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DIFFUSION MODELS FOR MIXTURES
USING A STIFF DISSIPATIVE HYPERBOLIC FORMALISM

LAURENT BOUDIN, BÉRÉNICE GREC, AND VINCENT PAVAN

Abstract. In this article, we are interested in a system of fluid equations for mixtures with a
stiff relaxation term of Maxwell-Stefan diffusion type. We use the formalism developed by Chen,
Levermore, Liu in [4] to obtain a limit system of Fick type where the species velocities tend to align
to a bulk velocity when the relaxation parameter remains small.

1. Introduction and motivations

In this work, we consider a system of fluid equations for mixtures with a stiff diffusion term
of Maxwell-Stefan type. This system was introduced in various works such as [10] (see also the
references therein). It was also derived in [2], using the kinetic theory toolbox to derive the values
of the diffusion coefficients with respect to microscopic quantities. We consider an ideal gas mixture
with p ≥ 2 species evolving in a subset Ω of Rd, d ≥ 1. The system under study reads, for 1 ≤ i ≤ p

∂tρi +∇x · (ρiui) = 0, x ∈ Rd, t ≥ 0,(1)

∂t(ρiui) +∇x · (ρiui ⊗ ui) +∇xPi(ρi) +
1

ε
Ri = 0, x ∈ Rd, t ≥ 0,(2)

where ε > 0 is the small relaxation time parameter, and, for any 1 ≤ i ≤ p, ρi > 0 denotes the mass
density of species i, ρiui ∈ Rd its momentum, and both depend on x and t. The partial pressure
Pi(ρi) of species i in the mixture can be expressed in terms of the mass density ρi. More precisely,
it writes, thanks to the ideal gas law, Pi(ρi) = ρikBT/mi, where mi is the molecular mass of species
i, T the mixture temperature, assumed to be constant and kB the Boltzmann constant.

The relaxation term Ri is a friction force exerted by the mixture on species i. It is given by

Ri =
∑
j 6=i

αij(uj − ui),

where αij ≥ 0 for any i 6= j. This implies that Ri has an alignment effect on the species velocities
ui, which is classical for modelling mixtures (see [10] for instance), in particular when focusing on
the diffusive parts of the model. The sign of αij was formally proven in [2], as well as the symmetry
property αij = αji. Moreover, each αij can be written under the form αij = aijρiρj , where aij > 0
mainly depends on the molecular masses of species i and j, and on the mixture temperature. The
values αij are linked to the binary diffusion coefficients appearing in the Maxwell-Stefan diffusion
equations [5, 9, 1, 3, 7].

Let us set, for 1 ≤ i ≤ p,

(3) αii = −
∑
j 6=i

αij .

Then the symmetric matrix A = (αij)1≤i,j≤p is nonnegative semi-definite, with rank p − 1, and its
null space kerA is spanned by (1, . . . , 1)ᵀ ∈ Rp, as stated in [2].

This work was partially funded by the French ANR-13-BS01-0004 project Kibord. The second author has been
partially funded by Université Sorbonne Paris Cité, in the framework of the “Investissements d’Avenir”, convention
ANR-11-IDEX-0005.
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2 L. BOUDIN, B. GREC, AND V. PAVAN

Equations (1)–(2) clearly constitute a system of hyperbolic conservation laws with a stiff relaxation
term. Our work adapts the argument developed in [4] in the gaseous mixture framework. We aim
to derive an approximation of the local equilibrium and its first-order correction. To do so, we build
a relevant entropy, as explained, for instance in [6], which ensures the hyperbolicity of the local
equilibrium approximation and the dissipativity of the first-order correction term. Then we deduce
a reduced system on the conserved quantities. Consequently, we benefit from the general setting
introduced in [4]. This setting was widely studied from a rigorous mathematical viewpoint. Yong
first built [12] a singular perturbation theory to justify the asymptotic expansion, if one assumes the
existence of smooth solutions to the reduced system. Then the existence of global smooth solutions
to such systems of hyperbolic conservation laws was obtained in [8, 13] under suitable stability
conditions.

In our case, applying Chen, Levermore and Liu’s [4] formalism allows us to obtain a reduced
system involving the aligned velocity u when ε remains small, as stated in the following proposition.

Proposition 1. System (1)–(2) formally reduces to the following equations

∂tρi +∇x · (ρiu) = ε∇x ·

 p∑
j=1

`ij
∇xPj
ρj

 , 1 ≤ i ≤ p,(4)

∂t(ρu) +∇x · (ρu⊗ u) +∇xP = 0,(5)

where u is the mass-weighted average velocity of the mixture, P =
∑

j Pj(ρj) is the total pressure,
and the matrix (`ij)1≤i,j≤p is symmetric non-positive.

Let us briefly comment the structure of System (4)–(5). Equations (4) provide the mass conser-
vation laws on each species. The right-hand sides are indeed of diffusive nature in the isothermal
setting: since each species is an ideal gas, then Pj is proportional to ρj , and the term ∇xPj/ρj can
be interpreted as a simplified writing of ∇x(µj/T ), where µj is the chemical potential of species
j, which arises in thermodynamics of irreversible processes point of view. In fact, the matrix of
coefficients (`ij), obtained as a relevant pseudo-inverse of A, allows to recover a diffusion matrix of
Fick type. The diffusive part of the molar/mass fluxes of each species appears as a correction of
order ε to the main convective flux, as suggested by Chen, Levermore and Liu. Equation (5) is the
only one available on the momentum, it involves the total momentum of the mixture, and it does
not include any terms of order ε.

Before applying Chen, Levermore and Liu’s formalism, we first need to enlighten the reader about
the article notations for tensors and vectors. For instance, W will denote a quantity which must be
treated as a tensor, whereas W is a constant and W must be considered as a vector in the physical
space Rd. Moreover, Iq is the identity matrix of size q ∈ N∗, 0p×q is the zero matrix of size p × q,
and 1p×q is the matrix of size p× q filled with ones, for p, q ∈ N∗.

Let us set

(6) W =



W1
...
Wp

W p+1
...

W 2p


∈ Rp+dp,

where the components of W appearing in (6) are given by

(7) Wi = ρi, W p+i = ρiui, 1 ≤ i ≤ p.
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Then the vector-valued unknown function W solves the following evolutionary partial differential
equation

(8) ∂tW +∇x · F(W) +
1

ε
R(W) = 0,

where both the flux F(W) and relaxation R(W) tensor terms have to be clarified. Note that, in fact,
W lies in (R+)p × Rdp. Moreover, the mass densities Wi(t, x), 1 ≤ i ≤ p, are supposed to remain
positive for t > 0 and x ∈ Rd.

In order to properly write the flux F(W) ∈ R(p+dp)×d, let us denote by (ek)1≤k≤d the natural basis
of Rd. Then the k-th column, 1 ≤ k ≤ d, of F(W) is given by

Fk(W) =

F1k(W)

F2k(W)

 ∈ Rp+dp,

with

F1k(W) =

W p+1 · ek
...

W 2p · ek

 ∈ Rp,

F2k(W) =



(
W p+1 ⊗W p+1

W1
+ P1(W1)Id

)
ek

...(
W 2p ⊗W 2p

Wp
+ Pp(Wp)Id

)
ek

 ∈ Rdp.

As we mentioned it before, the species involved in the mixture are assumed to be ideal gases, so
that, for any 1 ≤ i ≤ p, the pressure law for species i reads

(9) Pi(Wi) =
WikBT

mi
.

Finally, the relaxation term R(W) is given by

R(W) =



0p×1

∑
j 6=1

α1j

(
W p+j

Wj
− W p+1

W1

)
...∑

j 6=p
αpj

(
W p+j

Wj
− W 2p

Wp

)


∈ Rp+dp.

With the definition (3) of αii we chose, we can rewrite the previous expression of R as

R(W) =



0p×1

p∑
j=1

α1j
W p+j

Wj

...
p∑
j=1

αpj
W p+j

Wj


∈ Rp+dp.
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Eventually, let us point out that the methodology of [4] is very close to strategies involving the
Chapman-Enskog or Hilbert expansions, classically used in kinetic theory to derive hydrodynamic
equations from the Boltzmann equation. The analogous ofW would then be the distribution function,
the friction relaxation term R the collision operator with the same kind of dissipativity and collisional
invariant properties, and of course the local equilibria the Maxwell functions. Note that [11] presents
a validity proof of such an expansion in a more general physical setting (non-ideal thermochemistry).

The article is structured as follows. In Section 2, we construct the entropy and compute the local
equilibria. Then, in Section 3, by studying the relaxation term, we obtain the first-order correction
and the reduced system.

2. Entropy and equilibrium

2.1. Building the entropy. The existence of a strictly convex entropy is a simple criterion to
ensure the local equilibrium hyperbolicity and the first-order correction dissipativity property. More
precisely, as stated in [4, Definition 2.1], such an entropy is a twice-differentiable function η :
(R∗+)p × Rdp → R satisfying, for all W ∈ (R∗+)p × Rdp,

∇2
Wη(W)∇WFk(W) is symmetric for any 1 ≤ k ≤ d,(10)
∇Wη(W) · R(W) ≥ 0,(11)

∇2
Wη(W) is a positive definite quadratic form.(12)

A natural choice for η in our setting is the total energy of the mixture, obtained as the sum of
both kinetic and internal energies of each species. The internal energy Ei(Wi) of species i, 1 ≤ i ≤ p,
can be defined thanks to

(13) E′′i (Wi) =
P ′i (Wi)

Wi
.

This choice will ensure the symmetry condition (10). Taking (9) into account, that leads, for instance,
to

(14) E′i(Wi) =
kBT

mi
ln

(
Wi

W 0
i

)
, Ei(Wi) =

kBT

mi

(
Wi ln

(
Wi

W 0
i

)
−Wi

)
,

where W 0
i > 0 is an arbitrary constant. Then it is possible to define the entropy with the following

proposition.

Proposition 2. The function η defined by

(15) η : (R∗+)p × Rdp → R, W 7→
p∑
i=1

1

2

W 2
p+i

Wi
+ Ei(Wi)

is a strictly convex entropy for Equation (8).

Before starting the proof of the previous proposition, we need to introduce a very convenient
notation for block diagonal matrices.

Notation 1. For any q, r, s ∈ N∗ and any matrices Mi ∈ Rr×s, 1 ≤ i ≤ q, we define the block
matrix

Diag qr×qs (Mi) =


M1

M2

. . .
Mq

 ∈ Rqr×qs.

Let us point out that index i in the notation refers to the generic block index of the matrix on the
diagonal.
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Proof. Let us now prove Proposition 2 by checking (10)–(12). We first perform the preliminary
computations of ∇Wη(W) and ∇2

Wη(W). From (15), it is easy to obtain

(16) ∇Wη(W) =

[
−
W 2

p+1

2W 2
1

+ E′1(W1), · · · ,−
W 2

2p

2W 2
p

+ E′p(Wp),
W ᵀ

p+1

W1
, · · · ,

W ᵀ
2p

Wp

]ᵀ
and thereafter

∇2
Wη(W) =

Diag p×p

(
W 2

p+i

W 3
i

+ E′′i (Wi)

)
−Diag p×dp

(
W ᵀ

p+i

W 2
i

)
−Diag dp×p

(
W p+i

W 2
i

)
Diag dp×dp

(
Id
Wi

)
 .

Checking (12). The strict convexity of η is then clear, since, if we set

X = [X1, . . . , Xp,X
ᵀ
p+1, . . . ,X

ᵀ
2p]
ᵀ ∈ Rp+dp,

then

∇2
Wη(W)X · X =

p∑
i=1

[(
W 2

p+i

W 3
i

+ E′′i (Wi)

)
X2
i +

1

Wi
X2

p+i

]
,

which is clearly positive if X 6= 0. Note that the off-diagonal terms of the Hessian of η cancel in the
previous computation.

Checking (10). The vector ∇WFk(W) is computed as

∇WFk(W) =
[
∇WF1k(W) ∇WF2k(W)

]ᵀ
=

 0p×p Diag p×dp (eᵀk)

Diag dp×p

([
−W p+i⊗W p+i

W 2
i

+ P ′i (Wi)Id
]
ek

)
Diag dp×dp

(
W p+i·ek

Wi
Id +

W p+i⊗ek
Wi

)
 .(17)

The matrix product ∇2
Wη(W)∇WFk(W) then provides Diag p×p

(
W 2

p+i

W 4
i
− P ′

i (Wi)

W 2
i

W p+i · ek
)

Diag p×dp

(
E′′i (Wi)e

ᵀ
k −

W p+i·ek
W 3

i
W ᵀ

p+i

)
Diag dp×p

(
P ′
i (Wi)
Wi

ek −
W p+i·ek
W 3

i
W p+i

)
Diag dp×dp

(
W p+i·ek
W 2

i
Id
)

 ,
the symmetry of which is ensured because of (13).

Checking (11). We compute

(18) ∇Wη(W) · R(W) =
∑
i,j

αij
W p+i

Wi
· W p+j

Wj
=

d∑
k=1

∑
i,j

αij
W p+i · ek

Wi

W p+j · ek
Wj

 ,
which is clearly nonnegative for any W, since the matrix A = (αij) is known to be nonnegative.

That concludes the proof of Proposition 2. �

2.2. Definition and properties of the local equilibria. Let us first introduce the following
matrix

Q =

 Ip 0p×dp

0d×p Q22

 ∈ R(p+d)×(p+dp),

where
Q22 =

[
Id, · · · , Id

]
∈ Rd×dp.
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Observe that for any W ∈ Rp+dp, QW is given by

QW =

W1, · · · ,Wp,

p∑
j=1

W ᵀ
p+j

ᵀ .
The relaxation term R is a vector field which has p + d independent linear conserved quantities.
Those quantities can be described thanks to Q, since QR(W) = 0(p+d)×1 and the null space of Q,
given by

(19) kerQ =

[0, · · · , 0,W ᵀ
p+1, · · · ,W

ᵀ
2p

]ᵀ
,

p∑
j=1

W p+j = 0d×1

 ,

indeed satisfies dim kerQ = d(p− 1).
Any Weq ∈ (R∗+)p × Rdp is called a local equilibrium if R(Weq) = 0. These equilibria are charac-

terized in the following way.

Proposition 3. The following properties are equivalent:

(i) W is a local equilibrium,
(ii) ∇Wη(W) · R(W) = 0,
(iii) there exists u ∈ Rd such that W has the form

(20) W = [W1, · · · ,Wp,W1u
ᵀ, · · · ,Wpu

ᵀ]ᵀ ,

(iv) there exists v ∈ Rp+d such that ∇Wη(W) = vᵀQ.

Proof. The equivalences of this proposition are decomposed into several implications in the proof,
enough to ensure the equivalence between all the statements. The implication (i)⇒ (ii) is straight-
forward.

Checking (ii) ⇒ (iii). Since the matrix A has a one-dimensional null space spanned by 1p×1, the
term (18) equals zero if there exists u ∈ Rd such that

W p+i · ek
Wi

= u · ek, 1 ≤ k ≤ d, 1 ≤ i ≤ p.

Checking (iii)⇒ (iv). Since there exists u ∈ Rd satisfying (20), it follows from (16) that

∇Wη(W) =
[
−u2

2 + E′1(W1), . . . ,−u2

2 + E′p(Wp),u
ᵀ, . . . ,uᵀ

]ᵀ
.

Let us consider the vector v such that

vᵀ =
[
−u2

2 + E′1(W1), . . . ,−u2

2 + E′p(Wp),u
ᵀ
]
.

Then it is clear that ∇Wη(W) = vᵀQ.

Checking (iv)⇒ (ii). If ∇Wη(W) = vᵀQ for some v ∈ Rp+d, then, since QR(W) = 0,

∇Wη(W) · R(W) = vᵀQR(W) = 0.
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Checking (iii)⇒ (i). If there exists u ∈ Rd such that W has the form

W = [W1, · · · ,Wp,W1u
ᵀ, · · · , wpuᵀ]ᵀ ,

then, thanks to (3),

R(W) =



0p×1 p∑
j=1

α1j

u

... p∑
j=1

αpj

u


= 0(p+dp)×1.

This concludes the proof of Proposition 3. �

In order to determine the local equilibria, we first recall the definition and some properties of the
Legendre-Fenchel transform of the entropy. We introduce the following domain

V =
{
V ∈ Rp+dp | V = ∇Wη(W) for some W ∈ (R∗+)p × Rdp

}
.

Note that if V ∈ V, the associated W satisfies Wi > 0 for any 1 ≤ i ≤ p. The Legendre-Fenchel
transform η∗ of η on the domain V is the convex function satisfying

η(W) + η∗(V) = V ·W.

Taking the expressions (16) of ∇Wη(W) and (14) of E′i into account, the definition of the elements
V of V leads to

(21) Vi = −
W 2

p+i

2W 2
i

+
kBT

mi
ln

(
Wi

W 0
i

)
, V p+i =

Wi

W p+i
, 1 ≤ i ≤ p.

From (21), we deduce

Wi = W 0
i exp

(
mi

kBT

(
Vi +

1

2
V 2
p+i

))
> 0.

Consequently, we compute η∗(V)

(22) η∗(V) = V ·W − η(W) =

p∑
i=1

kBT

mi
W 0
i exp

(
mi

kBT

(
Vi +

1

2
V 2
p+i

))
.

Proposition 4. The quantity W is a local equilibrium if and only if there exists v ∈ Rp+d such that
W = ∇Vη

∗(vᵀQ).

Proof. Since

∇Vη
∗(V) = W, ∀V ∈ V and ∇Wη(W) = V, ∀W ∈ (R∗+)p × Rdp,

the equivalence is straightforward. �

We are now in the position to explicitly compute the local equilibria.

Proposition 5. The equilibrium function E : (R∗+)p×Rd → Rp+dp,w = (w1, . . . , wp,wp+1) 7→ E(w)
is given by

(23) E(w) =

[
w1, · · · , wp,

w1

σ(w)
wᵀp+1, · · · ,

wp
σ(w)

wᵀp+1

]ᵀ
,

where σ(w) =
∑p

i=1wi.
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Proof. Let φ∗ : Rp+d → R, v 7→ η∗(vᵀQ). It is clear from (22) that

(24) φ∗(v) =

p∑
i=1

kBT

mi
W 0
i exp

(
mi

kBT

(
vi +

1

2
v2
p+1

))
.

Denote by φ the Legendre-Fenchel transform of φ∗, defined on the domain {w ∈ Rp+d | w =
∇vφ

∗(v) for some v ∈ (R∗+)p × Rd}.
We compute from (24) that elements of this domain satisfy

wi = W 0
i exp

(
mi

kBT

(
vi +

1

2
v2
p+1

))
> 0, 1 ≤ i ≤ p

wp+1 =

(
p∑
i=1

W 0
i exp

(
mi

kBT

(
vi +

1

2
v2
p+1

)))
vp+1 =

(
p∑
i=1

wi

)
vp+1.

The same kind of computations as for η∗ eventually lead to

(25) φ(w) =

p∑
i=1

kBT

mi
wi

[
ln

(
wi
W 0
i

)
− 1

]
+

1

2

w2
p+1

σ(w)
.

Then, following [4], the equilibrium function can be defined by

E(w) = ∇Vη
∗(∇wφ(w)ᵀQ).

Let us compute

∇wφ(w)ᵀ =

[
kBT

m1
ln

(
w1

W 0
1

)
− 1

2

(
wp+1

σ(w)

)2

, · · · , kBT
mp

ln

(
wp
W 0
p

)
− 1

2

(
wp+1

σ(w)

)2

,
wᵀp+1

σ(w)

]
.

Besides, observe that

∇Vη
∗(V) =

G1(V)

G2(V)

 ,
where

G1(V) =

[
W 0

1 exp

(
m1

kBT

(
V1 +

1

2
V 2
p+1

))
, · · · ,W 0

p exp

(
mp

kBT

(
Vp +

1

2
V 2

2p

))]ᵀ
,

G2(V) =

[
W 0

1 exp

(
m1

kBT

(
V1 +

1

2
V 2
p+1

))
V ᵀp+1, · · · ,W

0
p exp

(
mp

kBT

(
Vp +

1

2
V 2

2p

))
V ᵀ2p

]ᵀ
.

The result of Proposition 5 immediately follows from those computations. �

Remark 1. Thanks to (20), we already know that there exists u ∈ Rd such that

E(w) = [w1, · · · , wp, w1u
ᵀ, · · · , wpuᵀ]ᵀ .

Hence, it is clear that u and wp+1 are connected by the relationship wp+1 = σ(w)u. In terms of
(7), that means that E(w) writes

(26) E(w) = [ρ1, · · · , ρp, ρ1uᵀ, · · · , ρpuᵀ]ᵀ .

Remark 2. For any w ∈ (R∗+)p × Rd, there holds

QE(w) = w,(27)
Q∇wE(w) = Ip+d,(28)

These relations are known from the general setting [4], and can of course be checked by computations
by blocks.
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Relation (28) implies that for any w ∈ (R∗+)p×Rd, the matrix P(w) = ∇wE(w)Q ∈ R(p+dp)×(p+dp)

is a projection onto the (p+ d)-dimensional manifold of local equilibria. Its properties are stated in
the following proposition.

Proposition 6. For any w ∈ (R∗+)p×Rd, P(w) = ∇wE(w)Q is a projection matrix, that is P(w)2 =
P(w). It has the form

P(w) =

 Ip 0p×dp

P21(w) P22(w)

 ,
where

P21(w) =
1

σ(w)2


(σ(w)− w1)wp+1 −w1wp+1 · · · −w1wp+1

−w2wp+1 (σ(w)− w2)wp+1 · · · −w2wp+1
...

...
...

−wpwp+1 −wpwp+1 · · · (σ(w)− wp)wp+1

 ∈ Rdp×p,

and

P22(w) =
1

σ(w)

w1Id · · · w1Id
...

wpId · · · wpId

 ∈ Rdp×dp.

Finally, for any w ∈ (R∗+)p × Rd, the kernel of P(w) is given by

kerP(w) =

{
W ∈ Rp+dp | Wi = 0, 1 ≤ i ≤ p and

p∑
i=1

W p+i = 0

}
.

Proof. The fact that P(w) is a projection is straightforward thanks to (28). Introducing

H22(w) =
1

σ(w)

w1Id
...

wpId

 ∈ Rdp×d,

we compute

∇wE(w) =

[
Ip 0p×d

P21(w) H22(w)

]
,

and block computations lead to the required expression of P(w). The expression of the kernel of the
operator P(w) immediately follows. �

3. Study of the stiff system near a local equilibrium

As it is stated in [4], whenever the local equilibrium approximation is hyperbolic, it makes sense
to seek a first-order correction. The conserved quantities w can be used as coordinates for a subset
of functions W =M[w] with QW = w that is approximately invariant under the evolution (8):

∂tw +∇ · (QF(M[w])) ' 0.

Thus, since W =M[w] satisfies (8), we have

(29) 0 = ∂tW +∇x · F(W) +
1

ε
R(W) ' (Ip+dp −∇wM[w]Q)∇x · F(M[w]) +

1

ε
R(M[w]).

Since we consider the local equilibrium approximation, it is natural to seek a formal expansion of
W in powers of ε as

Wε = E(w) + εM(1)[w] + · · · .
Linearizing the right hand side of (29) and writing order 1 in ε leads to

(Ip+dp −∇wE(w)Q)∇x · F(E(w)) +∇WR(E(w))M(1)[w] = 0
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Provided the inversion of∇WR(E(w)) is possible, this gives us the first-order correction termM(1)[w]
and the equation satisfied by the conserved quantities w.

Therefore, in Section 3.1, we shall describe in a precise way the space on which the pseudo-
inversion of ∇WR(E(w)) is performed. Then, in Section 3.2, we shall compute explicitly the local
equilibrium and its first-order correction term, which are given by the following theorem (see Chen,
Levermore and Liu’s computations [4, Eq. (2.23)]).

Theorem 1. The first-order correction, given by

M(1)[w] = −B [Ip+dp − P(w)]∇x · F(E(w)),

where B denotes the pseudo-inverse of ∇WR(E(w)) such that imB = kerQ, is locally dissipative with
respect to the entropy η. The reduced system reads

(30) ∂tw +∇x · f(w) = ε∇x · g(w),

where, for any 1 ≤ k ≤ d,

fk(w) = QFk(E(w)),

gk(w) = Q∇WFk(E(w))B [Ip+dp − P(w)]∇x · F(E(w)).

It satisfies that the local equilibrium approximation is hyperbolic.

3.1. Pseudo-inversion of the matrix ∇WR(E(w)). As we stated, we are led to compute∇WR(E(w))
to linearize the source term near E(w), and to define its pseudo-inverse.

We differentiate ∇WR(W) as follows:

(31) ∇WR(W) =

0p×p 0p×dp

G21 G22

 ,
where

G21 = Diag dp×p

 p∑
j=1

aijW p+j

 , G22 =

a11W1Id · · · a1pW1Id
...

...
ap1WpId · · · appWpId

 .
Recalling the value (26) of E(w) = [ρ1, · · · ρp, ρ1uᵀ, · · · , ρpuᵀ]ᵀ, the matrix ∇WR(E(w)) has the same
structure as in (31), with

(32) G21 = 0dp×p, G22 =

a11ρ1Id · · · a1pρ1Id
...

...
ap1ρpId · · · appρpId

 .
The following proposition sums up properties on the null space and range of ∇WR(E(w)), which
allow to define its pseudo-inverse.

Proposition 7. The operator ∇WR(E(w)) satisfies, for any w ∈ (R∗+)p × Rd,

(33) im(∇WR(E(w))) = kerQ.

Moreover, we have

(34) Rp+dp = ker(∇WR(E(w)))⊕ im(∇WR(E(w))).

This allows to define B the pseudo-inverse of ∇WR(E(w)) with prescribed range kerQ and null space
ker(∇WR(E(w))).
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Proof. In order to compute im(∇WR(E(w))), observe that for any W ∈ Rp+dp of the form (6), a
direct block computation gives

(35) ∇WR(E(w))W =

0, · · · , 0,
p∑
j=1

a1jW1W
ᵀ
p+j , · · · ,

p∑
j=1

apjWpW
ᵀ
p+j

ᵀ .
Note that WiW p+j can have an arbitrary value in Rd for any 1 ≤ j ≤ p. Then, taking into account
the property (3) of A and the definition (19) of the null space of Q, it follows

im(∇WR(E(w))) =

{[
0, · · · , 0,Xᵀp+1, · · · ,X

ᵀ
2p

]ᵀ
,

p∑
i=1

Xp+i = 0d×1

}
= kerQ.

It is clear that the dimension of the image of ∇WR(E(w))) is d(p− 1). To obtain (34), we determine
the null space of ∇WR(E(w)). From (35), it is clear that the first p components of any W in this
null space can be arbitrary. The remaining components W p+j need to satisfy

p∑
j=1

aijWiW p+j =

p∑
j=1

αij
W p+j

Wj
= 0d×1, 1 ≤ i ≤ p.

From property (3) of A, and in the same way as in Proposition 3, there exists v ∈ Rd such that
W p+j

Wj
= v, 1 ≤ j ≤ p.

Thus

ker(∇WR(E(w))) =
{

[W1, · · · ,Wp,W1v
ᵀ, · · · ,Wpv

ᵀ]ᵀ ,v ∈ Rd,Wi ∈ R, 1 ≤ i ≤ p
}
,

which is of dimension p + d. To conclude the proof, for W ∈ ker(∇WR(E(w))) ∩ im(∇WR(E(w))),
there holds {

W =
[
0, · · · , 0,Xᵀp+1, · · · ,X

ᵀ
2p

]ᵀ
with

∑
iXp+i = 0d×1,

W = [W1, · · · ,Wp,W1v
ᵀ, · · · ,Wpv

ᵀ]ᵀ ,

which immediately implies that W = 0(p+dp)×1. Thanks to the rank-nullity theorem on ∇WR(E(w)),
we deduce (34). The definition of the pseudo-inverse B then follows (see Proposition 10 in Appen-
dix A). �

3.2. Local equilibrium approximation and first-order correction. We are now in a position
to explicitly compute fk and gk defined in Theorem 1. Let us first compute the left-hand side of
(30).

Proposition 8. The convective part of the reduced system is given by

∂tw +∇x · f(w) =



∂tρ1 +∇x · (ρ1u)
...

∂tρp +∇x · (ρpu)

∂tρu +∇x · (ρu⊗ u) +

d∑
k=1

∂xkP,


where P =

∑
i Pi(ρi).

Proof. From (26), we have

Fk(E(w)) =
[
ρ1u · ek, · · · , ρpu · ek, ρ1u · ekuᵀ + P1(ρ1)e

ᵀ
k, · · · , ρpu · eku

ᵀ + Pp(ρp)e
ᵀ
k

]ᵀ
.

When multiplying by the matrix Q, we get exactly the result of the proposition. �
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We shall now compute the right hand side of (30).

Proposition 9. The diffusive part of the reduced system reads as

∇x · g(w) =



∇x ·

ρ1 p∑
j=1

λ1j∇xPj(ρj)


...

∇x ·

ρp p∑
j=1

λpj∇xPj(ρj)


0d×1


,

where L = (λij)1≤i,j≤p is the unique pseudo-inverse of the Maxwell-Stefan matrix A with prescribed
range (Span r)⊥ and null space Span r, with r = [ρ1, · · · , ρp]ᵀ. The matrix L is symmetric non-
positive. Moreover, L has the form

(
1

WiWj
`ij

)
1≤i,j≤p

, where (`ij) depends on r, but not on its

derivatives.

Proof. We compute

∇x · F(E(w)) =



∇x ·
(

w1
σ(w)wp+1

)
...

∇x ·
(

wp

σ(w)wp+1

)
∇x ·

(
w1

σ(w)2
wp+1 ⊗wp+1

)
+∇xP1(w1)

...
∇x ·

(
wp

σ(w)2
wp+1 ⊗wp+1

)
+∇xPp(wp)


,

and

Ip+dp − P(w) =

 0p×p 0p×dp

−P21(w) Idp − P22(w)

 .
We are now in the position to compute the product (Ip+dp − P(w))∇x · F(E(w)). Nevertheless, for a
better understanding, we switch to the classical notations (7) of w in terms of ρi and u. Hence, we
can write

∇x · F(E(w)) =



∇x · (ρ1u)
...

∇x · (ρpu)

∇x · (ρ1u⊗ u) +∇xP1(ρ1)
...

∇x · (ρpu⊗ u) +∇xPp(ρp)


,

and, defining ρ =
∑
ρi,

P21(w) =
1

ρ


(ρ− ρ1)u −ρ1u · · · −ρ1u
−ρ2u (ρ− ρ2)u · · · −ρ2u

...
...

...
−ρpu −ρpu · · · (ρ− ρp)u

 , P22(w) =
1

ρ

ρ1Id · · · ρ1Id
...

ρpId · · · ρpId

 .
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If we compute the rows p+1, · · · , p+d of (Ip+dp−P(w))∇x ·F(E(w)), we obtain the following vector

−u∇x · (ρ1u) +
ρ1
ρ
u∇x · (ρu) +∇x · (ρ1u⊗ u)− ρ1

ρ
∇x · (ρu⊗ u) +∇xP1(ρ1)−

ρ1
ρ

p∑
j=1

Pj(ρj),

which simplifies into

∇xP1(ρ1)−
ρ1
ρ
∇xP,

where P =
∑

j Pj(ρj). The following rows are computed in the same way. Therefore,

(Ip+dp − P(w))∇x · F(E(w)) =



0p×1

∇xP1(ρ1)−
ρ1
ρ
∇xP

...
∇xPp(ρp)−

ρp
ρ
∇xP


.

We want to compute W = B(Ip+dp − P(w))∇x · F(E(w)). Since W ∈ imB = kerQ, it immediately
follows that Wi = 0, 1 ≤ i ≤ p and

∑
j W p+j = 0. Besides, it is clear that

(Ip+dp − P(w))∇x · F(E(w)) ∈ kerQ = im∇WR(E(w)).

Thanks to Corollary 1, we can state that

∇WR(E(w))W = (Ip+dp − P(w))∇x · F(E(w)).

Using (35), this implies, for any 1 ≤ i ≤ p,
p∑
j=1

αij
ρj

W p+j = ∇xPi(ρi)−
ρi
ρ
∇xP.

We recall that kerA = Span 1p×1 and, by self-adjointness of A, imA = (Span 1p×1)
⊥. Since both

vectors r = [ρ1, · · · , ρp]ᵀ and 1p×1 are obviously not orthogonal, the decompositions

Rp = (Span 1p×1)⊕ (Span r)⊥ = (Span 1p×1)
⊥ ⊕ (Span r)

allow to state the existence of a unique pseudo-inverse L = (λij)1≤i,j≤p of A with prescribed range
(Span r)⊥ and null space Span r. Furthermore, L is symmetric and non-positive. The symmetry
property holds thanks to Corollary 2. The non-positivity of L is a direct consequence of Corollary 1.
Indeed, denoting by 〈·, ·〉 the scalar product on Rp, we first write Z ∈ Rp as the sum of Y ∈
(Span 1p×1)

⊥ = imA and γr, γ ∈ R. From the orthogonality of Y and r and the fact that r ∈ kerL,
we have

〈LZ,Z〉 = 〈LY,Y〉 = 〈X,AX〉 ≤ 0,

where X = LY is the only element of imL = (Span r)⊥ such that AX = Y.
Then we can write for any 1 ≤ i ≤ p, thanks to Corollary 1,

W p+i = ρi

p∑
j=1

λij

(
∇x(Pj(ρj))−

ρj
ρ
∇xP

)
.

Since r spans kerL, i.e. for any 1 ≤ i ≤ p,
∑

j λijρj = 0, the previous equality becomes

W p+i = ρi

p∑
j=1

λij∇x(Pj(ρj)).
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Now we compute the remaining part of the right-hand side. From (17) and (26), we know that

∇WFk(E(w)) =

 0p×p Diag p×dp (eᵀk)

Diag dp×p (−(u · ek)u + P ′i (ρi)ek) Diag dp×dp ((u · ek)Id + u⊗ ek)

 .
We then get

Q∇WFk(E(w)) =

0p×p Diag p×dp (eᵀk)

M21 M22

 ∈ R(p+d)×(p+dp),

where

M21 =
[
−(u · ek)u + P ′1(ρ1)ek, · · · ,−(u · ek)u + P ′p(ρp)ek

]
∈ Rd×p,

M22 =
[
(u · ek)Id + u⊗ ek, · · · , (u · ek)Id + u⊗ ek

]
∈ Rd×dp.

Block computations lead to

gk(w) = Q∇WFk(E(w))W =



W p+1 · ek
...

W 2p · ek

(u · ek)
p∑
i=1

W p+i +

p∑
i=1

(W p+i · ek)u


.

Using the fact that
∑

iW p+i = 0, we deduce

gk(w) =



ρ1

p∑
j=1

λ1j∂xkPj(ρj)

...

ρp

p∑
j=1

λpj∂xkPj(ρj)

0d×1


.

Finally, let us check that L has the form
(

1
ρiρj

`ij

)
1≤i,j≤p

. Indeed, one can introduce Â = (aij),

which does not depend on W. Denoting by ∆ = Diag p×p (Wi), we can write A = ∆Â∆. Let us set
L̂ = ∆L∆. It is clear that L̂ is the pseudo-inverse of Â with prescribed range (Span 1p×1)

⊥ and null
space Span 1p×1. Then L = ∆−1L̂∆−1 has the expected form. �

Appendix A. Addendum on pseudo-inverses

In order to help the reader if necessary, we briefly recall some results on pseudo-inverses which are
used in the article. The first one allows to define pseudo-inverse matrices, it is a classical property
which can be found, for instance, in [5, Prop. 7.3.5, p. 164].

Proposition 10. Let A ∈ Rp×p with null space kerA and range imA. Let S and T be two subspaces
of Rp such that Rp = kerA⊕ S and Rp = imA⊕ T . Then there exists a unique matrix B such that:

(1) ABA = A,
(2) BAB = B,
(3) kerB = T and imB = S.

This matrix B is then called the pseudo-inverse of A with prescribed range S and null space T .
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As a consequence of the previous proposition defining the pseudo-inverse of a matrix with pre-
scribed range and null space, the following corollary justifies the “inverse” name.

Corollary 1. Let B be the pseudo-inverse of A with prescribed range imB and null space kerB. Let
Y ∈ imA. Then there exists a unique X ∈ imB such that AX = Y, it is given by X = BY.

The previous corollary is supplemented with the following one, which focuses on the symmetric
case.

Corollary 2. Consider a symmetric matrix A ∈ Rp×p, and a subspace T such that Rp = imA⊕ T .
Then the only symmetric pseudo-inverse of A is the one with prescribed range T⊥ and null space T .
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