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Abstract—Dynamic texture (DT) is a challenging problem
in computer vision because of the chaotic motion of textures.
We address in this paper a new dynamic texture operator by
considering local structure patterns (LSP) and completed local
binary patterns (CLBP) for static images in three orthogonal
planes to capture spatial-temporal texture structures. Since the
typical operator of local binary patterns (LBP), which uses center
pixel for thresholding, has some limitations such as sensitivity
to noise and near uniform regions, the proposed approach can
deal with these drawbacks by using global and local texture
information for adaptive thresholding and CLBP for exploiting
complementary texture information in three orthogonal planes.
Evaluations on different datasets of dynamic textures (UCLA,
DynTex, DynTex++) show that our proposal significantly outper-
forms recent results in the state-of-the-art approaches.

Index Terms—Dynamic texture, Dynamic texture recognition,
Local binary patterns, Local structure patterns.

I. INTRODUCTION

Dynamic texture, which is a sequence of moving textures
repeated spatially in varying over time [1] such as sea-
wave, smoke, foliage, fire, blowing flag, fountain, etc, is an
important topic in computer vision due to different important
applications in this domain: facial expressions [2], [3]; fire
detection; motion tracking and analysis [4], etc.

Many methods have been introduced for representation
of DT. Generally speaking, they can be roughly grouped
into several categories as follows: optical-flow-based, model-
based, learning-based, filter-based and local-feature-based.
First, optical-flow-based approaches [5] have received con-
siderable attention owing to their efficient computation and
characterizing DTs in natural way. Second, model-based meth-
ods such as Linear Dynamical System (LDS) [1] and its
extension [6] or applications [7], [8] have been widely used for
estimating the dynamic texture scenes. Third, learning-based
methods recently become promising approaches thanks to their
significant results. Inspired by the success of deep structures in
image classification, Qi et al. [9] took them into feature depic-
tion for DT recognition. Arashloo et al. [10] built a multilayer
convolutional architecture (PCANetTOP) for spatio-temporal
texture description and classification in which a PCA network
(PCANet) is used on each of the three orthogonal planes of a
DT sequence to learn filters. Other promising methods based
on dictionary learning [11], [12] are utilized to extract local DT
features via kernel sparse coding which exhibits strong ability

of discrimination for classification in computer vision. Fourth,
filter-based approaches [2], [13] have been also utilized for
handling DT recognition. Arashloo et al. [13] characterized
DT sequences with Binarized Statistical Image Features on
Three Orthogonal Planes (BSIF-TOP) and its multi-resolution
scheme (MBSIF-TOP). In [2], Rivera et al. extracted spatio-
temporal directional numbers for each frame and divided the
sequence into a 3D grid to expose a novel descriptor called
a Directional Number Transitional Graph (DNG). Finally, due
to the simplicity and efficiency, LBP-based variants have been
widely considered in local-feature-based approaches to deal
with different problems of DT. Zhao et al. [3] introduced
two LBP-based operators for DT representation: VLBP for
capturing spatio-temporal relations from three consecutive
frames; LBP-TOP for taking into account motions from three
orthogonal planes. Lately, these typical operators are extended
in different works [14], [15], [16] to improve the performance
of descriptor. Ghanem et al. [17] also used LBP as one
component in their DT descriptor.

We address in this paper a new operator for DT representa-
tion by considering local structure patterns (LSP) combining
with completed schema of LBP for static images in three or-
thogonal planes to capture spatio-temporal textural structures.

II. RELATED WORK

As mentioned above, the LBP operator has been widely
utilized in texture representation owing to its simple and
efficient computation. In this section, we briefly inspect LBP
[18] and several variants in still images and dynamic textures.

A. A brief review of LBP

Ojala et al. [18] proposed Local Binary Pattern (LBP) as a
binary code to present the local structures of a texture image
by considering the center pixel and its P neighbors sampled
by interpolation on the centered circle of radius R.

Let I denote a 2D image, the encoding of LBP is defined
as follows, for each pixel p:

LBPP,R(p) =

P−1∑
i=0

s(I(qi)− I(p))2i, (1)



where the {qi} represents the P points sampled on the circle
of center p and radius R, and

s(x) =

{
1, x ≥ 0

0, otherwise.
(2)

Due to the high dimensionality of the basic LBP, a mapping
process is often used in practice. The most popular mapping
is based on uniform patterns (LBPu2) having at most 2 bit-
transitions (1-0 or 0-1) in its binary chain. Its use is based on
the fact that almost patterns are uniform in natural images [18].
Other important mappings are: LBPri for handling rotation
invariant; LBPriu2 for invariant rotation texture classification;
TAPA [19] for capturing topological information.

B. LBP-based variants in still images

The typical LBP remains several restrictions such as small
region of support, lack of global textural information, and
noise sensitivity. A lot of attempts have been made to treat
these shortcomings by addressing different steps: prepro-
cessing [20], [21], thresholding [22], pattern selecting [23],
feature training [24], mapping [19], [25], etc. Complementary
information [26] was also used by exploiting variation of
magnitudes.

C. LBP-based variants for dynamic texture

VLBP: Zhao et al. [3] enlarged the encoding of basic LBP
to videos for description of dynamic texture. They consider
neighbors sampled on three circles from three consecutive
frames centered at a same spatial coordinate together with
the centers from the first and the last frames. By considering
the relations between these 3P + 2 neighbors and the second
centers, they obtained a binary code of length 3P+2 to capture
local motions around this voxel. This encoding asks a small
value of P due to the high dimensionality of descriptor with
23P+2 bins. Later, D. Tiwari et al. [15] extended this idea by
combining with CLBP to introduce CVLBP operator.
LBP-TOP: To remedy the high dimensionality of VLBP,
Zhao et al. [3] proposed another LBP-based encoding, called
LBP-TOP. Their idea is to consider LBP operator on three
orthogonal planes passing through the considered voxel. The
histograms, obtained on each orthogonal plane, are then con-
catenated to form the descriptor of DT video.

III. PROPOSED METHOD

A. Overview

We propose a new operator for DT representation by consid-
ering local structure patterns (LSP) [22] combining with com-
pleted schema of LBP (CLBP) [26] for static images in three
orthogonal planes to capture spatio-temporal texture structures.
Fig. 1 illustrates the proposed operator, named Completed
Local Structure Patterns on Three Orthogonal Planes (CLSP-
TOP). This approach, which is introduced as an extension of
LBP-TOP [3], is based on two main following improvements
to enhance the discrimination power of descriptor.
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Fig. 1. Illustration of completed local structure patterns on three orthogonal
planes

• LSP replaces LBP and allows to capture more stable
spatial relations using adaptative global/local thresholds
to remedy the problems of sensitivity to noise and near
uniform images of the typical LBP.

• Completed schema (CLBP) is also inspired to take into
account complementary texture information in the local
variation of magnitudes.

We detail then hereafter the proposed CLSP-TOP operator.

B. Local Structure Patterns

By thresholding by center pixel, the typical LBP captures
effectively the local spatial relations around this pixel. In the
meanwhile, it also leads to two of the main issues of LBP,
the sensitivity to noise and near uniform images, since a
small change of center pixel can largely modify the obtained
binary code. We adopt in this work the adaptive thresholding
proposed in [22]. The authors introduced two complemented
components for thresholding. The first one, named Local
Average Difference pattern (LAD), is defined as the mean
of local variation of magnitudes around center pixel xc as
follows:

LAD(xc) =

P∑
p=1

|f(xp)− f(xc)|/P (3)

where f(.) is grayscale image value of a pixel, xc is the center
point, xp is the pth neighbor of xc (p ∈ [1, P ]).

The second one, called Global Mean Difference pattern
(GMD), is calculated as the mean of the absolute differences
over the entire image. An adaptive threshold is then proposed
as follows to calculate binary patterns, called Local Structure
Patterns (LSP), at center pixel xc.

T(xc) = f(xc) +
a.LAD(xc) + b.GMD

a+ b
, a, b = {0, 1} (4)

When a = b = 0, LSP is simply identical to LBP and this
case is not considered.



C. Completed LBP

The typical LBP code also omits local variation of mag-
nitude containing rich local textural information. Guo et al.
[26] have overcome this issue by introducing completed LBP
operator. They introduced two main components: CLBPS

that is identical to LBP; CLBPM for capturing local varia-
tion of magnitudes. To construct CLBPM , the differences of
magnitudes between the center pixel and its neighbors are
thresholded by its mean value calculated over the entire image.
In addition, the third component CLBPC is also introduced
to take into account global information of each center pixel.
These components are complemented, thus they are often
combined together to significantly improve the performance.
The most popular combination, which is joined histograms of
these components, is adopted in our proposed framework.

D. Dynamic texture representation with CLSP-TOP

As mentioned above, our proposed descriptor relies on using
LSP in completed schema (CLBP), called CLSP, instead of
using the typical operator LBP. To exploit spatio-temporal
relations, we adopt the idea of LBP-TOP by considering CLSP
on three orthogonal planes (XY,XT,YT) and then the descriptor
is obtained by concatenating three histograms calculated from
these planes. Two possible mappings can be used in our
framework: riu2 giving a descriptor of 6(P +2)2 dimensions,
u2 giving a descriptor of 6

(
(P−1)P+3

)2
dimensions, where

P is the number of considered neighbors.
Furthermore, we take into account the advantage of multi-

scale analysis to improve the recognition accuracy, in which a
computation of multiple operators with various (P,R) outputs
corresponding histograms which are normalized and concate-
nated to form multi-scale representation MCLSP-TOP.

E. Dissimilarity measure

In this paper, to concentrate on the performance of descrip-
tor, we only use the simple nearest neighborhood classifier
with the χ2 similarity measure to estimate the dissimilarity D
between two histograms. The estimation of dissimilar distance
D is calculated as

D(t,m) =

B∑
b=1

(tb −mb)
2

tb +mb
(5)

where B is the total of bins, tb and mb are the values of the
sample and the model image at the bth bin respectively.

IV. EXPERIMENTS

We present a comprehensive evaluation of our method on
different classic datasets by following specific experimental
protocols and compare to the state-of-the-art results. Results of
our method on DT datasets (UCLA, DynTex, and DynTex++)
with riu2 (multi-scale) and u2 (multi-scale) configurations
are presented in Table I (Table III) and Table II (Table IV)
respectively. Results of the LBP-TOP, VLBP operators are
referred to the evaluations of [16] and [9] while the remains

come from the original approaches. Bold rates in Tables V,
VI, VII indicate the highest recognition accuracies.

A. Experimental settings

Using single scale also leads to good results (see Tables I, II)
but multiscale is recommended since the performance is still
improved (see Tables III, IV). In this case, LSP’s parameters
are complemented and give best results with a = b = 1.
Concerning the neighborhood configuration, the best settings
are chosen as follows to compare with existing methods: riu2
mapping with multiscale {(P,R)} = {(6, 1), (6, 2), (6, 3)}
giving good compromise for almost test cases; u2 mapping
with multiscale {(P,R)} = {(4, 1), (6, 3)} or {(P,R)} =
{(4, 2), (6, 3)} for particular test case.

B. Datasets and experimental protocols

UCLA dataset: UCLA dataset [1] originally comprises 50
classes (4 DTs per class) of various 200 DT sequences which
illustrate fountain, fire, boiling water, waterfall, plant, and
flower. Each sequence has 75 frames with 160 × 110 pixels
for each frame. A small version of UCLA usually used for DT
recognition is clipped by a 48 × 48 pixel window to capture
the key statistical and dynamical features. Three following
benchmarks are widely considered for this dataset.

• 50-class breakdown: 50 DT classes are used by con-
sidering 2 possible experimental protocols [1], [7], [13],
[16], [27] : leave-one-out and four cross-fold validation.

• 9-class breakdown: 50 DT classes are grouped into 9
semantic categories for DT classification. Due to [17],
50% of DT sequences in each class are randomly picked
out for testing and the rest for training. The average result
of 20 runtimes is considered as the final result.

• 8-class breakdown: It is similar to 9-class breakdown
except 50 DT classes are now grouped into 8 semantic
categories making the scheme more challenging [7].

DynTex dataset: DynTex dataset [28] originally consists of
656 videos captured under different environmental conditions
and recorded in AVI format. In our experiments, we use ”pr1”
DynTex version1 of 679 sequences with reasonable dimension
of 352× 288 and 250 color frames in 10 seconds. Following
the protocol in [3], [13], [16], we use a version of the ”pr1”
dataset with 35 sequence categories, named as DynTex35.
Each sequence is considered as a class and split into 8 non-
overlapping sub-DTs with random cutting points along X, Y,
T axes, but not half in these. For instance, partition points in
the trial is selected as [3], i.e. x = 170, y = 130, t = 100. In
addition, two sub-DTs are collected by randomly partitioning
along T axis of the original sequence. As a result of that,
10 sub-DTs for each sequence have various spatio-temporal
dimension and are more challenging for classification function.

Three following subsets of DynTex are often used as bench-
marks for DT recognition using leave-one-out cross validation
[10], [13], [29].

1http://dyntex.univ-lr.fr/download.html



TABLE I
CLASSIFICATION RATES (%) ON DT DATASETS2 USING CLSP-TOPriu2

UCLA DynTex
P,R,a,b L50 4C C9 C8 Dyn35 Alpha Beta Gamma Dyn++
4,1,1,0 96.50 96.50 97.60 95.65 98.57 90.00 85.80 86.36 92.68
4,1,0,1 97.50 98.00 95.65 94.78 97.71 93.33 87.04 86.74 92.85
4,1,1,1 97.00 97.50 95.90 95.10 97.43 93.33 87.65 87.12 93.17
8,1,1,0 96.50 96.50 96.75 95.10 97.71 93.33 87.65 88.26 94.00
8,1,0,1 98.00 98.00 97.80 96.08 97.14 96.67 88.27 86.36 93.79
8,1,1,1 98.00 98.00 97.00 95.10 97.14 95.00 87.04 87.50 93.83

TABLE II
CLASSIFICATION RATES (%) OF CLSP-TOPu2 ON DT DATASETS2

UCLA DynTex
P,R,a,b L50 4C C9 C8 Dyn35 Alpha Beta Gamma Dyn++
4,2,1,0 95.50 95.50 97.25 95.22 96.57 91.67 88.27 87.12 94.35
4,2,0,1 97.00 97.00 98.05 96.41 96.86 91.67 91.36 88.64 94.79
4,2,1,1 97.00 97.00 97.70 95.54 96.86 91.67 91.36 89.77 95.24
7,1,1,0 96.50 97.00 97.75 97.50 96.57 95.00 88.27 88.26 94.96
7,1,0,1 97.00 97.00 98.40 95.76 96.57 95.00 90.12 88.26 96.07
7,1,1,1 97.00 97.00 97.25 95.98 96.57 95.00 90.74 89.39 95.51

• Alpha: 60 DT videos are grouped in three classes: grass,
sea, and trees with 20 sequences per class.

• Beta: 162 DT videos are divided into 10 classes: sea,
vegetation, trees, flags, calm water, fountains, smoke,
escalator, traffic, and rotation with various numbers of
sequences for each.

• Gamma: 264 DT videos are separated into 10 categories:
flowers, sea, naked trees, foliage, escalator, calm water,
flags, grass, traffic, and fountains. Each class contains a
diverse collection of sequences.

DynTex++: Ghanem et al. [17] stated an extension of DynTex
which was compiled by selecting 345 raw AVI videos from
656 sequences of DynTex. Each of which only includes one
DT, not contain dynamic background, panning, and zoom-
ing. The selected sequences were filtered, preprocessed, and
grouped into 36 classes with 100 sequences in fixed size of
50 × 50 × 50 for each DT, i.e. 3600 DTs in total. Following
[13], [17], a half of DTs in each class is randomly selected
for testing and the remain for training. The test is repeated 10
times to take the average value as the final result.

TABLE III
RESULTS (%) OF MCLSP-TOPriu2 ON DT DATASETS2

UCLA DynTex
{P,[R]},a,b L50 4C C9 C8 Dyn35 Alpha Beta Gamma Dyn++
{6,[1,2]},1,0 96.00 96.00 96.70 94.02 97.71 95.00 89.51 88.64 94.18
{6,[1,2]},0,1 98.00 98.50 97.45 96.84 97.71 95.00 90.12 87.88 94.13
{6,[1,2]},1,1 98.00 98.00 97.10 93.91 97.71 95.00 90.74 88.64 94.00
{6,[1,2,3]},1,0 97.50 97.50 96.95 94.89 98.29 93.33 87.65 86.74 93.78
{6,[1,2,3]},0,1 99.00 99.00 96.75 96.63 97.71 95.00 88.89 87.88 93.60
{6,[1,2,3]},1,1 99.00 99.00 98.30 97.06 97.71 95.00 90.12 89.39 93.73

Note: {P,[R]} means multi-scales of P with various R.

2L50: leave-one-out 50 classes; 4C: four cross-fold scheme; C9: 9-
class breakdown; C8: 8-class breakdown; Dyn35: DynTex with 35 categories;
Dyn++: Dyntex++ dataset.

TABLE IV
CLASSIFICATION RATES (%) OF MCLSP-TOPu2 ON DT DATASETS2

UCLA DynTex
{(P,R)},a,b L50 4C C9 C8 Dyn35 Alpha Beta Gamma Dyn++
{(4,1),(6,3)},1,0 97.50 97.50 97.25 96.30 96.86 91.67 90.12 88.64 95.25
{(4,1),(6,3)},0,1 98.00 98.00 97.35 96.63 96.57 91.67 88.89 90.15 95.50
{(4,1),(6,3)},1,1 97.50 97.50 98.60 97.72 97.14 91.67 89.51 90.53 95.50
{(4,2),(6,3)},1,0 96.00 96.00 97.40 92.83 97.14 91.67 90.12 87.50 95.00
{(4,2),(6,3)},0,1 98.50 98.50 97.00 96.41 96.86 91.67 91.98 89.02 94.85
{(4,2),(6,3)},1,1 98.00 98.50 96.95 94.89 97.14 91.67 91.36 91.29 95.36

TABLE V
COMPARISON OF CLASSIFICATION RATE (%) ON UCLA DATASET2

Method L50 4C C9 C8
VLBP [3] - 89.50 96.30 91.96
CVLBP [15] - 93.00 96.90 95.65
LBP-TOP [3] - 94.50 96.00 93.67
AR-LDS [1] 89.90 - - 54.12
KDT-MD [6] - 89.50 - -
Space-time oriented [27] 81.00 - - -
NLDR [7] - - - 70.00
MBSIF-TOP [13] 99.50 - 98.75 97.80
DFS [30] - 89.50 - -
3D-OTF [31] - 87.10 96.32 95.80
WMFS [32] - - 96.95 97.18
DNGP [2] - - 98.10 97.00
Chaotic vector [8] - - 85.10 85.00
High level feature [33] - - 92.67 85.65
HLBP [16] 95.00 95.00 98.35 97.50
PCANet-TOP [10] 99.50 - - -
Ours 99.00 99.00 98.60 97.72

Note: All the results using the 1-NN classifier; ”-” means ”not available”.

C. Recognition on UCLA dataset

1) 50-class breakdown: Table V presents the result of our
method compared to recent existing approaches by using two
popular experimental protocols: Leave-one-out and Four cross-
fold validation. It can be observed in Tables I, II that our
method achieves the best performance among other competi-
tors with recognition rates from 97% to 98% using single
resolution descriptor. With 3-multi-scale descriptor of 1,152
bins, our rate of 99% (see Table III) obtains 3% margin better
classification compared to 96% of MBSIF-TOP [13] using
3-scale with 2,304 bins. The highest rate of 99.5% on this
scheme (see Table V) is achieved by filter-based methods as
MBSIF-TOP with 7-scale and PCANet-TOP [10] using PCA
and deep multi-scale convolutional network. However, they
take complex computation and need much time to operate.

2) 9-class breakdown: Table V presents our result on this
scheme compared to other methods. It can be realized that our
method achieves the highest recognition accuracy of 98.60%
using 2-scale representations of {(4,1),(6,3)} compared to
the spatio-temporal LBP results. Only MBSIF-TOP [13] with
descriptor dimension of 6,144 bins performs 0.15% slightly
higher than our method using 7,884 bins. The confusion matrix
(see Fig. 2) indicates that our approach mostly confused smoke
with water, fountain with waterfall, fire with smoke sequence
because of the similar features of these sequences.



Fig. 2. Confusion matrix (%) of 9-class UCLA dataset.

Fig. 3. Confusion matrix (%) of 8-class UCLA dataset.

3) 8-class breakdown: Our result on this scheme is 97.72%
of classification rate (see Tables IV, V) which significantly
outperforms in comparison to other approaches, just slightly
0.08% lower than MBSIF-TOP [13]. The confusion matrix
of 8-class breakdown shows the detailed performance of the
proposed method for each class (see Fig. 3). It can be obtained
from the confusion matrix that our method mainly confused
smoke with water sequence and fire sequence with fountain
and smoke due to the very similar characteristics between these
sequences.

D. Recognition on DynTex dataset

Our best performance on DynTex35 is 98.57%, which is
the same as HLBP [16], but only using 216 bins (see Table
I). The detail of classification is specifically shown in Fig.
4. In the best configurations formed for comparison, the rate
is 98.29% (see Table III). The dictionary learning approach
(Orthogonal Tensor DL) [12] collected 0.43% sightly higher
than ours but it ineffectively reacted with DynTex variants (i.e.
Alpha, Beta, Gamma) which our method mostly outperforms

100% 100% 100% 100% 100% 100% 100%

100% 100% 100% 100% 100% 100% 100%

100% 100% 100% 100% 100% 100% 100%

100% 100% 100% 90% 100% 100% 100%

100% 100% 100% 80% 80% 100% 100%

Fig. 4. Classification rates of the proposed method on DynTex35

TABLE VI
RESULTS OF RECOGNITION RATE (%) ON DYNTEX DATASET

Method Dyn35 Alpha Beta Gamma
VLBP [3] 81.14 - - -
CVLBP [15] 85.14 - - -
HLBP [16] 98.57 - - -
DFS [30] 97.63 84.90S 76.50S 74.50S

DFS+ [34] - 85.20S 76.90S 74.80S

3D-OTF [31] - 82.80S 75.40S 73.50S

Orthogonal Tensor DL [12] 99.00 87.80S 76.70S 74.80S

Equiangular Kernel DL [11] - 88.80S 77.40S 75.60S

2D+T [29] - 85.00 67.00 63.00
MBSIF-TOP [13] 98.61 90.00 90.70 91.30
PCANet-TOP [10] - 93.33 90.12 89.39
LBP-TOP [3] 92.45 96.67 85.80 84.85
st-TCoF [9] - 98.33d 98.15d 98.11d

Ours 98.29 95.00 91.98 91.29

Note: Superscript ”d” indicates the approach using deep structural TCoF;
”s” is for results using the SVM; ”-” means ”not available”.

compared to the state-of-the-art approaches with recognition
rates of 95.00%, 91.98%, 91.29% for Alpha, Beta, Gamma
respectively (see Table VI). The deep structure approach
extracting Transferred ConvNet Feature (TCoF) scheme [9]
obtained impressive results (over 98% for DynTex variants).
However, it used a huge dimension of covariance feature along
with a complicated learning algorithm.

E. Recognition on DynTex++ dataset

Our best result of recognition rate on this scheme is 96.07%
(see Table II), nearly same HLBP [16]. In the best configura-
tions formed for comparison, the classification rate of 95.50%
(see Table VII) demonstrates our method performs well com-
pared to existing approaches except methods: MBSIF-TOP
[13] using a large feature vector (8-scale); HLBP [16] in which
local pixels get involved with their surrounding neighbors
in consecutive frames; DDLBP with MJMI [14] using SVM
classifier. It should note that we only used simple nearest
neighborhood criterion for classification. On the other hand,
it may be that our method, based on local structure patterns



TABLE VII
RESULTS OF RECOGNITION RATE (%) ON DYNTEX++ DATASET

Encoding method Recognition rate (%)
DL-PEGASOS [17] 63.70S

NLSSA [35] 92.40S

PCA-cLBP/PI-LBP/PD-LBP [36] 91.90S

DFS [30] 89.90S

DFS+ [34] 91.70S

3D-OTF [31] 89.17S

DDLBP with MJMI [14] 95.80S

Orthogonal Tensor DL [12] 94.70S

Equiangular Kernel DL [11] 93.40S

MBSIF-TOP [13] 97.12
DNGP [2] 90.20
Chaotic vector [8] 69.00
High level feature [33] 64.22
VLBP [3] 94.98
LBP-TOP [3] 94.05
HLBP [16] 96.28
Ours 95.50

Note: Superscript ”s” indicates results using the SVM classifier.

of static images, is more sensitive to similar characteristics
of DTs in DynTex++ whose sequences include only a main
motion captured from the original DynTex.

V. CONCLUSION

We have proposed an effective spatio-temporal DT de-
scriptor based on LSP along with using a robust adaptive
thresholding and CLBP for complementary information on
three orthogonal planes. Experiments on different DT datasets
have demonstrated that the proposed operator significantly
outperforms almost recent approaches of DT classification. For
the perspective, utilizing TAPA [19] to capture topological
information and dissimilarity distances for classifiers should
be addressed in the future work.
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