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ABSTRACT 
Building occupants are considered as a major source of 

uncertainty in energy modeling nowadays. Yet, industrial energy 

simulation tools often account for occupant behavior through some 

predefined scenarios and fixed consumption profiles which yield to 

unrealistic and inaccurate predictions. In this paper, a stochastic 

activity-based approach for forecasting occupant-related energy 

consumption in residential buildings is proposed. First, the model is 

exposed together with its different variables. Second, a direct 

application of the model on the domestic activity “washing laundry” is 

performed. A number of simulations are performed and their results 

are presented and discussed. Finally, the model is validated by 
confronting simulation results to real measured data.  

Key words: Energy consumption, residential building, energy model, 

household profile, activity, occupant behavior, consumption variability. 

1. INTRODUCTION 
The building sector is a substantial energy consumer and 

pollution source in most countries. It is responsible for important 

shares, ranging between 16 and 50 percent, of  national energy 

consumptions worldwide [1,2].  In France, buildings account for 
around 43% of the total national energy consumption and 25% of total 

CO2 emissions [3]. Reducing these consumptions and emissions is 

therefore a vital step towards sustainable development.  

Similarly to other developed countries, French authorities have 

established recently a number of standards and regulations so to 

promote sustainable development in the building sector. An example of 

such regulations is the RT 2012, standing for “Réglementations 

Thermiques 2012” (i.e. Thermal Regulation). This regulation is an 

ambitious step towards promoting green buildings since it plans to 

divide by three the energy consumption of new buildings starting from 
the end of year 2012. As a result of such norms, building constructors 

are tending more and more to construct energy-efficient and green 

buildings. Moreover, a so-called “performance contract”, which is a 

performance commitment between building constructors and owners, 

is a new market expectation emerging in France. By this contract, 

constructors commit to deliver an eco-efficient building and to 

guarantee its performance for a number of years after handover. This 
shift towards constructing low-consuming and nearly zero energy 

buildings, lead to further requirements with regard to performance and 

sustainability and thus caused the design process of buildings to be 
more complex. Therefore, a better comprehension and integration of 

building performance determinants into the design of buildings, 

especially in the very early phases, has become essential.  

In general, the energy performance of a building is governed by 
various parameters, such as its physical characteristics, its internal 

services systems and equipments, its external environment and most 

importantly its occupants [4,5]. While energy simulation tools can 

assess, with a good precision, the influence of other parameters, yet 

they are still facing limitations in modeling occupants’ energy 

consumption behaviors [6]. In fact, energy simulation tools, such as 
EnergyPlus, eQUEST, ESP-r and TRNSYS, focus primarily on the 

structural behavior of buildings and their  relations to specific 

environmental conditions while taking into account insufficiently the 

role of the occupants [7]. This simplification of occupants’ influence is 
eventually leading to unrealistic assumptions about average user 

preferences and behaviors [8]. For these reasons, energy and buildings 

experts are recently devoting considerable efforts for finding tools, 
techniques and approaches that enable them to better understand, 

interpret and model occupants influence on whole building 

performance. 
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1.1.  Occupants and residential energy consumption 
The residential sector consumes secondary energy, which is used 

by occupants in suitable form for their domestic activities. Several 

studies pointed out the major end-use groups of secondary energy such 

as space heating, space cooling, domestic hot water, as well as 
appliances and lighting [9]. Energy use of buildings is strongly 

dependant on systems operation and general behavior of occupants. 

According to Page et al. [10] and Robinson [11], the influence of 

occupants can be translated by their presence, the actions they perform 
(activities such as cooking, using light, etc.), as well as their 

interactions with the controls of inherent building systems designed for 

adjusting indoor environment. According to Robinson [11], the most 
complex processes taking place within buildings are those that result 

from human behavior. Lutzenhiser et al. [12] confirm that household 

attributes such as income, education, family size, occupation hours, 
and household are highly influential on energy consumption. Guerin et 

al. [13] identify household income, age, education of owners, home 

ownership, desire for comfort, and energy conservation incentives as 

influencing factors. McLoughlin et al. [14] identify the number of 
occupants, disposable income, head-of-household age, tenure type, 

social group, education level, and appliance ownership as most 

influencing factors on residential energy consumption. 
Energy consumption can vary dramatically between different 

households. This variation is due to the variability in occupant profiles 

(socio-demographic and economic attributes) which leads to 

variability in equipment possession and energy consumption patterns. 

According to Swan and Ugursal [15], occupant behavior in residential 

buildings varies widely and can impact energy consumption by as 

much as 100% for a given dwelling. Pachauri [16] concludes that the 

total household income level is the most important explanatory 

variable causing variation in energy requirements across Indian 

households. 

For these reasons, building and energy experts manifest their need 

for more precise methods for modeling occupants influence on whole 
building performance. Such models should result in better energy 

estimation results and therefore in better building designs and 

marketing offers.  

1.2.  Modeling energy consumption in residential 
buildings 

A number of techniques and approaches have been developed to 
address the issue of modeling energy consumption in residential 

buildings. According to Swan and Ugursal [15], the two major streams 

of approaches identified are top-down (econometric or technological) 

and bottom-up (statistical or engineering) approaches, with each of 
them comprising a number of scientific techniques. For more 

knowledge about these approaches, the reader is referred to Swan and 

Ugursal [15] and McLoughlin et al. [14].  

In general, the research on occupant-related residential energy 

consumption can be divided into two groups of methods. The first 

group consists of using real sub-metering data in order to derive 

representational load or diversity profiles of occupants energy use, and 

thus deduce estimates of buildings’ energy consumption. The second 

group of studies focuses on the development of approaches that can 

better represent occupants’ behavior. Such models aim at simulating 

occupancy patterns and various energy-load schedules by using 

stochastic approaches [17]. Although such models can generate 
representative load profiles and provide some insights about 

occupants’ role in energy consumption, yet they do not depict the 

complex phenomena of occupant behavior. Instead of using sub-

metering data, the studies from the second group use other source of 

information, namely the time use surveys (TUS). The latter can be 

defined as large-scale time-use surveys conducted at the national level. 

Each TUS record contains information on 24-hour period of activities 

of a given individual [18]. A number of authors have used such 

surveys so that to depict and model occupants’ daily energy use. By 
using stochastic techniques such as Monte Carlo Markov chains 

(MCMC), daily activity patterns of energy consumption can be derived 

from TUS data.  

Tanimoto [19] proposed a stochastic approach for residential cooling-

load calculations. The same author develops later a method to simulate 

the load schedules for appliances, lighting, and hot water [20]. 
Tanimoto does not offer any discussion regarding the strength and 

limitation of his approach. Richardson et al. [21] introduce a Markov-

chain technique to generate synthetic active occupancy patterns, based 

upon time-use surveys in the United Kingdom. The stochastic model 

proposed by Richardson et al. provides a mapping between occupant 

activity (state) and appliance use, creating thus highly resolved 
synthetic energy demand data. In their results, Richardson et al. [21] 

find good match between occupancy profiles yielded by the model and 

real profiles taken from the TUS data. Based on their occupancy 

model, the same authors also develop a domestic electricity demand 
model [22]. Widén and Wäckelgård [23] develop a high-resolution 

stochastic model of domestic activity patterns and electricity demand 

in Sweden. They identify nine different electricity-dependent activities 
such as sleeping, cooking, dishwashing, cloth washing, TV and others. 

The authors associate then each of these activities to its corresponding 

domestic appliance(s). By defining load patterns for each appliance, 
Widén and Wäckelgård estimate the total electricity demand per 

household. The authors show that realistic demand patterns can be 

generated from these activity sequences. Muratori [24] use 

heterogeneous Markov chains to model domestic activity patterns of 
individuals, and to predict energy consumption of households. Subbiah 

[25] uses American TUS data for developing a disaggregated energy 

demand-modeling framework that estimates energy demand profiles 
based on individual-level and building-level energy-consuming 

activities. Subbiah [25] claims that his model can result in better 

results than other TUS-based models since it can account for 
interactions between household members and that it computes 

domestic activities at both individual and household levels.  

Recently, other approaches stemming from artificial intelligence 
domain have started to be applied for modeling the dynamic aspects of 

energy consumption in buildings. Kashif et al. [8] proposed a 

conceptual framework to simulate dynamic group behavior by using 

an agent-based approach. The authors used this framework to predict 

the energy consumption of a household by simulating the interactions 

between inhabitants living in the same home. Quijano et al. [26] 
proposed an agent-based simulation platform called SMACH (multi-

agent simulation of human behavior) for assessing the impact of the 

adaptive behavior of various electrical appliances on the overall 

consumption of dwellings. The human agents imitating individuals’ 
behaviors are modeled from observations in the real world of some 

volunteer families. As concluded by Quijano et al., the major 

limitation of their work is that the different strategies have not been 
tested in a real environment and that it would be difficult to identify 

the activity of each individual at every moment [26]. 

1.3.  Research gaps in occupant-related energy 
consumption models 

Given our research perspectives, a number of shortcomings 

associated to models found in literature review are identified. Firstly, 
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even though most of the models highlight a relatively high number of 

energy consumption determinants related to occupants (such as the 

income, age, etc.), yet they are still too far simplistic with representing 

these determinants.  In most of these models, the main variable 

considered for representing households’ attributes is the number of 

occupants. This means that such models cannot assess variability of 
energy consumption for instance between two households having the 

same number of occupants but of different socio-economical attributes. 

Secondly, there has been little published work for generating energy 

demand profiles with a very fine granularity. The models in literature 
do not provide the complete ability to quantify energy consumption at 

the level of a specific household or a specific individual according to 

their social, demographic, and economical characteristics. Thirdly, 
most of the published models are based either on monitored 

consumption data or on time use surveys. The reliability of these 

sources of data can be criticized since it represents a part of the 
population, and not the whole population. For instance, time use 

surveys only consider activity schedules of the individuals who 

responded to the survey; thus, other household members are 

considered as having same activity schedules which is not rational and 
can lead to unrealistic energy demand predictions. Fourthly, published 

models do not present a clear view on how domestic activities can be 

carried out by and shared among household members. The aggregation 

of individual activity quantities at the level of the household has not 

clearly tackled. For instance, if two or more individuals are watching 

TV at the same time, the energy consumption of the appliance must be 
counted only once. 

2. A STOCHASTIC ACTIVITY-BASED ENERGY 
CONSUMPTION MODEL PROPOSAL 

The present paper does not intend to model aggregated or typical 
behavior of building occupants, neither to develop dynamic models 

that calculate energy consumption on the basis of daily time-steps. 

However, it proposes a parametric predictive model which takes a 
certain household profile with certain attributes as input and gives its 

corresponding energy consumption spectrum as output. The main 

advantages of such a model are its capability to reveal the variability in 

consumption values among different households, and to provide 
accurate energy demand spectrums as a function of households’ 

attributes. 

A stochastic bottom-up model using an activity-based approach is 
thus adopted. Such an approach requires knowledge about occupants 

and their energy use patterns. Thus information regarding households’ 

characteristics and their lifestyles are needed. Activity-based approach 

means that energy consumption of a household is estimated by 

summing up the energy use of different activities performed (such as 

cooking, washing clothes, etc.). The stochastic nature of the model is 

due to the probabilistic mapping established between household 

attributes from one side (household type, number of occupants, etc.) 

and the corresponding appliance ownership, appliance characteristics 

and power rating, and activity quantities from the other side. In order 
to establish these stochastic relations, a fairly sufficient number of 

households’ characterizing attributes is taken into account. 

The structure of the proposed SABEC (Stochastic Activity-Based 
Energy Consumption) model is represented in Figure 1. The different 

objects of the model are explained in the following section. This model 

lies on two major hypotheses which are discussed further in this paper. 

First, for deriving an activity quantity per household from an 
estimation of the activity quantities per individuals, cumulative 

summation may be assumed for a given activity but of course the 

sharing of activity or economies of scale may diminish this basic 

summation. Second, activities in a dwelling must be enounced in such 

a way that they do not overlap on each other and the cumulative sum 

of energy consumed per each activity may be used to globally assess 

energy consumption of a household in a dwelling.  

2.1. Households’ and individuals’ attributes 
A household comprises one or more individuals living in the same 

dwelling and is characterized by a number of attributes. Some 
characteristics of a household are represented by those of its reference 

person (RP). The definition of reference person, also called household 

head, is widely adopted in scientific literature [14,27,28] and national 

statistics [29]. The reference person is defined as the elder 
economically-active individual among household adults, and thus 

taken as representative of households’ socio-economic status. 

Therefore, the same definition of reference person is adopted in this 

paper. Moreover, the household type can be single, one-parent family, 

couples without children, or couples with children. The attributes 

describing individuals and households are chosen based on literature 

review and statistical studies. In addition to these variables, we 

introduce an important intermediary variable called the environmental 

awareness. The latter represents individuals’ attitudes towards 

purchasing energy efficient appliance as well as their energy 
consumption patterns. Literature review and statistical studies show 

that the environmental awareness of a household is directly related to 

three main attributes which are the RP’s age and education level, and 
household’s total income [28,30]. The list of occupant-related 

attributes is illustrated in Table 1, where their detailed distributions 

over the French population are taken from national statistics [30,31].  

Table 1. INDIVIDUALS AND HOUSEHOLDS ATTRIBUTES 
Individual attributes Household attributes 

Age Household type 

Gender Number of adults(>18years) 

Activity status Number of children(<18years) 
Socio-professional class Household’s total income 

Education level RP’s age 

Income RP’s activity status 

RP’s socio-professional class 
RP’s education level 

Therefore, given the initial characteristics of household members, 

household’s representative attributes can be determined. The 

environmental awareness of the household is determined by using the 

three determinant variables: household’s total income (���), reference

person’s age (����) and education level (����). The probability for a

given household to have a high level of environmental awareness 

(HEA) given each of the preceding variables separately is drawn from 
a French statistical study conducted by Maresca et al.[30]. 

Environmental awareness level is evaluated on a scale of 1 to 5. High 

environmental awareness corresponds thus to 4 and 5 levels, while 

Low environmental awareness is between 1 and 3 [30].Combining 

these three probabilities enables us to compute the probability for a 

household to have a high environmental awareness �������	 as

shown in equation 1. The formula for calculating the joint conditional 

probability of an event given three or more dependent events is 

adopted from Journel [32]. 

�������	 = � ����| ���� , ���,����	 (1) 

2.2. Appliance ownership rate 

The appliance ownership rate for a given household is estimated as a 

function of three main variables: Household type  ������, Reference

person’s age (����), and reference person’s socio-professional
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category �����. The conditional probability of having an appliance,

given each of the three variables separately, is taken from national 

French statistics [33] Then by using same joint probability formula as 

earlier, the probability for a household to have certain appliance 

����	can be estimated as shown in equation 2.

����	 = � 
��� ������ , ����� ,����� (2) 

Figure 1: SABEC model structure 

2.3. Appliance characteristics 
The characteristics of an electrical appliance are mainly its 

technology (e.g. for televisions: LCD, CRT, and plasma) and energy 

rating. A domestic appliance is said to be energy-efficient if it 

consumes less-energy than other devices providing the same function 

or service. The energy efficiency of an appliance is rated in terms of a 

set of energy classes (labels) ranging from A (recently A++) which is 

the most efficient to G which is the least efficient.   

The ownership probability of an energy-efficient appliance is 
considered as a function of three main variables: reference person’s 

age (AG	
), household’s environmental awareness level (EAL��), and 

household’s total income (I��). The conditional probability of having 

an energy-efficient appliance, given each of the three variables 

separately, is taken from an important French study conducted by 

CREDOC1 [30]. For example, Table 2 shows this probability as a 
function of households’ monthly income.  

Thus, the joint probability for a household to possess an energy-

efficient appliance �����	 is given as shown in equation 3.

�����	 = � ����| ����, ��� ,�����	 (3) 

Table 2. CONDITIONAL PROBABILITY OF HAVING ENERGY-

EFFICIENT APPLIANCES GIVEN THE INCOME [30] 

Household’s total income 

(Euros/month) 

Probability of owning an 

energy-efficient appliance 

700-1000 0.31 

1000-1500 0.50 

1500-2000 0.62 
2000-3000 0.70 

3000-4500 0.80 

4500 or more 0.70 

2.4. Estimating activity quantities per household 
In order to determine the quantity of a given activity for a given 

household, a quantification unit namely the “activity’s service unit” is 

1 CREDOC : French research centre for the study and monitoring of living 
standards 

defined. This definition is based on that of the functional unit in life 

cycle analysis (ISO 14044). For example, the service unit of the 
activity “watching TV” is defined to be the duration of watching TV in 

minutes per day. Such data can be obtained based on national statistics 

and studies. Using this service unit together with the power rating of 

the equipment used, the energy consumption for activity can thus be 

estimated. 

The service unit of an activity at the household level is derived 
from individual service units. For this reason, two types of activities 

are distinguished: additive activities whose aggregated service unit is 

simply the sum of service units per individual (e.g. bathing), and 
shared activities whose service unit is not additive, but rather shared 

by two or more family members (e.g. watching TV). This sharing part 

can be accounted for either by using statistical data about sharing 
coefficients, if data is available, or by defining heuristic logics, 

expressing the degree to which people of a household share an activity. 

This yields to the estimation of the total service unit of the household 

for a given activity �ASU��	. The aggregation function of the service 

unit differs as a function of the activity.  

2.5. Estimating energy consumption of an activity 
The energy consumption of an activity for a given household is 

estimated based on the variables presented above. Given the 

probabilistic nature of model variables, Monte-Carlo technique is used 

for running simulations. At each run, random variables are generated, 

based on probabilistic distributions, to estimate: (1) the environmental 

awareness level of the household (EAL), (2) the ownership rate of 

appliances (AP) (3) the energy-efficiency of appliances (EAP), and (4) 

the appliance technology.  

Individual service units of a given activity are obtained from 

statistical data and national studies. Aggregation functions are then 

defined to estimate household’s total service unit. The energy 
consumption (electricity and/or water) is thus calculated stochastically 

as a function of the service unit and the power rating of the involved 

appliance.  

Activity quantity 

per household 

Appliance(s) 

ownership 

Energy 

consumption 

per activity 

Appliance(s) 

characteristics 

Individuals’ 

attributes 

Household 

attributes 

Activity quantity 

per individual 

A specific 

household 

Overall energy consumption for all activities 

For each activity 

Sharing Additive 
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3. APPLICATION OF THE ‘SABEC’ MODEL ON 
“WASHING LAUNDRY” ACTIVITY 

In this section, the proposed SABEC model is applied on the 

domestic activity “washing laundry”. First, a description of the activity 

is given and its different facets are discussed. The modeling logic is 
then presented and the main variables that influence energy 

consumption of “washing laundry” activity are exposed. Details on the 

statistical data being considered, their nature and sources are presented 
and discussed. Then a demonstration of how the SABEC model can be 

applied to simulate energy and water consumptions yielded by the 

considered activity is performed. A number of simulation examples are 
performed in order to test the model’s functionalities. Simulation 

results are used to interpret the variation in energy consumption among 

different households. Finally, the proposed model is validated by 

confronting its results against real measured consumption data.  

Due to lack in some statistical data concerning laundry washing 

habits, a web-based survey was conducted to track the trends of 

“washing laundry” within French households. 105 respondents from 

different household types participated in the survey. The results 

provide us with a comprehensive knowledge base on cloth washing 

habits in French residential buildings. Some of the statistical data 
collected from the survey are used in the model. 

3.1. Description of “washing laundry” activity 
Doing laundry at home is one of the major domestic activities 

since people wash their dirty laundry on a regular basis. The washing 

machine is a commonly used device and an integral part of most 
households all over the world. Almost 95% of French households 

possess washing machines in their dwelling [33]. On average, a 

washing machine consumes 169 kWh/year per French household [34], 
where this value represents about 7% of French households’ total 

electricity consumption [35]. Different families produce different 

quantities of dirty laundry, and may use a different number of washing 

cycles and temperature settings, leading thus to variability in energy 
consumption.  

Doing laundry is the process by which households clean their 

laundry at home. Laundry materials are composed of both clothes 
worn by individuals in addition to house linens. We consider the 

“washing laundry” activity through three different steps: using, sorting 

and washing, as shown in Figure 2. 

Figure 2 .Representation of “washing laundry” activity 

3.1.1. Using laundry 
Using clothes 
Each individual wears a quantity of clothes per day. The mean weight 

of clothes dressed by an French adult per day, denoted by ������, is about

1.2 Kg [36].  

Using linens 
The average quantity of linens owned by French households, denoted 

by ���� , is taken from a national study [36] as shown in Table3.

Table 3. AVERAGE QUANTITY OF LINENS PER 
HOUSEHOLD TYPE 

Household type Quantity of linens owned (Kg) 

Single 6.75 

One-parent family 15.4 

Couples without children 11.45 

Couples with children 16.9 

Changing rate 
The changing rate represents the frequency by which individuals 

put their laundry into dirty-laundry baskets in order to be washed. The 

conducted study gives some insights about these frequencies. For 

instance, the different changing rates of clothes for adults and children, 

together with their probability distributions are presented in Table 4. 
The changing rate for linens is either once per month (50%) or twice 

(50%). 

Table 4. CHANGING RATE OF CLOTHES PER INDIVIDUAL 
Changing rate Children Adults 

Once every day (1) 69 % 33 % 

Once every two days (2) 23 % 43 % 

Once every three days (3) 8 % 24 % 

3.1.2. Sorting laundry 
Several studies reveal that people sort their dirty laundry before 

washing [37,38]. Laundry is in general sorted into dark-colored 

clothes, light-colored clothes, and linens, where each category is 

washed at different temperatures. The proportions of light-colored 
clothes over the total clothes, obtained from our survey, are given as 

shown in Table5.  

3.1.3. Washing laundry 
Households wash their laundry as a function of its usage and 

sorting (color) as described previously. The two main parameters of 

washing laundry are the washing temperature and the filling ratio of 

machine’s drum. 

Table 5. DISTRIBUTION OF LIGHT-COLORED CLOTHES 
PROPORTION (FROM SURVEY) 

Proportion of light-colored clothes Probability distribution 

10% 11% 

20% 26% 

30% 28% 

40% 18% 

50% 10% 

60% 7% 

Washing temperature 
Elevated washing temperatures induce higher energy consumption 

than lower ones. A cycle at 90 °C consumes three times more 

electricity than a cycle at 30 °C [37,39]. Different temperatures used 

for washing light-colored clothes, dark-colored clothes and lines are 
presented in Table 6 together with their corresponding probability 

distributions (from survey). It is noticed that high temperatures are 

mainly used for washing light-colored clothes and linens. 

Filling ratio 
The filling ratio is defined as the quantity of laundry that people fill 
into machine’s drum, divided by the machine’s nominal capacity. 

Different households have different filling ratios ranging in general 

between 50% and 100% [37].  The filling ratio has a direct influence 
on the number of washing cycles per household, and thus on energy 
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and water consumption. Different filling ratios results from our survey 

are presented in Table 7 together with their probability distribution. 

Table 6. PROBABILITY DISTRIBUTION OF WASHING 
TEMPERATURES (FROM SURVEY) 

Probability distribution 

Washing 

temperature 

light-colored 

clothes 

dark-colored 

clothes 
linens 

30 °C 26% 48% 13% 

40 °C 44% 44% 30% 

60 °C 24% 8% 52% 

90 °C 6% 0 % 5% 
Total 100 % 100 % 100 % 

Table 7. DISTRIBUTION OF LIGHT-COLORED CLOTHES 
PROPORTION (FROM SURVEY) 

Filling ratio of machines drum  Probability distribution 

60% 6% 

70% 4% 
80% 24% 

90% 43% 

100% 23% 

Total 100 % 

3.2. Washing machine characteristics 
A washing machine can be characterized by its installation mode 

(free standing or built in), type (frontal or top), capacity (drum 

capacity in Kg), energy rating (energy class), water intake connection, 

water and electricity consumption per cycle, and washing programs. 

The proposed model focuses on modeling activity patterns due to 
occupants’ attributes rather than those due to appliance attributes. For 

this reason, only two main characteristics of cloth washers, which are 

machine’s charging capacity and energy rating, are considered. 

Washing machine’s capacity 
The capacity of a washing machine, ��
, represents the maximum

quantity of laundry that can be charged into machine’s drum to be 

washed through a single cycle. Due to lack in statistical data about 

capacities of cloth washers within French households, the results of the 

conducted survey are used (Figure 3). 

Washing machine’s energy rating 
The energy rating of a washing machine represents its electricity and 

water consumption levels. The European standard evaluates washing 

machines’ energy rating  through classes ranging from A+++ (most 
efficient) to G (least efficient). 

The energy class corresponds to energy consumption in kWh per kg of 

laundry for the standard cotton cycle at 60 °C, denoted by ��
,�� °�.

Devices labeled from A to A+++ are considered to be energy-efficient, 

while others are not. The energy labels and their corresponding energy 

and water ratings are given in Table 8. Data are taken from studies in 
[40–42].  

Figure 3 . Probability distribution of the different washing 
machine capacities (from survey) 

Table 8. ENERGY LABELS, THEIR POWER RATINGS AND 
WATER CONSUMPTION [40–42] 

Label 
Power rating at 60 °C, 

��
,�� °� (KWh/kg) [min, max]
Water consumption 

(Liter/kg) 

A+++ [0.11, 0.13] 

7 
A++ [0.13, 0.15] 

A+ [0.15, 0.17] 

A [0.17, 0.19] 

B [0.19, 0.23] 

20 

C [0.23, 0.27] 

D [0.27, 0.31] 

E [0.31, 0.35] 

F [0.35, 0.39] 
G [0.39, 0.43] 

Having now the energy rating of the machine at 60 °C form Table 8, 

the energy rating at other temperatures can be determined, by using 

coefficients identified in several measurement campaigns [37,43] as 
shown in Table 9.  

Table 9. DETERMINING POWER RATING FOR EACH 
WASHING TEMPERATURE 

Coefficient Power consumption (KWh/Kg) 

For 60 °C 1 ��
,�� °� (Table 8)

For 30 °C 0.5 ��
,�� °�  = ��
,�� °� ×  0.5

For 40 °C 0.66 ��
,�� °�  = ��
,�� °� ×  0.66

For 90 °C 1.5 ��
,�� °�  = ��
,�� °� ×  1.5

Having determined the energy and water consumption of a washing 

machine per Kg, the energy and water consumption per cycle can now 

be estimated by multiplying these values with the capacity of the 

machine. This will be detailed later on. 

3.3. Applying SABEC model to estimate electricity and 

water consumptions of “Washing laundry” activity 

In this section, the different steps for calculating energy and water 

consumptions through SABEC model are exposed. 
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3.3.1. Determining ownership rate of washing 
machines 

The probability that a given household possess a washing 

machine P�AP	 is calculated as presented earlier through equation 2. 

During a simulation run, a random number is generated and compared 

to P�AP	 through Monte Carlo technique, so that to determine the 

ownership state of appliance. 

3.3.2. Determining washing machine’s characteristics 

Determining washing machine’s energy rating 
The probability that a household possess an energy-efficient 

appliance P�EAP	 is estimated through equation 3. At each simulation 

run, a random number is generated and compared to P�EAP	 through 

Monte Carlo technique, so that to determine whether the owned 

washing machine is energy-efficient or not. Consequently, another 

random number is generated to draw uniformly an energy label. Then, 

the corresponding power rating (at 60 °C°) of the washing machine is 
deduced from Table 8. The power ratings corresponding to other 

temperatures are then deduced from table 9. 

Determining washing machine’s capacity 
To determine the capacity of a washing machine ��
, the distribution

shown earlier in Figure 3 is used. A random number is generated and 

the capacity is then deduced from this distribution through Monte 

Carlo technique. 

3.3.3. Determining the service unit of “washing 
laundry” activity 

The service unit of the activity “Washing laundry” is defined to 
be the quantity of dirty laundry (clothes and linens) produced by a 

household per month (in kilograms). Each individual wears a given 

quantity of clothes per day. This quantity depends mainly on 

individual’s body surface area. The body surface area is a function of 

humans’ height and weight [44], and these are in turn correlated to age 

and gender. 

Service unit per individual 
Given the age and gender of an individual, an estimation of hi/her 

average height ��  can be deduced from national French statistics [45].

In addition, the weight of a French individual ��  is given through

normal probability distributions as a function of individual’s age and 
gender [46].  

Given now the height and the weight of an individual, the body surface 

area ���� can be calculated as in equation 4 [44].

���� = 0.024265 × ���.���� × ���.���� (4) 

The body surface area of an average French adult, denoted by ���������,

can thus be estimated using average values of weight and height. For 

males, it is equal to 1.951 m² while for females it is equal to 1.685 m².   
Therefore, given the age and gender of any individual, his/her body 

surface area can be calculated through equation 4, and then the 

quantity of clothes dressed per day ���� can be estimated (through rule

of three) from the reference values of an adult as shown in equation 5. 

���� = �����  ×  ������	  ���������⁄ (5) 

Which can be written as  

���� = 0.614 × ���� For males 

���� = 0.711 × ���� For females 

To determine thus the quantity of clothes changed by an individual per 

month ����, the formula given in equation 6 is used.

���� = ���� × (30/��� ) (6) 

The changing rate for an individual ���  is generated randomly from

the distributions shown earlier in Table 4. 

Service unit per household 
The service unit of the activity “washing laundry” for a given 
household is considered to be additive. This means that the total 

quantity of clothes laundry per household per month is equal to the 

sum of all individual quantities as shown in equation 7. 

�����  =  �����
��

�

(7) 

Where �� is the number of household occupants and ����  is the

quantity of dirty clothes (to be washed) produced by an individual per 

month. 

We denote by � the percentage of light-colored clothes over the total 

quantity of clothes per household. During a simulation, a random 

number is generated and � is estimated from the distribution presented 

in Table 5. Therefore, the quantity of light-colored clothes, ����� , and 

dark-colored clothes, ����� , to be washed per month by a household 

are estimated as shown in equations 8 and 9 respectively. In addition, 
the quantity of linens per household per month is given in equation 10, 

where ��� is the changing rate of home linens per month.

�����  = � × ����� (8) 

�����  = (1 − � ) × ����� (9) 

�����  =  ���� × ��� (10) 

3.3.4. Calculating energy and water consumption 
The first step for calculating energy and water consumption is to 

determine the washing temperature and the filling ratio of machine’s 

drum (FR). The latter is determined through a random number and 

using the probability distribution in Table 7. As for washing 
temperatures, three random numbers are generated randomly to 

determine respectively washing temperatures for light-colored 

clothes  (T�), dark-colored clothes ( T�), and linens (T�) from Table 6.  

Therefore, total energy and water consumption of the activity 

“washing laundry”, denoted by �� �and �� � respectively, can be

calculated as shown in equations 11and 12.  

�� � = EC� + EC� + EC� (11) 

�� � = WC� + WC� + WC� (12) 

Where EC� and WC� represent the electricity and water consumed for 

washing light-colored clothes respectively. EC� and WC�  represent the 

energy and water consumed for washing dark-colored clothes 

respectively. EC� and  WC� represent the energy and water consumed 

for washing home linens respectively. These are given through 

equations 13 and 14.  

EC! =  ��" × � �,�� (13) 

WC! =  ��" × �� (14) 

j=1 for light colored clothes, j=2 for dark-colored clothes and j=3 for 

linens. 

Where ��  is the average water consumption per cycle, � �,��
 is the

power consumption of the washing machine per cycle at a washing 
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temperature �" (already determined in section 3.2.2), and ��"
represents the number of washing cycles, and calculated as shown in 
equation 15. 

��" =
Q

�� × � � (15) 

� = ����� for light-colored clothes, � = �����  for dark-colored 

clothes, and � = ����� for linens. 

4. TESTING MODEL FUNCTIONALITIES TROUGH 
SIMULATION EXAMPLES 

For testing the functionality of the model as well as the validity of 
the results obtained, a number of simulation examples for the three 

use-cases of the model are performed. These three use-cases are 

explained briefly hereafter. 

4.1. Use-case 1: simulating energy consumption for 
specific households 

First of all, the model can be used to quantify the energy 

consumption of a given activity (here “washing laundry”) for a given 

specific household taken as input. For each simulation, a specific 

household is defined manually by the user at the entry of the model. 
For running simulation, five household examples defined by the 

authors are considered and are described hereafter. 

• Household 1: Single person, male, aged 32, active employed,
senior profession, with a long-term education level and an income

of 2700 Euros/month

• Household 2: Couple without children. Adult 1 is a male aged
37, active employed, senior profession, with long-term

educational level and an income of 3000 Euros/month. Adult 2 is

a female aged 34 years old, active and employed, middle level
professions, with short-term higher education and income of 2300

Euros/month.

• Household 3: Couple with 3 children. Adult 1 is a male aged 45,
active employed, clerical and service-staff profession, with a

baccalaureate level education and an income of 2000

Euros/month. Adult 2 is a 40 years old female, non-active

housewife, with a baccalaureate level education and no salary.
The first child is a 9 years old girl, whereas the second and third

are boys with 14 and 6 years old respectively. All children go to

school

• Household 4: One-parent family with one child. The parent is a

34 years old female, active employed in a middle level

profession, with a short-term education level and an income of
1400 Euros/month. The child is a 5 year old boy who goes to

school

• Household 5: A couple of retired persons without children. Adult
1 is 66 years old male, inactive retired, Short-term higher

education level, and an income of 1300 Euros/month. Adult 2 is a

62 years old female, inactive retired, Baccalaureate education
level, and without income.

4.2. Use-case 2: simulating energy consumption for 
random households with constraints 

For this second use case, the model can be used to quantify 

energy consumption of a given activity (here “washing laundry”) for a 
random household taken at the input. The advantage here is that while 

generating this random household, some constraints can be defined on 

its attributes. This is an important feature which enables testing 

variability between households having one or more criteria (attributes) 

in common. 

4.3. Use-case 3: simulating energy consumption for 
randomly chosen population of households 

For this third use-case (third functionality of the model), a 
population of households can be generated randomly by the model. 

The energy consumption resulting from this third use-case can thus be 

representative of the total French population. Hence, simulation results 
can be compared to population-wise real data in order to validate the 

model. 

5. RESULTS AND DISCUSSIONS 

A number of simulations are performed according to the three 

use-cases defined in section 4. The results describing energy 

consumption for the activity “washing laundry” for each use-case are 

presented in the following. 

5.1. Results for use-case 1 

The model is used to estimate energy and water consumption for 

each of the five households presented in the previous section. For each 

household, 10000 simulations are performed where model’s 

probabilistic variables are varied automatically (Appliance ownership, 

appliance energy rating and characteristics, activity’s service unit, 
etc.). The averages of these results are summarized in Table 10. 

Table 10. SIMULATION RESULTS FOR THE FIVE 
HOUSEHOLDS 

Household 

Average number 

of cycles per 

month 

Average electricity 

consumption 

(KWh/month) 

Average water 

consumption 

(Liters/month)  

1 9 6.93 556 

2 14 10.76 849 

3 26 20.57 1672 

4 12 11.30 968 

5 15 14.60 1309 

The average results in Table 10 show that household 3 (couple with 

three children) has the highest consumption values compared to other 

households. This result is normal since the number of occupants in 

household 3 (5 occupants) is higher than that in others. Moreover, 

household 1 presents the lowest consumption values. It can be noticed 
that the number of cycles increases with the increase in the number of 

occupants, and such do the energy and water consumption. The plot of 

increasing cumulative frequencies of electricity consumption for the 
five households is given in Figure 4. This plot shows the difference 

between electricity consumption values corresponding to each of the 

five household. For household 3 for example, this consumption can 

reach 40 KWh/month while it is limited at 14 KWh/month for 
household 1. 

5.2. Results for use-case 2 

For this use-case, only two simulation examples are given. In the 
first example, a constraint is defined on the household type, whereas in 

the second one, two constraints are defined on the household type and 

the number of children per household respectively. 
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5.2.1 Use case 2- example 1 

In this example, simulations are performed by defining a 

constraint on the household type (Single, couples with children, 

couples without children, and one-parent families). For each household 

type, 10,000 simulations are performed. For each simulation, the 

model randomizes the attributes of each individual and then calculates 

the energy and water consumption yielded by the activity “washing 

laundry”. 

Figure 4 . Increasing cumulative distribution of electricity 
consumption for the five households 

The results are illustrated through the box-plot shown in Figure 5. 

The lines on each box-plot starting from downside are respectively the 

minimum value, first quarter, median, third quarter and maximum. The 
median values of electricity consumption for the respective household 

types are 15 KWh/month for ‘couples with children’, 12 KWh/month 

for ‘one-parent families’, 10 for ‘couples with children’ and finally 7 

KWh/month for ‘singles’. These findings confirm the direct relation 
between the size of a household and its corresponding energy and 

water consumption for the “washing laundry” activity. Large 

households use more laundry (especially clothes), wash more 
frequently, and thus consume more electricity and water. 

Figure 5 . Electricity consumption simulation results for the 
four household types (use case 2-example1) 

5.2.2 Use case 2- example 2 

In this example, the model is used to examine energy 

consumption variation within a homogenous sample of households. 

Only households of “couples with children” type are considered where 

a constraint on the number of children is defined. The goal is to 

analyze consumption variation as a function of the number of children 

per household. The three cases considered are presented in Table 11. 

Table 11. THREE CASES CONSIDERED FOR THE NUMBER 
OF CHILDREN 

Case 1 2 3 

Number of children [1, 2] [3, 4] [5, 6] 

For each case, ten thousand simulations are performed. The simulation 

results are illustrated through the box-plot shown in Figure 6.  

Figure 6 . Electricity consumption simulation results for the 
four the three cases (use case 2-example 2) 

As expected, the electricity consumption of “washing laundry” activity 
increases linearly with the increase in the number of children per 

household. Households with 5 to 6 children consume on average 22 

KWh/month for washing laundry, while households with 1 to 2 

children do not consume more than 16 KWh/month. 

5.3. Results for use-case 3 

For this case, households are generated randomly according to 
their probability distributions over the population. In this example, 

10,000 random households are generated and their corresponding 

electricity and water consumptions for the “washing laundry” activity 

are calculated. For instance, simulation results for water consumption 
show that the average quantity of water consumed per French 

household for washing laundry is equal to 871 liters/month. Moreover, 

the average electricity consumed per household is equal to 12.51 

KWh/month. 

6. Model validation 
In order to validate the model proposed in this paper, simulation 

results for the energy consumption of the activity ‘washing laundry’ 
are compared against real measured data. Water consumption is not 

confronted here because of the lack of measured data. The real data of 

energy consumption used by washing machines in French dwellings 
are taken from a national monitoring study [37], where the histogram 
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of electricity consumption of washing machines recorded by the study 

is shown in Figure 7. In this study, electricity consumption of washing 

machine was monitored in 87 different households during a period of 

44 days. The measurements show that the annual electricity 

consumption of a washing machine is equal to 169 KWh/year. The 

extreme consumption values recorded were 850 KWh/year and 34 
KWh/year. The mean electricity consumption is equal to 14.24 

KWh/month while the minimum and maximum values are 2.89 and 

70.83 KWh/month respectively. 

In order to make comparison with real data, simulation results 
from model’s use-case 3 discussed previously (population-wise) are 

used. From the 10,000 simulation results, a sample of 87 results (equal 

to monitored dwellings) is taken. It must be noted here that several 
samples can be randomly chosen from the 10000 simulation results in 

possession. For this reason, a number of samplings (87 each) are taken 

and compared them to each other. The means (average electricity 
consumption) for all samples are almost similar, yet differences can be 

witnessed in maximum and minimum values. In The electricity 

consumption for a sample of 87 households taken arbitrarily from 

SABEC model’s simulation results is also plotted in Figure 7. 

Figure 7 . Electricity consumption of washing machines in 
87 French households: SABEC results versus real 

measured data from [37] 

A first comparison between the energy consumption distribution 
of simulation results and that of real data is performed through their 

corresponding descriptive statistics as shown in Table 12. 

The mean values (µ) of both distributions are very close to each other 

with µ = 14.98 KWh/month for simulation results and µ = 14.24 

KWh/month for real monitored data. 

A non-parametric test is also performed to compare the two samples. 

A Mann–Whitney-Wilcoxon test for independent samples is 

performed using the SPSS statistical analysis software. The p-value 
resulting from the test is equal to 0.809 which is favorable thus to 

retain the null hypothesis, that is the distribution is the same across 

both samples. This indicates that both samples have similar 
distributions of electricity consumption values. 

Table 12. COMPARISON BETWEEN SIMULATION RESULTS 
AND REAL DATA 
Electricity consumption (KWh/household/month) 
Simulation results Real data from [37] 

Minimum  2.33 2.89 

Maximum 77.41 70.83 

Mean (�) 14.98 14.24 

Standard deviation� 12.98 10.46 

The results from the statistical test, coupled with the comparison 
through descriptive statistics, confirm the similarity of energy 

consumption distributions for the activity ‘washing laundry’ between 

simulation results and real data. These results emphasize the validation 
of model simulation results, and thus of the SABEC model itself.  

7. Conclusions 
In this paper, a modeling approach which gives a probabilistic 

mapping between household profiles and their corresponding domestic 
energy consumption is proposed. A bottom-up model based on 

individual domestic activities and appliances is adopted. The 

stochastic activity-based model (SABEC) is exposed together with its 
different variables. An application example of the SABEC model is 

then demonstrated on the activity “washing laundry”. A number of 

simulations are performed so that to demonstrate the different 

functionalities of the model. Three simulation types of energy 
consumption are demonstrated: for specific households, for random 

households with constraints, and finally for population-wise random 

households. Simulation results for the “washing laundry” activity” are 
then presented and discussed. These results show a good similarity 

with real national monitored electricity consumption data. The 

advantage of the model in assessing consumption variability between 

different households with different attributes is then highlighted. 

Finally, the model is validated by confronting its simulation results to 

real measured data. It must be noted here that unfortunately in 

literature, we didn’t find an approximate modeling approach which is 
applied to similar population (French) so that to compare its simulation 

results with those yielded by the SABEC model presented here. 

For this instance, the SABEC model was only applied on two 
domestic activities, namely watching TV and washing laundry. A 

framework to generalize the model on other domestic activities is 

already sketched. Moreover, efforts for simplifying of the model are 
being conducted. For this sake, sensitivity analysis is used to identify 

the most influencing input variables of the model. This is already done 

for the “washing laundry” activity, where it is revealed that the major 

occupant-related factors influencing energy consumption of this 
activity are households’ number of adults, number of children, and 

total income. The details of this study are not included in this paper 

due to space limitation.  

The major features of the proposed model can be summarized by 

its capability, first to produce energy consumption estimates with a 

high granularity (per household and per activity), and secondly to 
assess energy consumption variability between different households 

with different attributes. Future works, beside model’s generalization 

and simplification, include also the development of a simulation tool 

which can be later integrated into the design process of buildings to 
help experts assessing detailed consumption trends of buildings. 
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