

(CRA) and Alpha-Lambda () accuracy prognostic metrics (Saxena et al., 2010). The CRA provides 

an average estimation of the RUL prediction relative error and, being a relative measure, tends to enlarge 
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errors made at the end of the system life; on the other side, the accuracy indicates how many times, 

on average, the RUL prediction falls within two relative confidence bounds, without providing any 

information about how much this prediction is close to the target value. Since these two metrics estimate 

the RUL accuracy from different points of view, they have been chosen due to their complementarity. A 

detailed description of the considered metrics can be found in Appendix A. 

3.1.2. Generation of an Ensemble of Diverse ESNs 

According to (Bonissone et al., 2011), the accuracy of the overall ensemble model can be improved by 

enhancing the diversity among the individual models of the ensemble. In this work, model diversity is 

obtained by using (i) ESNs characterized by different architectures and (ii) ESNs trained using different 

datasets. With respect to (i), we build the models of the ensemble with the architecture parameters encoded 

in the chromosomes of the Pareto-optimal solutions found by the MO-DE optimization. Indeed, as the 

optimization is done with respect to two objectives, the optimal solutions are characterized by different 

trade-offs among them, and this leads to different Pareto-optimal solutions. Our approach is similar to that 

employed in (Landassuri-Moreno et al., 2009), where an ensemble of ANNs has been developed by using 

the models contained in the last population of an Evolutionary Algorithm search, and in (Smith et al., 

2014), where the RNN models of the ensemble have been chosen among those belonging to the Pareto-

optimal solutions found by a multi-objective Evolutionary Algorithm. In our work, the diversity of the 

models is further enhanced by training each model on a different training set, randomly generated using 

the bagging algorithm (Breiman, 1996). 

3.2. A Local Approach for the Aggregation of the Individual ESNs Outcomes 

Static and local aggregations are the two most used procedures for the combination of the individual model 

outcomes into the ensemble aggregated outcome (Polikar, 2006, Bonissone et al., 2011). Static 

aggregation assigns a fixed weight to each model of the ensemble, independently from the input pattern. 
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The weights can be equal for all the models or can be proportional to a measure of the individual model 

performance properly estimated on a set of input-output data. On the contrary, local aggregation 

dynamically assigns a weight to each model according to its local performance typically evaluated 

considering a fraction of the available historical input-output patterns characterized by input signal values 

similar to that of the test pattern (Bonissone et al., 2011), (Liu et al., 2015). The idea behind local 

aggregation is that the individual model performance is typically different in the different parts of the 

input domain. 

In prognostics, local aggregation requires the computation of the local performance of the individual 

models on a set of RTest run-to-failure degradation trajectories not previously used for training. In Section 

3.2.1 the standard local aggregation procedure for non-recursive models is described, whereas in Section 

3.2.2 we describe the new procedure purposely developed in this work for recursive models. 

3.2.1. The local aggregation procedure 

Considering an ensemble constituted by M ESNs that provide the RUL predictions m

tLUR ˆ , m=1,..,M, in 

correspondence of the received input pattern tx


, the local aggregation is based on the following steps:  

1. Identify the input pattern Testr

Nearestx


 of each one of the RTest trajectories with the minimum Euclidean 

distance from tx


: 

 ),(min
,..,1

Test

Testr
f

Test r

jt
tj

r

Nearest xxdx


 


 ,     j=1,.., Testr

ft ;    rTest=1,..,RTest;           (4) 

2. Among the RTest trajectories, identify the K trajectories kTestr , , k=1,..,K, with the corresponding 

kTestr

Nearestx ,


 minimum Euclidean distances from tx


. 



16 

3. Evaluate the absolute error, 
k

mLE , k=1,..,K, m=1,..,M,  of each of the M models on the set of K 

identified input vectors kTestr

Nearestx ,


. 

    kr

Nearest

mkr

Nearest

GTk

m
TestTest xRULxRULLE

,, 
                     (5) 

where  kr

Nearest

GT TestxRUL
,

is the groundtruth RUL in correspondence of the k-th identified nearest 

kTestr

Nearestx ,


. 

4. Compute the Local Error of each model (LEm) as the sum of the K local errors: 





K

k

k

mm LELE
1

                 (6) 

5. Assign to each model a weight inversely proportional to its local error: 





M

j j

m
m

LE

LE

1

1

1

                             (7) 

6. With the previously computed weights (Eq. 7), compute the aggregated ensemble output tLUR ˆ

for the input pattern tx


as the weighed sum of each model output m

tLUR ˆ : 

m
t

M

m

mt LURLUR ˆˆ

1




                  (8) 

 

With respect to steps 4 and 5 of the procedure, notice that they are analogous to that proposed in 

(Bonissone et al., 2011) and (Liu et al., 2015). 
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3.2.2. Local Aggregation: Procedure for Ensemble of Recurrent Models 

The application of a local approach to an ensemble of recurrent models requires the definition of a proper 

distance measure between the observed input patterns and those of the test set (Step 1 of the procedure of 

Section 3.2.1). Since our ensemble is formed by recurrent models, for which the model output depends 

not only from the present input pattern but also from previous input patterns (Jaeger, 2001b), the distance 

cannot be computed by just taking into account the present input pattern as it is done when ensemble of 

feedforward ANNs are used. Therefore, we propose to compute the similarities considering signal time 

windows  tWtWt
Win
t xxxI

WinIWinI


,..,, 21   of the input signals tx


, whose width, WinI

W , depends from the 

memory property of the recurrent model. To this aim, we fix WinI
W equal to the model Memory Capacity 

(MC) measure (Jaeger, 2001b), which quantifies the memory span of the ESN by measuring its capability 

of encapsulating a certain input span within its internal states, being able to “remember” and recall it. 

Details about the Memory Capacity computation can be found in Appendix B.  

Considering the procedure in Section 3.2.1, the first step requires the identification of the input window 

of the generic rTest-th test trajectory, rTest=1,..,RTest, characterized by the minimum distance to the present 

input time window Win

tI


 (dashed box in Figure 2). This requires the computation of the Euclidean 

distances between Win

tI


 and all the time windows  
TestrTestrTestrTestr tMCtMCt

Win

t xxxI


,..,, 21   with                         

Testrt =MC,…, Testr

ft , that can be extracted from the rTest-th test trajectory (boxes delimited by the continuous 

lines in Figure 2). Since different ESN individual models are characterized by different memory capacities, 

the width of the similarity time windows associated to the different models will be different. 
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Figure 2. Example of input time window (dashed) and time windows of the test trajectories used for the similarity 

comparison (solid lines) 

3.3. Ensemble Uncertainty Estimation 

In this Section we present the method proposed for the estimation of the RUL PI, i.e. an interval defined 

by a lower and an upper bound     tt xUxL


 , , in which the unknown value of the groundtruth RUL at 

time t, 
GT

tRUL , is expected to lie with a predetermined confidence level (1-) (Geisser, 1993; Khosravi et 

al., 2011a; Khosravi et al., 2011b): 

       1Pr t

GT

tt xURULxL


                (9) 

Several methods, such as the Gaussian Process Regression (GPR) (Rasmussen et al., 2006), the Delta 

method (Hwang et al., 1997), the Bootstrap method (Heskes, 1997), the Lower Upper Bound Estimation 

method (Khosravi et al., 2011b) and the MVE method (Nix et al., 1994), have been presented in literature 

for PI estimation (Shrivastava et al., 2013; Quan et al., 2014; Wei et al., 2014; Wei et al., 2015; Zhang et 

al., 2016).  
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In particular, GPR (Rasmussen et al., 2006) is a probabilistic technique for non-linear, non-parametric 

regression that estimates the probability distribution of the output quantity based on Bayesian inference. 

It has been used in prognostics for the estimation of component future degradation, from which the 

component RUL can be estimated by referring to a failure threshold. in (Baraldi et al., 2015), GPR has 

been used for the estimation of the PIs of the predicted RUL of a condenser filter subject to clogging, 

without the need of any a priori hypothesis on the RUL distribution. the difficulty of this approach, 

however, is that it requires the setting of a failure threshold, which is often not feasible in practical 

prognostic problems. 

Delta, MVE and Bootstrap methods assume that the prediction error, i.e. t

GT

tt LURRUL ˆ  which will 

be referred to as prediction residual, is an uncertain variable distributed according to a zero-mean Gaussian 

distribution whose variance  tx
t

2

  has to be estimated. Since Delta method assumes that the variance of 

the prediction error is constant for all the input patterns, it is not apt for prognostic application where the 

prediction is expected to be more uncertain at the beginning of the component life than that at the end.      

In this work we consider the MVE method, because it can be easily embedded within a local ensemble 

framework. The fundamental assumption of this method is the dependence of the target variance 2

t
  from 

the input pattern tx


, i.e., the distribution of the prediction residuals depends from the region of the input 

domain to which the input tx


 belongs (Khosravi et al., 2011a). Within the MVE approach, the target 

residual variance is estimated by developing a dedicated feedforward ANN with an exponential activation 

function that provides a strictly positive variance estimation. Notice that, since the true residual variance 

is not a priori known, it is not possible to uniquely estimate the residual associated to a given input pattern, 

but only the variance of the associated Gaussian probability distribution. Thus, the feedforward ANN 
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dedicated to uncertainty estimation cannot be trained using error-based minimization techniques; rather, 

it is trained to maximize the likelihood function (Nix et al., 1994; Khosravi et al., 2011a): 

 
 

2

2

ˆ2

ˆ

2ˆ2

1
i

i
GT
i

i

LURRUL

i

GT

i exRULP 









              (10) 

where, given the input vector ix


, 2ˆ
i

  is the estimated residual variance (the feedforward ANN output),  

 2ˆ
i

GT

i LURRUL  represents the squared RUL prediction residuals, and 
GT

iRUL  is the prediction target 

value (i.e.,  the groundtruth RUL of the component).  

Considering the hypothesis that the residuals are normally distributed, the PI with a confidence level equal 

to (1-) is given by: 

 
tt

kLURkLUR tt   ˆˆ,ˆˆ                                 (11) 

where 
t

̂  is the residual distribution variance estimated in correspondence of the input pattern tx


 and k 

is the parameter representing the (/2) quantile of a Student t-distribution with a degree of freedom equal 

to the number of ensemble models M (Heskes, 1997; Khosravi et al., 2011a).  

Notice that the assumption that the prediction residual is locally distributed according to a zero-mean 

Gaussian distribution may not fit some practical applications, in which case the prediction intervals 

obtained could be affected by errors. In the case in which the empirical distribution of the prediction error, 

the MVE method can be adapted by properly modifying the likelihood function in (Eq. 10) and the k in 

(Eq. 11). For the case of exponential distributions, the interested reader can refer to (Wei et al., 2014; Wei 

et al., 2015).  
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The main issue to tackle for the computation of the PI provided by an ensemble of recursive models is 

that the input pattern tx


 influencing the RUL prediction tLUR ˆ and, thus, the corresponding residual t  is 

not clearly defined. In practice, at each time step t the model receives in input the current signal 

measurements tx


 which, thanks to the memory properties of the recurrent models, will continue to 

influence the future output predictions LUR ˆ , t . Therefore, for obtaining accurate estimations of the 

prediction uncertainty, it is necessary to consider the significant previous input history, which results in 

the need of identifying the input vector of the feedforward ANN-MVE. Since the ensemble is formed by 

several models, each one characterized by a different Memory Capacity, the problem cannot be tackled 

by considering a time window, as in the previous section.  

In order to overcome this problem, another novelty of this work is the use of another ESN for the estimate 

of the residuals variance, which will be referred to as ESN-MVE. Thanks to its memory property, the 

ESN-MVE will automatically take into account the significant previous input history, providing more 

reliable and accurate local PIs. Notice that the ESN-MVE output weights Wout are optimized to maximize 

the likelihood objective function in (Eq. 10). 

 4. CASE STUDY 

The developed prognostic approach for RUL prediction and uncertainty estimation has been verified 

considering both a synthetic and an experimental case study.  

4.1. Synthetic Case Study 

The synthetic case study mimics the degradation of a fleet of 250 similar components from pristine 

conditions until failure. The values of a health indicator, 
Hx , are measured with time interval t=1 in 
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arbitrary units, during each one of the 250 run-to-failure trajectories. The data have been simulated by 

using a 10 time steps Auto Regressive (AR) process (Akaike, 1969): 

 

H

tt

H

t xax 1:10


                (12) 

where 
H

tx  indicates the value of the health indicator at time t, a


 is a vector of 10 parameters randomly 

sampled from a uniform distribution in  17.0:12.0  for each degradation trajectory, 
H

ttx 1:10 


 represents the 

vector containing the values of the health indicator between (t-10) and (t-1), and represents a normally 

distributed zero-mean process noise, whose standard deviation has been set equal to =0.2 and which is 

sampled at each time step. Notice that the sampled vector a


 is kept fixed for a whole run-to-failure 

trajectory to represent the individual characteristics of the degrading component, whereas the random 

noise has been introduced to represent the stochasticity of the degradation process. Figure 3 shows the 

degradation indicator time evolution for the 250 simulated degradation trajectories.  

 
Figure 3. Evolution of the health indicator during the 250 simulated degradation trajectories 

Notice that although the different degradation trajectories are characterized by similar functional 

behaviors, they show very different grow rates, leading to quite spreaded values of the corresponding 

failure times (i.e., between t=46 and t=90). Since the degradation evolution at time t described by (Eq. 12) 
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depends not only from the degradation value at the previous time (t-1), but also from the past degradation 

history until time (t-10), it is not possible to properly predict the future evolution and the failure time 

relying only on the last observed value 
H

tx , but it is necessary to take into account also the previous history 

of 
Hx . 

The simulated dataset has been divided into the following subsets: 

 Training Set: 60 trajectories used to train the ESN models. 

 Test Set: 50 trajectories used for: i) optimizing the ESN architecture and the ensemble parameters, 

such as the number of ensemble models M and the number of trajectories in the bagging training 

set, ii) computing trajectory similarities within the local aggregation procedure and iii) training 

the ESN-MVE for PI estimation. 

 Validation Set: 140 trajectories used to evaluate the proposed method performance.  

4.1.1. Ensemble RUL Prediction 

According to Section 3.1.1, the ESN parameters have been automatically optimized by using a MO-DE 

algorithm with CRA (Eq. A.1 ) and the    accuracy (Eq. A.3) (Saxena et al., 2009) as objective 

functions to be maximized. The Differential Amplification Factor (F) and Crossover Rate (CR) used by 

the DE search have been set equal to 0.75 and 0.5, respectively, according to the guidelines in (Baraldi et 

al., 2016), (Gong et al., 2014) and (Ali et al., 2015) and trial and error experiments using the Test Set data. 

The DE population has been taken of 200 chromosomes and have evolved for 50 generations. 

According to the local aggregation procedure described in Section 3.2.1, we have selected M=25 ESNs 

corresponding to all the 7 solutions of the Pareto optimal front, all the 12 solutions of the second layer of 

the Pareto front and 6 solutions randomly chosen among the 16 solutions belonging to the third layer of 

the Pareto front. The diversity among the ensemble individual models has been further increased through 
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the use of the bagging procedure (Breiman, 1996), which resulted in training each selected ESN with 5 

randomly chosen training trajectories. The number of models M and the number of trajectories in the 

training set have been fixed by adopting a trial and error procedure on the test set trajectories. Figure 4  

shows the influence of the number M of ESN models on the ensemble    accuracy.  Notice that 

although the trend of the performance metric is monotonously increasing with the number of ensemble 

individual models, the performance improvement becomes small when we use more than 10 models. 

Therefore, to obtain a good compromise between ensemble prediction accuracy and computational time 

of the ESN ensemble, we have built an ensemble made by M=25 ENS models. 

 

Figure 4. Influence of the number of ESN models on the ensemble    accuracy  

 

To apply the proposed local aggregation approach described in Section 3.2.1, we have computed the 

Memory Capacity measures of the 25 generated ESNs and used them for defining the corresponding time 

window width m

I WinW , m=1,..,25, employed by the local aggregation technique according to the procedure 

described in Section 3.2.2. Table 2 compares the prognostic performance provided by the proposed local 

ensemble, that provided by an individual ESN model, selected among the optimized models by applying 

the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) (Chen et al., 1992; 
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Opricovic et al., 2004), and that provided by a static ensemble which assigns the same weight to each 

model, independently from the location of the training pattern. 

 

Table 2. Comparison of the prognostic performance provided by the Individual ESN, the Static and the proposed 

Local ESN ensemble 

RUL PREDICTION   
Individual ESN 

Model 

Static 

Ensemble 

Proposed Local 

Ensemble 

Cumulative Relative Accuracy 

(CRA) 
0.913 0.914 0.941 

Alpha-Lambda Accuracy (=20%) 0.939 0.943 0.981 

 

Notice that the proposed local aggregation procedure allows obtaining an improvement of 3% of the CRA 

metric and of 4% of the    accuracy with respect to both the individual ESN and the static ensemble. 

The influence of the similarity time window width on the ensemble performance has been further 

investigated by considering a new ensemble of ESNs all with the same architecture corresponding to that 

of the TOPSIS solution and, therefore, by the same Memory Capacity of 9.6. 

 
Figure 5. Ensemble performance in terms of CRA (left) and    accuracy (right) as a function of the similarity 

time window width. 

Figure 5 shows the performance of the ensemble obtained by changing the similarity time window width. 

The    accuracy (right) significantly increases until the similarity time window width reaches 10, i.e., 
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the closest integer to the ESN Memory Capacity value.  With respect to the CRA, for similarity time 

windows width larger than 10 the performance continues to slightly increase showing the beginning of an 

asymptotic behavior. Notice, however, that increasing the width of the similarity time window over the 

corresponding ESN’s Memory Capacity does not allow significantly improving the ensemble predictive 

performance, while it requires to wait a larger time interval before providing a RUL prediction. Therefore, 

the obtained results confirm that the choice of a similarity time window width equal to the memory 

capacity of the ESN allows properly representing the recurrence of the ESN within the local aggregation 

procedure. 

4.1.2. RUL Prediction Uncertainty: Prediction Intervals Estimation  

In this Section, we compare the approach proposed in Section 3.3 to properly estimate the RUL prediction 

uncertainty with a literature approach based on the use of a feedforward ANN within the MVE method. 

To this aim, we assess the quality of the estimated PIs by considering the coverage probability and the 

prediction interval width (Moura et. al., 2011). The coverage probability is evaluated by the Prediction 

Interval Coverage Probability (PICP) metric, which quantifies the probability that the estimated PI values 

contain the groundtruth RUL values, and is estimated by:  





targN

i

i

targ

c
N

PICP
1

1
       with        

    









otherwisec

xUxLRULifc

i

ii

GT

ii

      

       

0

,1



                  (13) 

The Normalized Mean PI Width (NMPIW) metric quantifies the average PI’s width normalized with 

respect to the target value (Khosravi et al., 2011a): 

    






targN

i
GT

i

ii

targ RUL

xLxU

N
NMPIW

1

1


              (14) 
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Since the objectives are to have the smallest PIs with the largest possible probabilities of containing the 

true component RULs, one should therefore aim at simultaneously maximizing the PICP and minimizing 

the NMPIW (Ak et al., 2013).   

The architecture of the ESN for RUL uncertainty estimation has been optimized using a DE algorithm 

with objective the maximization of the likelihood function defined in (Eq. 10). To this aim, the Test Set 

has been divided into two subsets used for ESN training and estimation of the objective function, 

respectively. It is worth noting that the ESN model for RUL uncertainty estimation is fed by only the 

current values of the prognostic signals (i.e., in this case, the current health indicator value 
H

tx ). With 

respect to the development of the MVE approach using a traditional feedforward ANN, we have 

considered time windows [
H

tx , 
H

tx 1 ,..,
H

ntx  ] of different width (n+1) as input to the feedforward ANN 

model developed for the RUL uncertainty estimation.  

 

Figure 6. PICP (left) and NMPIW (right) obtained by using feedforward ANN-MVE with different input window 

width 
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The results in Figure 6 show that the 90% PI confidence provides satisfactory coverage values 

independently from the time window width, whereas the narrowest PI is obtained by using a time window 

width of 10 time units. This confirms that the significant part of trajectory to be considered in order to 

provide accurate estimation of the current RUL and of the associated uncertainty is equal to 10, which 

corresponds to the grade of the AR process used to simulate the data. Satisfactory coverage values are 

also obtained when different PI confidence values are used (e.g. 80%, 95% and 98%).   

Table 3. PIs performance comparison between the proposed ESN-MVE approach and the traditional feedforward 

ANN-MVE approach with the time window width of 10 time units 

PREDICTION INTERVAL 

90% Confidence  

Feedforward 

ANN-MVE 
ESN-MVE 

PICP (Average Coverage) 0.91 0.93 

NMIPW (Average Relative Width) 0.44 0.42 

With respect to the comparison of the PI performance provided by the feedforward ANN-MVE and 

proposed ESN-MVE methods, Table 3 reports that the proposed approach allows improving the PIs 

coverage probability (PICP is increasing of 2%) while reducing the PIs width (NMPIW is decreasing of 

2%). 

 

Figure 7. Prediction of the RUL (solid line) and of the PIs provided by the feedforward ANN-MVE method 

(dashed line) and the ESN-MVE method (dot-dashed line) for 3 representative test trajectories 
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Figure 7 shows 3 examples of RUL prediction provided by the proposed local ensemble and the 

corresponding PIs provided by both the feedforward ANN-MVE (dashed line) and the ESN-MVE (dot-

dashed lines) approaches. Notice that when the difference between the predicted and the groundtruth RUL 

(dotted line) is relatively large (left and right Figures at the beginning of the component life), the ESN 

approach provides a PI larger than that provided by the feedforward ANN approach, whereas when the 

prediction residual is low (central Figure), the PI provided by the ESN is much narrower than that provided 

by the feedforward ANN.  

To further investigate the capability of the ESN-MVE method of properly representing the local RUL 

prediction uncertainty, we have investigated the capability of the method of properly estimating the 

variance 2

t
  of the residual ttt LURRUL ˆ  considering the three degradation trajectories reported in 

Figure 8, characterized by very different end-of-life time instants, i.e., tf=56, tf=73 and tf=77, at 7 time 

instants between t=20 and t=50. 

 
Figure 8. Health Indicator evolution of the three verification trajectories 

In this synthetic case study, the (true) residual variance 
2

 can be estimated by simulating 1000 

degradation trajectories using (Eq. 12), all starting from the same degradation value and with the same a


 

vector characterizing the degrading component. Then, the (true) residual variance 
2

 is approximated by 
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the variance of the residuals between the RUL prediction provided by the ensemble and the 1000 RULs 

of the simulated trajectories. 

Figure 9 shows the comparison among the real RUL prediction residuals variance (circle-solid lines) 

computed trough the described Monte Carlo simulation (Eq. 12), the variance estimated by the 

feedforward ANN-MVE approach (square-dashed lines) and that estimated by the proposed ESN-MVE 

approach (dot-dashed crossed lines).  

 
Figure 9. True RUL prediction residuals variance (solid line), feedforward ANN estimated variance (dashed line), 

ESN estimated variance (dot-dashed line) for the 3 verification trajectories at times (20:10:70) 

The results confirm that the local variance estimated by the ESN-MVE is always closer to the true RUL 

prediction residuals variance than that estimated by the feedforward ANN-MVE. 

4.2. CMAPPS Case Study 

The proposed methods for RUL prediction and PI estimation have been further verified considering data 

describing the degradation of a fleet of turbofan engines working under variable operating conditions.  

The dataset has been taken from the NASA Ames Prognostics CoE Data Repository (Saxena et al., 2008), 

and consists of 218 run-to-failure trajectories. Each trajectory is a 24-dimensional time series of different 

length, formed by 21 signals describing the component operation and 3 signals referring to the turbofan 

engines operating conditions (Altitude, Mach Number and Throttle Resolver Angle). These latter signals 
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define six different operating conditions which significantly influence the values of the other 21 measured 

signals. The run-to-failure trajectories have been generated using the Commercial Modular Aero-

Propulsion System Simulation (C-MAPSS) model that receives as input an evolving health indicator (i.e., 

a parameter representing the degradation level of an engine component) and provides as output the values 

of the signals (Frederick at al., 2007). Process noise has been added and percolated throughout the different 

stages of the simulation model and random measurement noise added to the output signals. This multi-

stage noise contamination process has produced complex noise characteristics similar to those often 

observed in real data, thus posing a realistic challenge to the RUL prediction. In this work, we have 

considered the data belonging to the training set of the 2008 PHM Challenge Dataset, which are 

characterized by the occurrence of a single failure mode caused by the degradation of the High Pressure 

Compressor (HPC) of the engine.  

The dataset, containing 218 run-to-failure trajectories, has been partitioned into the following 3 subsets: 

 Training Set: 60 trajectories used to train the ESN models. 

 Test Set: 50 trajectories used for: (i) optimizing the ESN architecture and the ensemble parameters, 

(ii) computing trajectory similarities within the local aggregation procedure, and (iii) training the 

ESN-MVE for PI estimation. 

 Validation Set: 108 trajectories used to evaluate the prognostic and the uncertainty estimation 

performances.  

A three-step preprocessing procedure, which includes (i) the normalization of the signals with respect to 

the operating conditions, (ii) the filtering of the normalized signals, and (iii) the identification of the most 

significant prognostic signals to be used as input of the prognostic model, has been applied to deal with 

the complexity of the data (Rigamonti et al., 2016). As an example, Figure 10 shows the time evolution 

of pre-processed and filtered signal 11 of a run-to-failure trajectory.  
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Figure 10. Pre-processed and filtered behavior of Signal 11 of a run-to-failure trajectory 

With step (iii), we have identified the 6 most significant prognostic signals to be used as input to the 

prognostic models. Finally, we have considered that only the accelerated degradation phase of the run-to-

failure trajectories has a strict physical relationship with the component RUL; therefore, we have applied 

the Z-Test (Daigle et al., 2010) to identify the elbow point of the considered trajectory, i.e. the time instant 

at which the accelerated degradation phase begins, and have considered only the data subsequent to the 

detected elbow point time instant. More details on the 3 steps preprocessing procedure and elbow point 

identification can be found in (Rigamonti et al., 2016). 

4.2.1. RUL Prediction 

An ensemble of 50 models has been developed by applying the procedure of Section 3. The MO-DE 

search has produced 200 Pareto solutions, each one corresponding to an ESN architecture characterized 

by a different trade-off between the two objectives (CRA and   accuracy) and different classes of 

dominance. The MO-DE search has required 50 hours of computation using an Intel Core i7 4700HQ 

CPU @ 2.40 GHz Personal Computer. Among the 200 identified solutions, we have selected the M=50 

ESN architectures with the most satisfactory trade-off between the objectives, i.e. the solutions of the first 

layers of the Pareto front (16 solutions of the Pareto optimal front, 23 belonging to the second layer of the 

Pareto front and 11 solutions randomly chosen among those belonging to the third layer of the Pareto 

front). Notice that the first source of diversity within the ensemble individual models is given by the 
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different ESN architectures provided by the MO-DE search. Figure 11 shows the diversity of the ensemble 

models in terms of the spread among the reservoirs dimension N, the spectral radii SR and the obtained 

Memory Capacities.  

 
Figure 11. Histogram of the reservoir dimensions (upper-left), spectral radii (upper-right) and memory capacities 

(bottom) of the ensemble individual models. 

Models diversity has been further enhanced by training each ESN model with 5 trajectories randomly 

sampled by the bagging procedure (Breiman, 1996) from the 60 trajectories of the training set.  

The developed local ensemble has been applied to the prediction of the RUL of the Validation Set 

trajectories, and the obtained performances have been compared to that provided by the best single ESN 

predictor (i.e., the TOPSIS solution), by a local ensemble of M=50 ESNs all characterized by the TOPSIS 

architecture and trained using different, randomly chosen, degradation trajectories according to the 
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bagging procedure (i.e., the TOPSIS local ensemble), and by the DE static ensemble, whose output is the 

average of the ensemble models outcomes. Being the ESN training procedure very fast, the computational 

time required for training and testing all the developed predictive models has been of only 200 seconds 

using an Intel Core i7 4700HQ CPU @ 2.40 GHz Personal Computer. 

The obtained results are reported in Table 4. 

Table 4. Comparison among the RUL prediction performance provided by the considered approaches 

 

 

 

Considering the large number of validation trajectories, RVal=108, we can conclude that the proposed ESN-

DE local ensemble provides a statistically significant improvement of the predictive performance:  CRA 

increases by 15% with respect to the best performing ESN model, by 11% with respect to the DE static 

ensemble and by 7% with respect to the TOPSIS local ensemble. Furthermore, the proposed ESN-DE 

local ensemble allows slightly increasing the alpha-lambda accuracy with respect to all the other 

considered approaches. 

To further investigate the performance of the proposed ESN-DE ensemble, we quantify its models 

diversity by resorting to the Ambiguity Decomposition index proposed in (Brown et al., 2005) which 

distinguishes between the accuracy and the diversity of the M ensemble individual models. 

The Individual Error Term quantifies the accuracy of the ensemble individual models with respect to the 

prediction target: 

 

RUL 

PREDICTION 
Best ESN 

TOPSIS Local  

Ensemble 

ESN-DE Static 

Ensemble 

ESN-DE Local 

Ensemble 

CRA 0.49 0.59 0.55 0.66  

  Accuracy  

(=20%) 
0.38 0.42 0.41 0.43 
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Individual Error Term:   
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whereas the Ambiguity Term measures how much the individual models predictions are spread around 

the predicted RUL: 

Ambiguity Term:   
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m
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2
                       (16) 

Table 5 compares the Individual Error and Ambiguity terms of the TOPSIS and of the DE-ESN ensembles. 

Table 5. Ambiguity Decomposition 

 
TOPSIS Local 

Ensemble 

ESN-DE Local 

Ensemble 

Individual Error Term 843 1234 

Ambiguity Term 347 815 

The results show that the more satisfactory performance of the ESN-DE ensemble is due to the larger 

diversity of its individual models (Ambiguity Term) which is able to compensate the larger errors of the 

ensemble individual models (Individual Error Term). Thus, the use of an ensemble made by ESNs with 

different architectures (ESN-DE ensemble) allows obtaining better performances by improving the models 

diversity. 

An example of the improvement brought by the proposed method with respect to the RUL prediction 

accuracy is shown in Figure 12 for a given validation trajectory, where the local RUL prediction (solid 

line) is compared to that provided by both the best ESN model (dotted line) and the static ensemble (dash-

dotted line). 
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Figure 12. Comparison between the RUL prediction provided by the best ESN individual model (dotted line), the 

DE-ESN static ensemble (dash-dotted line), the TOPSIS local ensemble (dashed line) and the proposed DE-ESN 

local ensemble (solid line)  
 

4.2.2. RUL Prediction Uncertainty: Prediction Interval Estimation 

The ESN-MVE approach has been applied by dividing the Test Set into two subsets: the first, formed by 

30 trajectories, has been used for training the ESN model; the second, formed by the remaining 20 

trajectories, has been used for evaluating the ESN performance within a DE-optimization scheme aiming 

at maximizing the likelihood function of (Eq. 10). The performance of the ESN-MVE approach has been 

compared to that of a feedforward ANN-MVE approach employing an optimal (by trial and error) time 

window width of 20. Table 6 reports the obtained PI performance in terms of PICP and NMPIW. 
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Table 6. Comparison among the PI estimation performance provided by MVE and ESN-based approach 

PREDICTION 

INTERVAL 

90% Confidence 

Feedforward 

ANN-MVE 
ESN-MVE 

PICP 0.70 0.67 

NMIPW 1.13 0.89 

The feedforward ANN-MVE approach is seen to provide a PICP that is 3% larger than that provided by the 

proposed ESN-MVE approach, and its PIs are on average 24% larger than those provided by our method 

(NMIPW=0.89). Similar coverage values are obtained when different PI confidence values are used (e.g. 

80%, 95% and 98%). Figure 13 shows the DE-ESN based local ensemble RUL prediction for one validation 

trajectory and the associated 90% PI confidence bounds provided by both the feedforward ANN-MVE and 

the ESN-MVE approaches. 

 
Figure 13. Local Ensemble RUL prediction with the corresponding MVE and ESN 90% confidence bounds 

Notice that the ESN-MVE PI width shows the expected behavior of being wider at the beginning of the 

component life, when there is more uncertainty on the failure time, and narrower at the end of life. With 

respect to the discrepancy between the expected coverage and that provided by the two methods (90% 
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against 67% for ANN-MVE and 70% for ESN-MVE), notice that one of the drawback of the MVE method 

is that it assumes that the ensemble precisely estimates the true expected value of the RUL, i.e. the 

expected value of the RUL over all the possible degradation trajectories characterized by the current input 

vector observations. This assumption can be violated in practice because of a number of reasons, including 

the existence of a bias in the ensemble individual model predictions due to omission of important input 

quantities affecting the component RUL (Khosravi et al., 2011a). In these cases, it has been reported that 

the MVE PI estimation tends to be narrower than the true one, and, thus, the obtained coverage values are 

low (Dybowski and Roberts, 2000). Another possible cause of the low coverage value is the fact that the 

RUL prediction residuals may not be distributed according to a Gaussian distribution, as shown in the 

examples reported in Figure 14. In such case, the estimation of the RUL percentiles obtained from the 

residual variance provided by the MVE approach may not be precise. 

 

Figure 14. Distribution of the local residuals in two different test trajectories 
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4.3. Industrial Case Study 

We have considered an industrial case study regarding the prediction of the RUL of cutting knives used 

in the packaging industry. The time evolution of a physical quantity indirectly related to the knife 

degradation has been periodically measured with knife in operation. Such signal measurements have been 

taken only a limited number of times during each single run-to-failure degradation trajectory (10 

trajectories in total). To deal with this type of data, we applied a pre-processing procedure followed by a 

feature extraction step, which has allowed the identification of two features significant for the prognostic 

task. More details on the dataset can be found in (Cannarile et al., 2017); Figure 15 shows the evolution 

of the two extracted features in the 10 available run-to-failure degradation trajectories. 

  
Figure 15. Evolution of the two identified degradation features in the 10 available run-to-failure degradation 

trajectories  

(left – Feature 1; right – Feature 2)  

A local ensemble of 50 ESNs, whose architectures have been optimized using the MO-DE approach, has 

been developed. Given the limited number, R=10, of run-to-failure trajectories, we have resorted to a 

leave-one-out procedure for evaluating the performance of the proposed method. Table 7 compares the 

performance of the proposed approach with those of the TOPSIS best ESN and of a static ensemble; the 

values reported in the Table are the averages over the 10 leave-one-out iterations of the method, each of 

them performed considering 5 training trajectories, 4 test trajectories and 1 validation trajectory. Notice 
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that the proposed approach outperforms the others in terms of both CRA and    accuracy. Figure 16 

shows an example of obtained RUL prediction. 

Table 7. Comparison of the RUL prediction performances provided by the considered approaches 

 

 

 
 

 

 
Figure 16. Local ensemble RUL prediction for the validation trajectory number 2 

With respect to the RUL PI estimation, notice that the considered case study is characterized by the 

availability of a very limited number of degradation trajectories, each one formed by very few patterns 

(between 8 and 17). Therefore, the available 4 test trajectories do not allow developing an accurate ESN 

for the estimation of the prediction residuals. 

 5. CONCLUSION 

In this work we have developed a local ensemble of ESNs for predicting the RUL of an industrial 

component and estimating the associated uncertainty. ESNs have been chosen due to their capability of 

catching the system dynamic behavior, combined with a very fast training procedure.  

RUL PREDICTION Best ESN 
ESN-DE Static 

Ensemble 

ESN-DE Local 

Ensemble 

CRA 0.58 0.60 0.70  

  Accuracy  

(=20%) 
0.41 0.32 0.44 
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From the methodological point of view, the main novelties of the proposed approach are: (i) a new local 

aggregation procedure for combining the individual models outputs, which takes into account the 

individual ESNs memory capacities; (ii) the use of an ESN within the MVE approach for estimating the 

RUL prediction uncertainty. 

From the practical point of view, a further novelty of the work is the application of an ensemble of ESNs, 

whose architectures have been optimized by using a MO-DE algorithm, which allows enhancing the 

diversity between the individual models of the prognostic ensemble. 

The proposed approach has been verified with reference to a synthetic case study, an experimental case 

study concerning the RUL prediction of turbofan engines, taken from the NASA Ames Prognostics CoE 

Data Repository, and an industrial case study regarding the RUL prediction of industrial knives used in 

the packaging industry. With respect to the RUL prediction accuracy, the proposed method has 

outperformed an individual ESN predictor model and a classical static ensemble; with respect to the 

estimation of the RUL prediction uncertainty, the performance of the proposed approach has outperformed 

that of a feedforward ANN-MVE approach in the synthetic and in the turbofan engine cases, which are 

characterized by the availability of a large number of run-to-failure trajectories, whereas the performance 

is not satisfactory in the considered industrial case, which is characterized by the availability of too few 

data for training the dedicated ESN. 

The satisfactory results obtained and the generality of the proposed approaches encourage the application 

to real industrial cases, aiming at improving maintenance for increasing the safety and the availability of 

the monitored systems while reducing the maintenance costs. 
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APPENDIX A: PROGNOSTIC METRICS 

The Cumulative Relative Accuracy is the normalized weighted sum of Relative Accuracy (RA) values, 

computed at specific t time instances.  









 pi

RA
p

CRA
1

                                          (A.1) 

where p is the set of all time instants at which a RUL prediction is made for a degradation trajectory (in 

this work, all the available prediction points), | p | is the cardinality of the set, and RA  is defined as: 

,
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where LUR ˆ  is the predicted RUL at time t  and RUL is the groundtruth for RUL at time t  Values of 

RA close to 1 indicate more accurate predictions. 

α-λ Accuracy: The    accuracy evaluates the average fraction of predictions which falls within 

specified α-bounds, which are expressed as percentage of the actual RULλ at t . It is defined as:  
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where 


 t is a binary value defined as: 
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In the latter equation, refers to the t  𝜖 p instant at which the prediction is performed and is the 

percentage value defining the acceptance confidence bounds, which in this work has been set equal to 

20%.  

 

 

 



43 

APPENDIX B: ESN MEMORY CAPACITY COMPUTATION 

The Memory Capacity (MC) metric aims at quantifying the limit of the memory span and the precision of 

the prediction at which a ESN is able to generate as its output the delayed version(t-k)of a single-channel 

input (t). In particular, in order to only focus on the memory property on the ESN, the single-channel 

input (t) has to be a sequence of i.i.d. values: by doing this, since there is no mathematical relation 

between the input and the delayed output, the only possibility for the network to provide as output the 

delayed input is that the network has been able to encapsulate the input into its internal states, i.e., it can 

remember it. 

According to this, with respect to a certain delay k, (Jaeger, 2001b) defined the k-delay Determination 

Coefficient, i.e., MCk as: 

 
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              (B.1) 

where (t-k) represents the input delayed by k time steps and yk(t) represents the provided output, trained 

to be equal to the input delayed by k time steps. Basically, the determination coefficient is the squared 

correlation coefficient of two signals. It ranges between 0 and 1 and represents the fraction of variance 

explainable in one signal by the other (Jaeger, 2001b). In order to have an indication about the overall 

memory of the ESN, (Jaeger, 2001b) defined also the overall STM capacity, which is a sum of the 

determination coefficients for all the possible time delay k: 
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For ease of comprehension, in Figure B.1 we reported the ESN realigned outputs with respect to to the 

same random single-channel input for different k values of the considered delay. It is possible to observe 

that the considered ESN is able to perfectly reproduce the input with a delay k=1; when the delay is k=5, 
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the network is able to reproduce the behavior of the input, but the prediction accuracy starts to decrease; 

when the delay is k=10, the ESN is able to partially remember the general trend of the input, but the 

prediction accuracy is very bad; finally, when the delay is k=15, it is possible to observe that the network 

is not able to reproduce the input anymore.  

 

Figure B.1. Example of STM computation for a ESN 

In Figure B.2 the behavior of the MCk is reported with respect to the k delay of the input to be recalled: it 

is possible to observe that the MCk value is equal to 1 when the delay is k=1, i.e. it reflects that the delayed 

input is reproduced perfectly; on the contrary, when the delay is k=15, i.e. when the network is not able 

anymore to reproduce the delayed input, the value of the corresponding MCk falls below 0.1, thus 

indicating very bad performance for that specific delay value. 
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Figure B.2. k-delay Determination Coefficient Vs k-Delay 

According to Section 3.2.1, and in particular with respect to the local aggregation procedure for the ESN-

based ensemble, since the Memory Capacity represents a direct measure of the memory property of a 

certain ESN, we consider that this measure can be indicative of the input time span on which the actual 

ESN output depends on. In particular, we assumed that the Memory Capacity of a ESN is representative 

of how much the output of the network depends on the previous input history, and thus we decided to 

consider a similarity time input window whose width (in time steps) was equal to the computed Memory 

Capacity. By doing this, if the ensemble is constituted by the same model which has been trained with 

different subsets of the training set, i.e., the typical bagging approach, (Breiman, 1996), it is possible to 

consider the same similarity time window width for every model; on the contrary, if the ensemble is 

constituted by different ESNs with different memory properties, for each model we should take into 

account the proper width for the similarity time window. For example, for the ESN referring to the results 

shown in Figure B.2, i.e. the TOPSIS solution of the synthetic case study of Section 4.1, the overall 

Memory Capacity is equal to 9.6: thus, according to our assumptions, the optimal width of the similarity 

time window to be considered is expected to be equal to 10. 
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