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Abstract
In [M. M. Kanté, V. Limouzy, A. Mary, and L. Nourine. On the enumeration of minimal dominating
sets and related notions. SIAM Journal on Discrete Mathematics, 28(4):1916–1929, 2014.] the
authors give an O(n + m) delay algorithm based on neighborhood inclusions for the enumeration
of minimal dominating sets in split and P6-free chordal graphs. In this paper, we investigate
generalizations of this technique to Pk-free chordal graphs for larger integers k. In particular, we
give O(n + m) and O(n3 ·m) delays algorithms in the classes of P7-free and P8-free chordal graphs.
As for Pk-free chordal graphs for k ≥ 9, we give evidence that such a technique is inefficient as a key
step of the algorithm, namely the irredundant extension problem, becomes NP-complete.
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1 Introduction

We consider the problem of enumerating all inclusion-wise minimal dominating sets of a given
graph, denoted by Dom-Enum. A dominating set in a graph G is a set of vertices D such that
every vertex of G is either in D or is adjacent to some vertex of D. It is said to be minimal
if it does not contain any dominating set as a proper subset. To this date, it is open whether
Dom-Enum admits an output-polynomial time algorithm. An enumeration algorithm is said
to be running in output-polynomial time if its running time is bounded by a polynomial in the
combined size of the input and the output. It is said to be running in incremental-polynomial
time if the running times between two consecutive outputs and after the last output are
bounded by a polynomial in the combined size of the input and already output solutions. If
the running times between two consecutive outputs and after the last output are bounded
by a polynomial in the size of the input alone, then the algorithm is said to be running
with polynomial delay; see [6, 10]. Recently, it has been proved in [12] that Dom-Enum
is equivalent to the problem of enumerating all inclusion-wise minimal transversals of a
hypergraph, denoted by Trans-Enum. The best known algorithm for this problem is due to
Fredman and Khachiyan [8] and runs in incremental quasi-polynomial time. Nevertheless,
several classes of graphs were shown to admit output-polynomial time algorithms. For
example, it has been shown that there exist output-polynomial time algorithms for log(n)-
degenerate graphs [7], triangle-free graphs [3], and recently for Kt-free for any fixed t ∈ N,
diamond-free and paw-free graphs [2]. Incremental-polynomial time algorithms are known
for chordal bipartite graphs [9] and graphs of bounded conformality [4]. Polynomial-delay
algorithms are known for degenerate graphs [7], line graphs [14], and chordal graphs [13].

oscar.defrain@uca.fr
lhouari.nourine@uca.fr


2 Neighborhood inclusions for minimal dominating sets enumeration

Linear-delay algorithms are known for permutation and interval graphs [11], graphs with
bounded clique width [5], split and P6-free chordal graphs [12].

In this paper, we investigate the enumeration of minimal dominating sets from their
intersection with redundant vertices, i.e., vertices that have an inclusion-wise non-minimal
neighborhood in the graph. This technique was first introduced in [12] for the enumeration of
minimal dominating sets in split and P6-free chordal graphs. We investigate generalizations of
this technique to Pk-free chordal graphs for larger integers k. In particular, we give O(n+m)
and O(n3 ·m) delays algorithms in the classes of P7-free and P8-free chordal graphs, where n
and m respectively denote the number of vertices and edges in the graph. Our algorithms rely
on two main properties. The first one is that the intersections of minimal dominating sets
with redundant vertices form an independence system and an accessible set system in P7-free
and P8-free chordal graphs. The second is that the connected components obtained after
removing redundant vertices in P7-free and P8-free chordal graphs are respectively P3-free
and P4-free chordal. As for Pk-free chordal graphs for k ≥ 9, we give evidence that such
a technique is inefficient as a key step of the algorithm, namely the irredundant extension
problem, becomes NP-complete.

The rest of the paper is organized as follows. In Section 2 we introduce definitions
and preliminary notions. In Section 3 we describe the general algorithm that we consider
throughout the paper and that can be decomposed into two distinct parts: redundant parts
enumeration, and irredundant extensions enumeration. In Section 4 we prove properties on
chordal graphs that depend on the size of a longest induced path in the graph. Section 5 is
devoted to the complexity analysis of the first part of the algorithm, while Section 6 consider
the second. We conclude in Section 7 by discussing the outlooks of such a technique.

2 Preliminaries

In this paper, all graphs are considered finite, undirected, simple, and loopless. For a graph
G = (V (G), E(G)), V (G) is its set of vertices and E(G) ⊆ {{x, y} | x, y ∈ V (G), x 6= y} is
its set of edges. Edges may be denoted by xy (or yx) instead of {x, y}. Two vertices x, y of G
are called adjacent if xy ∈ E(G). A clique in a graph G is a set of pairwise adjacent vertices.
An independent set in a graph G is a set of pairwise non-adjacent vertices. The subgraph of
G induced by X ⊆ V (G), denoted by G[X], is the graph (X,E ∩ {{x, y} | x, y ∈ X, x 6= y});
G − X is the graph G[V (G) \ X]. An induced path (resp. induced cycle) in G is a path
(resp. cycle) that is an induced subgraph of G. We denote by Pk an induced path on k

vertices. We call hole (or chordless cycle) an induced cycle of size at least four. A graph G is
split if its vertex set can be partitioned into a clique and an independent set. It is chordal if
it has no chordless cycle. It is called Pk-free if it has no induced path on k vertices.

Let G be a graph and x ∈ V (G) be a vertex of G. The neighborhood of x is the set
N(x) = {y ∈ V (G) | xy ∈ E(G)}. The closed neighborhood of x is the set N [x] = N(x)∪{x}.
For a subset X ⊆ V (G) we define N [X] =

⋃
x∈X N [x] and N(X) = N [X] \X. In case of

ambiguity or when several graphs are considered, we shall note NG[x] the neighborhood of
x in G. The degree of x is defined by deg(x) = |N(x)|. We say that x is complete to X if
X ⊆ N(x), and that it is partially adjacent to X if it is adjacent to an element of X but not
complete to X. Let D,X ⊆ V (G) be two subsets of vertices of G. We say that D dominates
X if X ⊆ N [D]. It is inclusion-wise minimal if X 6⊆ N [D \ {x}] for any x ∈ D. We say
that D dominates x if it dominates {x}. A (minimal) dominating set of G is a (minimal)
dominating set of V (G). The set of all minimal dominating sets of G is denoted by D(G),
and the problem of enumerating D(G) given G by Dom-Enum. Let x be a vertex of D.
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A private neighbor of x w.r.t. D in G is a vertex u of G that is only adjacent to x in D, that
is, such that N [u] ∩D = {x}. Note that x can be its own private neighbor (in that case
we say that x is self-private). The set of all private neighbors of x w.r.t. D is denoted by
Priv(D,x). It is well known that a subset D ⊆ V (G) is a minimal dominating set of G if
and only if it dominates G, and for every x ∈ D, Priv(D,x) 6= ∅.

Let x be a vertex of G. We say that x is irredundant if it is minimal with respect to
neighborhood inclusion. In case of equality between minimal neighborhoods, exactly one
vertex is considered as irredundant. We say that x is redundant if it is not irredundant.
Then to every redundant vertex y corresponds at least one irredundant vertex x such that
N [x] ⊆ N [y], and no vertex y is such that N [y] ⊂ N [x] whenever x is irredundant. The
set of irredundant vertices of G is denoted by IR(G), and the set of redundant vertices by
RN(G). We call irredundant component a connected component of G[IR(G)]. For a subset
D of vertices of G we note DRN = D ∩RN(G) its intersection with redundant vertices, and
DIR = D ∩ IR(G) its intersection with irredundant vertices. Then DRN and DIR form a
bipartition of D. For a subset D and a vertex x ∈ D, we call irredundant private neighbors of
x w.r.t. D the elements of the set PrivIR(D,x) = Priv(D,x) ∩ IR(G). In the remaining of
the paper we shall note DRN (G) = {DRN | D ∈ D(G)} and refer to this set as the redundant
parts of minimal dominating sets of G. We call irredundant extension of A ∈ DRN (G) a set
I ⊆ IR(G) such that A ∪ I ∈ D(G), and note DIR(A) the set of all such sets. Observe that
|DRN (G)| ≤ |D(G)| and that this inequality might be sharp (take a star graph), or strict
(take a path on six vertices). We end the preliminaries stating general properties that will be
used throughout the paper.

I Proposition 1. Let G be a graph. Then IR(G) dominates G, hence ∅ ∈ DRN (G).

Proof. Take any vertex x of G. Either it is irredundant, or not. If it is then it is dominated
by IR(G). If not then by definition there exists y ∈ IR(G) such that N [y] ⊆ N [x], and it is
dominated by IR(G). Consequently, IR(G) dominates G and thus there exists D ⊆ IR(G)
such that D ∈ D(G) and DRN = ∅. Hence ∅ ∈ DRN (G). J

I Proposition 2. Let G be a graph and D ⊆ V (G). Then D is a minimal dominating set of
G if and only if it dominates IR(G) and PrivIR(D,x) 6= ∅ for every x ∈ D.

Proof. We prove the first implication. Let D ∈ D(G). Clearly D dominates IR(G). Let
us assume for contradiction that PrivIR(D,x) = ∅ for some x ∈ D. We first exclude the
case where x is self-private. If x is self-private then it is redundant and it has a neighbor
y ∈ IR(G) such that N [y] ⊆ N [x]. Since by hypothesis PrivIR(D,x) = ∅, y is dominated by
some z ∈ D, x 6= z. However, since N [y] ⊆ N [x] then zx ∈ E(G) and x is not self-private, a
contradiction. Consequently x has a neighbor u ∈ D, and a private neighbor v in RN(G).
Let w ∈ IR(G) such that N [w] ⊆ N [v]. Such a vertex exists since v is redundant. Two cases
arise depending on whether w = x or w 6= x. In the first case we conclude that uv ∈ E(G),
hence that v is not a private neighbor of x, a contradiction. In the other case, observe that
since w is irredundant it cannot be a private neighbor of x (if ever it was adjacent to x).
Hence it must be dominated by some z ∈ D, z 6= x (possibly z = w). Since N [w] ⊆ N [v], z
is adjacent to v, hence v is not a private neighbor of x, a contradiction.

As for the other implication, observe that if an irredundant neighborhood N [x], x ∈ IR(G)
is intersected by some set D ⊆ V (G), then every neighborhood N [y] such that N [x] ⊆ N [y]
is also intersected by D. Now if D dominates IR(G), then it intersects every irredundant
neighborhood. As for every y ∈ RN(G) there exists x ∈ IR(G) such that N [x] ⊆ N [y] we
conclude that D dominates G whenever it dominates IR(G). Minimality follows from the
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inclusion PrivIR(D,x) ⊆ Priv(D,x), recalling that a dominating set D is minimal if and
only if Priv(D,x) 6= ∅ for every x ∈ D. J

A corollary of Proposition 2 is the following, observing for A ⊆ RN(G) and I ⊆ IR(G)
that if I dominates IR(G) \ N(A) but not PrivIR(A, a) for any a ∈ A, then I can be
arbitrarily reduced into a minimal such set.

I Corollary 3. Let G be a graph and A ⊆ RN(G). Then A ∈ DRN (G) if and only if every
a ∈ A has an irredundant private neighbor, and there exists I ⊆ IR(G) such that I dominates
IR(G) \N(A) but not PrivIR(A, x) 6= ∅ for any a ∈ A. Furthermore, I ∈ DIR(A) whenever
it is minimal with this property.

3 The algorithm

We describe a general algorithm enumerating the minimal dominating sets of a graph from
their intersection with redundant vertices. See Algorithm 1. The first step is the enumeration
of such intersections, Line 2. The second step is the enumeration of their irredundant
extensions, Line 3. The correctness of the algorithm follows from the bipartition induced by
RN(G) and IR(G) in G.

The next sections are devoted to the complexity analysis of these two steps in the restricted
case of P7-free and P8-free chordal graphs.

Algorithm 1: An algorithm enumerating the minimal dominating sets of a graph G
from their intersection with the set RN(G) of redundant vertices of G.

1 Procedure DOM(G)
2 for all A ⊆ RN(G) such that A ∈ DRN (G) do
3 for all I ⊆ IR(G) such that I ∈ DIR(A) do
4 output A ∪ I;
5 end
6 end

4 Properties on Pk-free chordal graphs

We give structural properties on redundant vertices and irredundant components of G
whenever G is chordal, and depending on the size of a longest induced path in G.

I Proposition 4. Let G be a graph and u, v be two adjacent irredundant vertices of G. Then
there exist u′ ∈ N [u] \N [v], u′′ ∈ N [u′] \N [u], v′ ∈ N [v] \N [u] and v′′ ∈ N [v′] \N [v]. In
particular if G is chordal, then u′′u′uvv′v′′ induces a P6.

Proof. Let us assume for contradiction that no such u′ exists. Then either N [u] ⊂ N [v],
or N [u] = N [v]. In the first case v is redundant, a contradiction. In the other case only
one of u and v should be irredundant by definition, a contradiction. Hence u′ exists. By
symmetry, v′ exists. Let us now assume for contradiction that no such u′′ exists. Then either
N [u′] ⊂ N [u], or N [u′] = N [u]. In the first case u is redundant, a contradiction. In the other
case vu′ ∈ E(G), a contradiction. Hence u′′ exists. By symmetry, v′′ exists. Now if G is
chordal, u′′u′uvv′v′ induces a P6. J
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Figure 1 The situation of Proposition 5, case one. Circles denote private neighborhoods.
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An accessible set system is a family of sets in which every non-empty set X contains an
element x such that X \ {x} belongs to the family. If x is of largest index in X such that
X \ {x} belongs to the family, then it is called maximal generator of X. An independence
system is a family of sets such that for every non-empty set X of the family, and every
element x ∈ X, X \ {x} belongs to the family. In particular, every independence system is
an accessible set system. Note that the maximal generator of X in that case is always the
vertex of maximal index in X. Accessible set systems and independence systems play an
important role in the design of efficient enumeration algorithms [1,12]. The next theorem
suggests that the enumeration of DRN (G) is tractable in P7-free and P8-free chordal graphs.

I Proposition 5. Let G be a chordal graph. Then DRN (G) is an independence system
whenever G is P7-free, and it is an accessible set system whenever G is P8-free.

Proof. LetG be a chordal graph. We first assume thatDRN (G) is not an independence system
to exhibit a P7, and then assume that DRN (G) is not an accessible system to exhibit a P8. So
suppose thatDRN (G) is not an independence system and let A ∈ DRN (G) and a ∈ A such that
A \ {a} 6∈ DRN (G). By Proposition 1, |A| ≥ 2. Let I ∈ DIR(A). Clearly PrivIR(A, a) 6⊆ I.
Let A′ = A\{a} and I ′ = I∪PrivIR(A, a). Then I ′ dominates IR(G)\N(A′). By Corollary 3
there must be some b ∈ A′ such that I ′ dominates PrivIR(A′, b), hence PrivIR(A, b) as
PrivIR(A, b) ⊆ PrivIR(A′, b). Let b be one such vertex. We put U = PrivIR(A, a) \N [I]
and V = PrivIR(A, b) \ N [I]. Then neither of U nor V is empty, U ∩ V = ∅, and U

dominates V . Let u ∈ U and v ∈ V be such that uv ∈ E(G) (such u and v exist since U
dominates V ). Since u and v are private neighbors of a and b, av, bu 6∈ E(G). Since G is
chordal, ab 6∈ E(G). Then auvb induces a P4. By Proposition 4 since u, v are irredundant,
there exists u′′ and u′ such that u′′u′uvb induces a P5. Consider an irredundant vertex w
such that N [w] ⊆ N [b]. Such a vertex exists since b is redundant. Two cases arise depending
on whether w ∈ PrivIR(A, b) or w 6∈ PrivIR(A, b).

Let us consider the case w ∈ PrivIR(A, b). It is illustrated in Figure 1. Since U dominates
V and N [w] ⊆ N [b] we know that w 6∈ V (as otherwise b is adjacent to a vertex of U , i.e.,
a private neighbor of a). Hence w ∈ PrivIR(A, b) ∩N [I]. Note that w 6∈ I as N [w] ⊆ N [b]
(w cannot be part of an irredundant extension if it has no private neighbors). Accordingly,
consider x ∈ I such that wx ∈ E(G). Since N [w] ⊆ N [b], xb ∈ E(G). Since v 6∈ N [I],
xv 6∈ E(G). Now, since x belongs to I it has a private neighbor y ∈ N [x] \N [w]. As G is
chordal u′′u′uvbxxy induces a P7, concluding the first part of the proposition in this case.
Let us now assume that DRN (G) is not an accessible set system, that is A \ {c} 6∈ DRN (G)
for any c ∈ A. Observe that if replacing x by PrivIR(A′ ∪ I ′, x) in I ′ for all x ∈ N(w) ∩ I ′
does not dominate PrivIR(A′, c) for any c ∈ A′ \ {b}, then w becomes a private neighbor
of b, and A \ {a} ∈ DRN (G), a contradiction. Consequently there must exist x ∈ I such that
wx ∈ E(G) and y ∈ PrivIR(A′ ∪ I ′, x), c ∈ A and z ∈ PrivIR(A′, c) such that yz ∈ E(G).
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Also yb, zx, cy 6∈ E(G) as y and z are private neighbors of x and c. Since G is chordal,
u′′u′uvbxyzc induces P9, concluding the second part of the proposition in this case.

Let us now consider the other case w 6∈ PrivIR(A, b). Then there must exist c ∈ A \ {b}
such that wc ∈ E(G). Since N [w] ⊆ N [b], we have bc ∈ E(G). Consequently a 6= c.
Furthermore since v is a private neighbor of b, cv 6∈ E(G). Since c ∈ A it has a private
neighbor z, and bz 6∈ E(G). As G is chordal u′′u′uvbcz induces a P7, concluding the first
part of the proposition in this second case. Let us now assume that DRN (G) is not an
accessible set system. Then A \ {c} 6∈ DRN (G). Observe that if every private neighbor z of c
is such that N [z] ⊆ N [c], then replacing c by every such private neighbors in A ∪ I yields a
minimal dominating set D of G such that DRN = A \ {c}, a contradiction. Hence there exist
z ∈ N [c] \N [b] and z′ ∈ N [z] \N [c]. As G is chordal u′′u′uvbczz′ induces a P8, concluding
the second part of the proposition in this case, and the proof. J

I Proposition 6. Let G be a chordal graph and C be an irredundant component of G. Then
the graph G[C] is Pk−4-free chordal whenever G is Pk-free, k ≥ 6.

Proof. We proceed by contradiction. Let G be a Pk-free graph, k ≥ 6 and C be an
irredundant component of G. Suppose that G[C] is not Pk−4-free, and let Puv be an induced
path of length at least k− 4 in G[C] with endpoints u and v. Let u∗ and v∗ be the neighbors
of u and v in Puv (possibly u∗ = v and v∗ = u, or u∗ = v∗). By Proposition 4 since u, u∗ and
v, v∗ are irredundant and adjacent, there exist u′′, u′, v′, v′′ such that u′′u′Puvv

′v′′ induces a
path of length at least k in G, a contradiction. J

I Proposition 7. Let G be a chordal graph, a ∈ RN(G), C be an irredundant component
of G, and u, v be two vertices in C ∩N(a). Then N(a) contains every induced path from u

to v. In particular G[N(a) ∩ C] is connected.

Proof. Clearly the proposition holds if uv ∈ E(G). Let u, v be two non-adjacent vertices in
C ∩N(a). Let Puv be an induced path from u to v in G[C]. One such path exists since G[C]
is connected. Let us assume for contradiction that there exists x ∈ Puv such that x 6∈ N(a).
Consider u∗ and v∗ to be the first elements of Puv respectively in the way from x to u, and
from x to v, such that u∗, v∗ ∈ N(a) (possibly u∗ = u and v∗ = v). Consider the path Pu∗v∗

obtained from Puv and shortened at endpoints u∗ and v∗. Then Pu∗v∗ is an induced path
with only its endpoints adjacent to a, inducing a hole in G, a contradiction. J

I Proposition 8. Let G be a chordal graph and a ∈ RN(G). Then a is partially adjacent to
at most one irredundant component of G (it is either disconnected or complete to all other
irredundant components of G) whenever G is P9-free chordal.

Proof. We proceed by contradiction. Let us assume that G is P9-free chordal and that there
exist two irredundant components C1, C2 such that C1 ∩ N(a) 6= ∅, C2 ∩ N(a) 6= ∅, and
C1, C2 6⊆ N(a). Let u ∈ C1 ∩ N(a), u′ ∈ C1 \ N(a), v ∈ C2 ∩ N(a) and v′ ∈ C2 \ N(a).
Consider a shortest path Pu′u in G[C1] from u′ to u, and one Pvv′ in G[C2] from v to v′.
These paths are induced. Let u∗ and v∗ be the neighbors of u′ and v′ in Pu′u and Pvv′ ,
respectively (possibly u∗ = u and v∗ = v). By Proposition 4 since u′, u∗ and v′, v∗ are
irredundant and adjacent, there exist u′′, u′′′, v′′ and v′′′ such that u′′′u′′u′u∗ and v∗v′v′′v′′′
induce paths of length four in G. Consider x the last vertex in Pu′u starting from u which is
adjacent to a, and y the last vertex in Pvv′ starting from v which is adjacent to a (possibly
x = u∗ and y = v∗ but x 6= u′, y 6= v′). Consider the paths Pu′x and Pyv′ obtained from Pu′u

and Pvv′ and shortened at endpoints x and y. Then u′′′u′′Pu′xaPyv′v
′′v′′′ induces a path of

length at least nine in G, a contradiction. J
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In the following, for a set A ⊆ RN(G) we consider the following bipartition. The part
B(A) contains the elements of A having an irredundant private neighbor in some irredundant
component C such that C ⊆ N(A). Observe that no irredundant extension of A can steal
these private neighbors, as only IR(G) \ N(A) has to be dominated by such extensions,
and C is disconneced from IR(G) \N(A). The part R(A) contains all other elements of A.
We call red and blue vertices the elements of R(A) and B(A), respectively. If Ci is an
irredundant component of G, then Ri(A) denote the red elements of A having at least one
private neighbor in Ci. Recall that by Proposition 8, the elements of A are partially adjacent
to at most one irredundant component whenever G is P9-free chordal. In particular in such
class, the red elements have their private neighbors in at most one irredundant component.
The next theorem follows.

I Theorem 9. Let G be a P9-free chordal graph, A ∈ DRN (G) and I ⊆ IR(G). Then I

is an irredundant extension of A if and only if for every irredundant component Ci of G,
Di = I ∩ Ci is minimal such that

Di dominates Ci \N(A), but
Di does not dominate PrivIR(A, x) for any x ∈ Ri(A).

We immediately derive the next two corollaries, observing for the first one that a minimal
set I as described in Theorem 9 can be greedily obtained from a non-minimal such set,
and for the second that by Proposition 6, every irredundant component C of G is a clique
whenever G is P7-free chordal.

I Corollary 10. Let G be a P9-free chordal graph and A ⊆ RN(G). Then A ∈ DRN (G) if
and only if every a ∈ A has an irredundant private neighbor, and, for every irredundant
component Ci of G there exists Di ⊆ Ci such that

Di dominates Ci \N(A), but
Di does not dominate PrivIR(A, x) for any x ∈ Ri(A).

I Corollary 11. Let G be a P7-free chordal graph. Then DRN (G) = {A ⊆ RN(G) | every
x ∈ A has a private neighbor in some irredundant component C ⊆ N(A), i.e., R(A) = ∅}.

5 Enumerating the redundant part of minimal dominating sets

This section is devoted to the complexity analysis of Line 2 of Algorithm 1. More precisely,
we show that enumerating the redundant part of minimal dominating sets can be done with
linear and polynomial delays in P7-free and P8-free chordal graphs.

Recall that by Proposition 5, the set DRN (G) is an accessible set system whenever G is
P8-free chordal. Hence, it is sufficient to be able to decide whether (i) a given set A ⊆ RN(G)
belongs to DRN (G), and (ii) a given vertex c of A ∈ DRN is a maximal generator of A, in
order to get an algorithm enumerating DRN (G) without repetitions in such class. We call
irredundant extension problem the first decision problem (denoted by IEP), and maximal
generator problem the second (denoted by MGP). The algorithm proceeds as follows. See
Algorithm 2. Given A ∈ DRN (G) (starting with A = ∅ according to Proposition 1) it checks
for every candidate vertex c ∈ RN(G)\A whether A∪{c} belongs to DRN (G), whether c is a
maximal generator of A∪{c}, and if so, makes a recursive call on such a set. The correctness
of the algorithm follows from the fact that DRN (G) being an accessible set system, every
set in DRN (G) is accessible by such a procedure. In particular, every set A received by the
algorithm belongs to DRN (G). Repetitions are avoided by the choice of c.
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Algorithm 2: An algorithm enumerating the set DRN (G) of a P8-free chordal graph G,
relying on the fact that DRN (G) is an accessible set system on such class.

1 Procedure RNDom(G)
2 RecRNDom(G, ∅);
3 Procedure RecRNDom(G,A)
4 output A;
5 for all c ∈ RN(G) \A do
6 if A ∪ {c} ∈ DRN (G) and c is a maximal generator of A ∪ {c} then
7 RecRNDom(G,A ∪ {c});
8 end
9 end

5.1 Linear delay implementation in P7-free chordal graphs.
We show that there is a linear-delay implementation of Algorithm 2 in P7-free chordal graphs.
The proof is technically involved and makes use of preprocessed arrays that are maintained
throughout the computation.

I Theorem 12. There is an O(n + m) delay, O(n2) space and O(n2) preprocessing-time
implementation of Algorithm 2 whenever G is P7-free chordal, where n and m respectively
denote the number of vertices and edges in G.

Proof. Let C1, . . . , C` denote the ` irredundant components of G. For every a ∈ RN(G),
and according to Proposition 8, we note Ca = Ci the unique irredundant component Ci to
which a is partially adjacent, if it exists, and Ca = ∅ otherwise. Note that the computation
of such components, and the identification of Ca for every a ∈ RN(G) can be done in
O(n2) preprocessing time and takes O(n2) space. Consider A ∈ DRN (G) as received by
the algorithm. Let c ∈ RN(G) \A. First observe that the condition of c being a maximal
generator of A ∪ {c} Line 6 can be implicitly verified by selecting c of index greater than
those in A. This can be done by computing the maximal index ρ in A before the loop in O(n)
time, and iterating on c such that c > ρ with no extra cost on the complexity of the loop.
We shall show using preprocessed arrays maintained at each step of the loop that testing
whether A ∪ {c} ∈ DRN (G) is bounded by O(deg(c)). Note that by Corollary 11, A ∪ {c}
belongs to DRN (G) if and only if (i) every a ∈ A has a private neighbor in some irredundant
component Cj ⊆ N(A∪{c}), j ∈ [`], and (ii) there exists Ci, i ∈ [`] such that Ci 6⊆ N(A) and
Ci ⊆ N(A ∪ {c}). Also, recall that by Proposition 6 every component C1, . . . , C` is a clique.
Let T1 be an array of size ` such that T1[i] = |Ci| for every i ∈ [`]. This array will be used to
know the number of vertices that are yet to be dominated in every component. Let T2 be
an array of size n such that T2[y] = i if y ∈ Ci, and T2[y] = 0 otherwise (if y is redundant).
Using these two arrays, one can access in constant time to the number of vertices that are yet
to be dominated in the unique clique Ci in which y belongs, by checking T1[T2[y]]. Let M1
be a two dimensional array of size n× 2 such that M1[a][0] = |PrivIR(A, a) ∩ Ca| if Ca 6= ∅,
M1[a][0] = −1 otherwise, and M1[a][1] = |PrivIR(A, a) \ Ca|. Let M2 be an array of size n
such thatM2[y] = a if y ∈ PrivIR(A, a), andM2[y] = 0 otherwise. LetM3 be an array of size
n such that M3[y] = 0 if furthermore y ∈ Ca, M3[y] = 1 otherwise. Using these three arrays,
one can access in constant time to the number of irredundant private neighbors a vertex a
such that y ∈ PrivIR(A, a) has by checking M1[M2[y]][0] and M1[M2[y]][1]. The size of the
set PrivIR(A, a)∩Ca in case where y ∈ Ca, and PrivIR(A, a)\Ca in case where y 6∈ Ca can
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be accessed by M1[M2[y]][M3[y]]. Finally, consider an array W of size n initialized to zero.
This array will be used to know if a vertex y is dominated by A∪ {c}, by setting W [y] = x if
y is connected to some x ∈ A ∪ {c} and W [y] = 0 otherwise. Note that these six arrays can
be computed in O(n2) preprocessing time and O(n2) space.

We are now ready to detail each iteration of the loop Line 5. When considering a new
candidate vertex c ∈ RN(G) \ A, we do the following. For each y ∈ N(c) ∩ IR(G), we set
W [y] := c, M2[y] := c and T1[T2[y]] := T1[T2[y]] − 1 whenever W [y] = 0 (i.e., if y is not
dominated by A). Note that T1[T2[y]] is decreased to zero if and only if c verifies Ci 6⊆ N(A)
and Ci ⊆ N(A ∪ {c}) for i = T2[y]. The next claim follows.

B Claim 13. Deciding whether there exists Ci, i ∈ [`] such that Ci 6⊆ N(A) and Ci ⊆
N(A ∪ {c}) takes O(deg(c)) time.

If W [y] 6= 0 then y was already dominated by A, and in particular it might have been the
private neighbor of some a ∈ A given by both M2[y] and W [y]. In that case (i.e., whenever
M2[y] 6= 0) we set M1[M2[y]][M3[y]] := M1[M2[y]][M3[y]]− 1, and M2[y] := n+ 1 (this value
is set temporarily). Note that M1[M2[y]][0] (resp. M1[M2[y]][1]) is decreased to zero if and
only if c steals all the private neighbors of a ∈ A that are in irredundant components that
are partially adjacent (resp. complete) to a. Also, observe that we still have W [y] = a for all
such y in that case. We prove the following

B Claim 14. Deciding whether every a ∈ A has a private neighbor in some irredundant
component Cj ⊆ N(A ∪ {c}), j ∈ [`] takes O(deg(c)) time.

Proof. Consider some y ∈ N(c) ∩ IR(G) and let a = M2[y], j = M3[y]. Observe that if
both M1[a][0] and M1[a][1] have value zero after updating M1[a][j] := M1[a][j]− 1, then we
answer negatively (a lost all its private neighbors). If M1[a][1] does not equal zero, then
we answer positively (a has a private neighbor in a dominated irredundant component). If
M1[a][1] equals zero and M1[a][0] does not equal zero, then we need to check whether Ca is
dominated or not, that is whether T1[T2[y]] equals zero or not. We answer positively if it is
the case, and negatively otherwise. This covers all possibilities and the claim follows. C

A consequence of Claims 13 and 14 is that A∪{c} ∈ DRN (G) can be decided in O(deg(c))
time in the condition of Line 6. Now, if A ∪ {c} ∈ DRN (G) then we set M2[y] = 0 whenever
M2[y] = n+ 1 (y is adjacent to some a ∈ A and c, it is not a private neighbor anymore), for
every y ∈ N(c) ∩ IR(G) and in a time which is also bounded by O(deg(c)). Let us overview
the case where c does not satisfy the conditions of Claims 13 and 14, or when a backtrack
is executed. First, we undo the changes by setting W [y] = 0 and T1[T2[y]] := T1[T2[y]] + 1
for every y ∈ N(c) ∩ IR(G) such that W [y] = c (such a y was not adjacent to any a ∈ A
and no other modifications occurred). If W [y] 6= c and M2[y] = n + 1 (in that case
y was the private neighbor of some a ∈ A, a = W [y]) then we set M2[y] = W [y] and
M1[M2[y]][M3[y]] = M1[M2[y]][M3[y]] + 1. If W [y] 6= c and M2[y] 6= n + 1 then y was not
adjacent to c and no modification occurred. This undo process also takes O(deg(c)) time.
Since the sum of degrees of G is bounded by O(n+m), the time spent in the loop Line 5 is
bounded by O(n+m).

Let us finally consider the case when consecutive backtracks are executed. Observe that
in that case, it could be that n times O(n + m) steps are computed without output. In
order to avoid this, a common trick is to output half of the solutions while going down the
recursive tree, and the other half when going up the tree. This is done by moving the output
of Line 4 after the loop Line 9 on odd depths of the recursive tree. J
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Figure 2 A P4-free chordal graph H and the Hasse diagram of its poset tree. On such instance
p = 4, X1 = {t1, 1, 4}, X2 = {5, t3, t4}, X3 = {t6}, X4 = {t7} and Y = {3}. Then F = {t2, 2, t5}
and a set D such that D dominates C \ (X ∪ Y ) but not X1, . . . , X4 is given by D = {t2, t3, t5}.
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5.2 Polynomial delay implementation in P8-free chordal graphs.
We show that IEP and MGP can be solved in polynomial time in P8-free chordal graphs.
This yields a polynomial-delay implementation of Algorithm 2 in the same class.

From now on and until the end of the section, let G be a P8-free chordal graph. Recall
that by Proposition 6, every irredundant component C of G induces a graph H = G[C] that
is P4-free chordal. It is known that every P4-free chordal graph is the comparability graph of
a tree poset [17], where two vertices of the graph are made adjacent if they are comparable
in the poset. To H we associate T (H) its tree poset. Note that in particular, the root of
T (H) is universal in H, and that x ≤ y implies NH [y] ⊆ NH [x]. An example of a P4-free
chordal graph and its tree poset is given in Figure 2.

In the following, let A ⊆ RN(G) and C be an irredundant component of G. Let x1, . . . , xp

denote the p elements of R(A) having a private neighbor in C, Xj = PrivIR(A, xj) for every
j ∈ [p], X = X1 ∪ · · · ∪Xp and Y = (N(A) ∩C) \X (this last set correponds to the vertices
in C that are already dominated by A, but that are not private for any xi, i ∈ [p]). By
Corollary 10, IEP can be tested independently on every such component by checking whether
X1, . . . , Xp are non-empty, and, whether there exists D ⊆ C such that

D dominates C \ (X ∪ Y ), but
D does not dominate any of X1, . . . , Xp.

We will show that such a test can be conducted in linear time whenever X1, . . . , Xp and Y are
given by lists and arrays, a condition that can be fulfilled at low cost as in the implementation
of Theorem 21. In the remaining of this section, we note r the root of T (H), and F the
maximal elements of T (H) which are neither in X1, . . . , Xp nor in Y (hence no two elements
of F are comparable in T (H)). One such instance is given in Figure 2.

I Lemma 15. Let D be a subset of vertices of H. Then D dominates C \ (X ∪ Y ) if and
only if it dominates F .

Proof. The first implication trivially holds since F is selected in C \ (X ∪ Y ). Now since
every vertex of C \ (X ∪ Y ) belongs to a path in T (H) from r to some x ∈ F , F dominates
C \ (X ∪ Y ). Consider any x ∈ F and some dominating set D of F . Since D dominates F ,
either x ∈ D, or there exists y ∈ D such that either x < y, or x > y. In all such cases, the
unique path from r to x in T (H) is dominated. Hence D dominates C \ (X ∪ Y ). J

I Lemma 16. There exists a set D dominating C \ (X ∪ Y ) and not X1, . . . , Xp if and only
if for every x ∈ F there exists a leaf t of T (H) such that x ≤ t and Xi 6⊆ NH [t], i ∈ [p].
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Proof. We show the first implication. Let D be a dominating set of C \ (X ∪ Y ) which
does not dominate X1, . . . , Xp. By Lemma 15, every x ∈ F is dominated by some y ∈ D.
Consider some such x and y. Then one of x ≤ y or y < x holds. Let t be a leaf of T (H) such
that y ≤ t and x ≤ t. Then t does not dominate any of X1, . . . , Xp as y does not, and y ≤ t
hence NH [y] ⊇ NH [t]. Since x ≤ t the first implication follows. As for the other implication,
is it a consequence of Lemma 15 observing that every leaf t such that x ≤ t for some x ∈ F
dominates x. J

The next lemma shows that the characterization of Lemma 16 can be checked for each
element x ∈ F independently.

I Lemma 17. Consider Xj, j ∈ [p]. Then, either
Xj ⊆ {y ∈ C | x < y} for some unique x ∈ F , or
Xj ⊆ {y ∈ C | y < x for some x ∈ F} and IEP can be answered negatively, or
Xj 6⊆ NH [F ] and it can be ignored when checking the characterization of Lemma 16.

Proof. Let Xj , j ∈ [p]. First note that if Xj ⊆ {y ∈ C | x < y} then such a x is unique
or else T (H) is not a tree. Let us assume that Xj ⊆ {y ∈ C | y < x for some x ∈ F}.
Observe that these two cases are disjoint as otherwise there exist two elements of F that
are comparable, a contradiction. Recall that by Proposition 15 every dominating set D of
C \ (X ∪ Y ) dominates F . Now if D dominates F then it dominates every y ∈ C such that
y < x for some x ∈ F , and Xj consequently. In that case IEP can be answered negatively.

Let us now assume that Xj is not of the first two cases. We first show by contradiction
that there is no x ∈ F such that x < y for some y ∈ Xj . Suppose that there exist two such
x and y. Since Xj is not of the first case there must be some y′, y′ 6= y such that x 6< y′.
Consider a ∈ R(A) such that Xj = PrivIR(A, a). Note that x belongs to a shortest path
from y to y′ in C (the common ancestor of y and y′ in T (H) must be smaller than x). By
Proposition 7, x belongs to N(a)∩C. Hence it either belongs to Xj , or Y , contradicting the
fact that x ∈ F . Consequently, and since Xj is not of the second case, Xj 6⊆ NH [F ]. Now,
since the leaves of T (H) selected in Lemma 16 are of neighborhood included in that of F ,
Xj can be ignored. J

I Lemma 18. There is an O(n + m) time algorithm solving IEP whenever G is P8-free
chordal, where n and m respectively denote the number of vertices and edges in G, whenever

the leaves of T (H = G[C]),
the predecessors and the successors of every x ∈ T (H), and
each of the sets X1, . . . , Xp and Y

are given by lists and arrays for every irredundant component C of G.

Proof. Let us first focus on an irredundant component C of G, and H = G[C] its induced
subgraph. We want to decide whether F can be dominated without dominating X1, . . . , Xp.
Note that by assumption, the leaves of T (H), the predecessors and the successors of every
x ∈ T (H), and each of the sets X1, . . . , Xp and Y can be iterated in a time which is bounded
by their size. Furthermore, deciding whether a vertex belongs to one given set takes constant
time. The same assumptions hold for the set Z = C \ (X ∪ Y ) which can be computed in
O(nH) time iterating on X1, . . . , Xp and Y .

The algorithm proceeds as follows. First it computes F by checking for every x ∈ Z
whether it has a successor in Z. It computes the set F− = {y ∈ C | y < x for some x ∈ F}
in a n-element array by adding predecessors of every x ∈ F at a time. Since the sum of
degrees of H is bounded by O(nH +mH), this takes O(nH +mH) time. Then it tests for
every set X1, . . . , Xp whether it is included in F− within the same time. At this stage if we
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find an inclusion then we can answer negatively according to the second item of Lemma 17,
and can consider X1, . . . , Xp to be of the first type in the following.

For every set Xj , j ∈ [p] we check whether it has two non-adjacent vertices. This is done
in O(nH + mH) time by testing for every vertex in Xj whether it has a neighbor in Xj ,
recalling that every such Xj is disjoint (we iterate through vertices and their neighborhood
only once). If Xj has no two non-adjacent vertices, then it is a path in T (H) and we mark
in a nH -element array the indexes of leaves that are greater that its maximal element (each
of these leaves dominates Xj). Similarly, computing the maximal element of every such
Xj , and the indexes of leaves that are greater that their maximal element, can be done in
O(nH +mH) time. If a set Xj , j ∈ [p] has two non-adjacent vertices then no leaf t of T (H)
dominates Xj and it can be ignored for the next step. We now proceed as follows according
to Lemma 17. We check independently for every x ∈ F if it has a descendant leaf t (to each
x ∈ F corresponds disjoint sets of such leaves) which was not indexed previously. If it has
then we answer positively. If not then x (hence F ) cannot be dominated without dominating
one of X1, . . . , Xp and we can answer negatively.

We now need to conduct this test for every irredundant component C of G independently.
Since irredundant components are subgraphs of G we have that n and m are respectively
bounded by the sums of nH ’s and mH ’s for every irredundant component C of G where
H = G[C], and the complexity follows. J

A corollary of Lemma 18 is the following, observing that x is a maximal generator of A
if and only if A \ {y} 6∈ DRN (G) for any y ∈ A of index greater than x, and that n times
O(n+m) is bounded by O(n ·m) since G is connected.

I Corollary 19. There is an O(n ·m) time algorithm solving MGP whenever G is P8-free
chordal, where n and m respectively denote the number of vertices and edges in G, and
assuming the conditions of Lemma 18.

We can thus conclude the section with the following result.

I Theorem 20. There is an O(n2 ·m) delay and O(n2) space implementation of Algorithm 2
whenever G is P8-free chordal, where n and m respectively denote the number of vertices and
edges in G.

Proof. By Lemma 18 and Corollary 19, there is an O(n2 · m) delay implementation of
Algorithm 2 whenever the assumptions of Lemma 18 can be fulfilled at every step of the loop
Line 5. Clearly, the representation T (H) of H = G[C] can be computed for every irredundant
component C of G in O(n2) preprocessing time, and O(n2) space. The lists and arrays
containing the leaves of T (H), the predecessors and the successors of every x ∈ T (H), and
that will contain the sets X1, . . . , Xp, Y and Z = C \ (X ∪Y ) at each step of loop Line 5 can
also be computed within these preprocessing-time and space complexities. Furthermore, the
sets X1, . . . , Xp and Y can be maintained at each step of loop as in the proof of Theorem 12,
and in a time which is clearly upper-bounded by O(n ·m) for each c ∈ RN(G) \ A. We
proceed as in the proof of Theorem 12 to maintain an O(n2 ·m) delay in case of consecutive
backtrack. The theorem follows. J

6 Enumerating irredundant extensions

This section is devoted to the complexity analysis of Line 3 of Algorithm 1. More precisely,
we show that irredundant extensions can be enumerated with linear and polynomial delays
in P7-free and P8-free chordal graphs. This allows us to conclude with the two main results
of this paper.
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6.1 Irredundant extensions in P7-free chordal graphs.
Let G be a P7-free chordal graph and A ∈ DRN (G). Recall that by Corollary 11, every x ∈ A
has a private neighbor in some irredundant component C ⊆ N(A). Let C1, . . . , Ck denote
the k irredundant components of G that are not dominated by A. By Proposition 6, every
such component is a clique. Consequently we have that

DIR(A) = {{x1, . . . , xk} | xi ∈ Ci, i ∈ [k]}.

Now, such a set can clearly be enumerated with O(n + m) delay given A and C1, . . . , Ck.
Furthermore, a track of these irredundant components is maintained at each step of the loop
Line 5 of Algorithm 2 in the implementation of Theorem 12. We conclude with the following
theorem which improves a previous result of Kanté et al. in [12] on P6-free chordal graphs.

I Theorem 21. There is an O(n + m) delay, O(n2) space and O(n2) preprocessing-time
algorithm enumerating D(G) whenever G is P7-free chordal, where n and m respectively
denote the number of vertices and edges in G.

6.2 Irredundant extensions in P8-free chordal graphs.
Let G be a P8-free chordal graph and A ∈ DRN (G). By Theorem 9, the intersection of an
irredundant extensions of A with an irredundant component C of G is a minimal set D ⊆ C
such that

D dominates C \ (X ∪ Y ), and
D does not dominate any of X1, . . . , Xp,

where x1, . . . , xp denote the p elements of R(A) having a private neighbor in C, where
Xj = PrivIR(A, xj) for every j ∈ [p], X = X1 ∪ · · · ∪Xp and Y = (N(A) ∩ C) \X. In the
following, to A and C we associate DIR(A,C) the set of all such minimal sets. Then, if
C1, . . . , Ck denote the k irredundant components of G that are not dominated by A, we have
that

DIR(A) = {D1 ∪ · · · ∪Dk | Di ∈ DIR(A,Ci), i ∈ [k]}.

Clearly, such a set can be enumerated with O(n3 ·m) delay given an algorithm enumerating
DIR(A,Ci) with O(n2 ·m) delay for every irredundant component C1, . . . , Ck, where n and
m respectively denote the number of vertices and edges in G. We shall show that such an
algorithm exists.

Consider C, X1, . . . , Xp and Y as described above. Let H = G[C]. Recall that by
Proposition 6, H is P4-free chordal. In the remaining of this section, we rely on the notations
of Section 5 and note r the root of T (H) and F the maximal elements of T (H) which are
neither in X1, . . . , Xp nor in Y . One such instance is given in Figure 2. We call irredundant
component extension problem, denoted by ICEP, the following decision problem. Given
S,Q ⊆ C, is there a solution D ∈ DIR(A,C) such that S ⊆ D and D ∩Q = ∅? We shall
show that this problem can be solved in O(n ·m) time, which, using the backtrack search
technique, leads to an O(n2 ·m) algorithm enumerating irredundant extensions in P8-free
chordal graphs.

I Lemma 22. There is an algorithm solving ICEP in O(n ·m) time, assuming the conditions
of Lemma 18.

Proof. Observe that IEP restricted to a single component and ICEP only differ on the
fact that the set D ⊆ C should in addition satisfy D ∩ Q = ∅ and should not dominate
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PrivH(S, s) \ (X ∪ Y ) for any s ∈ S, where PrivH(S, s) denotes the private neighborhood
of s ∈ S in H. In that case, D can be reduced to a minimal set D∗ such that S ⊆ D∗

and D∗ ∩ Q = ∅. We show that these additional conditions can be handled at the cost
of an increasing complexity, relying on the proof of Lemma 18. Clearly, we can first
answer negatively if PrivH(S, s) \ (X ∪ Y ) is empty for some s ∈ S. Otherwise, the
condition that D does not dominate PrivH(S, s) \ (X ∪ Y ) for any s ∈ S can be handled
by adding extra sets Xp+i = PrivH(S, si) \ (X ∪ Y ) for every s1, . . . , sq ∈ S, and updating
X := X ∪Xp+1 ∪ · · · ∪Xp+q. Since these sets are connected Lemma 17 still applies. As for
D satisfying D∩Q = ∅, we proceed as follows. For every x ∈ F , and instead of only checking
descendant leaves of x, we iterate through all the descendants of x and check whether it
has a successor y such that y 6∈ Q, and such that y does not dominate any of X1, . . . , Xp+q.
This can be done in O(n ·m) time as we iterate through every such y in O(n+m) time, and
check for each of these y’s whether it has some Xj in its neighborhood in O(n) time. At this
stage, and according to Lemmas 16, 17 and 18, we can answer yes if and only every x has
such a neighbor y. J

We can now conclude using the backtrack search technique that we briefly recall now.
Formal proofs are omitted. The enumeration is a depth-first search of a tree whose nodes
are partial solutions and leaves are solutions. The algorithm constructs partial solutions by
considering one vertex xi at a time (following some linear ordering x1, . . . , xn of the vertices),
checking at each step whether there is a final solution D1 ∈ DIR(A) containing S ∪{xi} and
not intersecting Q, and one D2 ∈ DIR(A) containing S and not intersecting Q ∪ {xi}. This
step is called the extension problem. The algorithm recursively calls on such sets each time
the extension is possible. At first, S and Q are empty. The delay time complexity is bounded
by the depth of the tree (the number of vertices) times the time complexity of solving the
extension problem, i.e., ICEP. For further details on this technique, see for instance [15, 16].

We conclude to the next lemma and theorem, noting that the conditions of Lemma 18
can be fulfilled as in the proof of Theorems 12 and 20.

I Lemma 23. There is an algorithm enumerating DIR(A,C) with O(n2 ·m) delay, assuming
the conditions of Lemma 18.

I Theorem 24. There is an O(n3 ·m) delay and O(n2) space algorithm enumerating D(G)
whenever G is P8-free chordal, where n and m denote the number of vertices and edges in G.

7 Discussions

We investigated the enumeration of minimal dominating sets from their intersection with
redundant vertices. This technique was first introduced in [12] and led to linear-delay
algorithms in split and P6-free chordal graphs. We investigated generalizations of this
technique to Pk-free chordal graphs for larger integers k. In particular, we gave O(n+m)
and O(n3 ·m) delays algorithms in the classes of P7-free and P8-free chordal graphs, where
n and m respectively denote the number of vertices and edges in the graph.

As for Pk-free chordal graphs for k ≥ 9, we now give evidence that the enumeration of
DRN (G) might need other techniques for k ≥ 9, as IEP becomes NP-complete.

I Theorem 25. IEP is NP-complete even when restricted to P9-free chordal graphs.

Proof. First notice that IEP belongs to NP: a polynomial certificate is given by an irredundant
set I ⊆ IR(G) such that A ∪ I ∈ D(G), and which can be verified in polynomial time.
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Figure 3 The construction of G in Theorem 25. Irredundant vertices are represented in black
while redundant ones are in white. The vertices in the rectangle induce a clique and H a split graph.
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Given an instance ϕ of 3SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, we
construct a P9-free chordal graph G and a set A ⊆ RN(G) such that A admits an irredundant
extension if and only if there exists a truth assignment of the variables of ϕ that satisfies all
the clauses. In the following, we assume that the degenerate cases where a literal intersects
every clause, where two clauses are equal, or where the number of variables and clauses is
lesser than three are excluded. Then, the construction is the following.

The first part concerns the construction of a split graph H which contains one vertex
for each of the literals xi and ¬xi, a copy u and ¬ui of such literals, and one vertex cj per
clause Cj . The graph induced by the ui’s, ¬ui’s and cj ’s is completed into a clique, while an
edge is added between ui and xi, between ¬ui and ¬xi, and between a literal xi (resp. ¬xi)
and a clause cj whenever the literal is contained into that clause. As for the second part, it
consists of a pendant path xiyizi and ¬xi¬yi¬zi rooted at every literal xi and ¬xi, and of
a paw aibiviwi (a triangle aiviwi with a pendant edge aibi) made adjacent to both ui and
¬ui only through vi, for every i ∈ [n]. The construction is illustrated in Figure 3. It can
be easily seen that the obtained graph G is P9-free chordal. Also that a P8 is induced by
biaiviuiujvjajbj for i 6= j ∈ [n].

Let us show that H = G[C] for an irredundant component C of G. First note that every
vertex outside of H has a neighbor that is not adjacent to H, so it cannot make a vertex
from H redundant. Now if a vertex of H makes another one of H redundant then it cannot
be a literal or some ui, ¬ui (as it has either yi, ¬yi or vi as a neighbor outside of H). Also,
it cannot be a clause as by assumption every two clauses differ on a literal, and no literal
is complete to the clique. Hence vertices of H are all irredundant. It is easily seen that
irredundant components of G include {zi}, {¬zi}, {bi} and {wi} for all i ∈ [n]. Also that
redundant vertices of G are ai’s, vi’s, yi’s and ¬yi’s. We conclude that H cannot be extended,
hence that C is indeed an irredundant component of G, as claimed.

Now, let us set A = RN(G) and show that A ∈ DRN (G) if and only if there exists a
truth assignment of the variables of ϕ that satisfies all the clauses. If A ∈ DRN (G) then
there exists an irredundant extension D ∈ DIR(A). Observe that only the ci’s are to be
dominated by D, i.e., IR(G) \ N(A) = {c1, . . . , cm}. However, D does not intersect any
element of the clique of H as otherwise it would dominate {ui,¬ui} and thus steal all the
private neighbors of the vi’s. For the same reason, it cannot contain one literal and its
negation. Consequently D corresponds to a truth assignment of the variables of ϕ that
satisfies all the clauses. Consider now any truth assignment of the variables of ϕ that satisfies
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all the clauses, and D the associated set of vertices in G. By construction D dominates
all the ci’s. Furthermore it does not steal any private neighbor to any vertex of A. By
Corollary 3 we have that A ∈ DRN (G) concluding the proof. J
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