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REGULARIZATION BY NOISE FOR STOCHASTIC
HAMILTON-JACOBI EQUATIONS

PAUL GASSIAT AND BENJAMIN GESS

ABSTRACT. We study regularizing effects of nonlinear stochastic perturbations
for fully nonlinear PDE. More precisely, path-by-path L* bounds for the second
derivative of solutions to such PDE are shown. These bounds are expressed as
solutions to reflected SDE and are shown to be optimal.

1. INTRODUCTION

The purpose of this paper is to provide sharp, pathwise estimates for the L* norm
of the second derivative of solutions to a class of SPDE of the type

1
du+§|Du|2od§t=F(ZE,U7_DU,D2U)dt on RN’ (11)

for F' satisfying appropriate assumptions detailed below, ¢ being a continuous func-
tion and initial condition ug € BUC(RY). More precisely, under these assumptions
we show that, for each ¢ > 0,

1
D*u(t,)| e € ———— 1.2
O VY EOL (1.2
where L* is the maximal continuous solution on [0, o) to
dL*(t) = Vp(L*(t))dt +dé(t) on {t>0: L*(t) >0}, L*>0,
1 (1.3)

L*(0) = ———
SRR P e

and Vp : R, —» R is a mapping depending only on F' (see Corollary 2.4 below for

the details).

While one-sided (i.e. semiconcavity or semiconvexity) bounds for the second deriv-
ative are typical for solutions of deterministic Hamilton-Jacobi-Bellman equations
(cf. [6,22]), two-sided (i.e. C'!) bounds in general do not hold for degenerate par-
abolic equations’. This is reflected by either L* or L~ in (1.2), (1.3) with £ =0
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1See however the one-dimensional example in [29].
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2 P. GASSIAT AND B. GESS

attaining zero value in finite time and then staying zero for all time. In contrast,
we show that in the case of (1.1) such two-sided bounds may be obtained, due to
the "stochastic” (or "rough”) nature of the signal {. In particular, the inclusion
of the random perturbation in (1.1) and consequently in (1.3) can cause both so-
lutions L* to become strictly positive even after previously attaining zero value,
thus implying a two sided bound on the second derivative of u via (1.2). In this
sense, we observe a regularization by noise effect.

We next give a series of applications illustrating this effect (cf. Section 3 below for
the details).

Theorem 1.1. Consider the stochastic p-Laplace equation®
1
du + %|3zu|2 odB(t) = —0,(|0,u|" 1 0pu) dt  on R,
m

with m > 3, o > 0, B a Brownian motion and initial condition ug € (BUC n
W) (R) and set R := |0yugl| ;. Then, for all 0? >2(m—1)(m-2)R™3 and all
t>0,

|0zzt(t)| Lo < 00 P-a.s..

In contrast, for ¢ =0 and ¢ > 0 large enough one typically has |0, u(t)] = = oo.

This dependence of a regularizing effect of noise on the strength of the noise o
seems to be observed here for the first time®. We prove the critical noise intensity
to be optimal: In the case m =3 for 02 <4 we show (cf. Corollary 6.2 below) that
P-a.s.,

|0z2u(t)|z= = 00 for all >0 large enough.

In fact, for suitable initial conditions (cf. Section 6 below) we obtain the sharp

equality
1
L [ P —
Haﬂmu( )HL L+(t) /\L_(t)’

where L* are the solutions to the reflected (at 0*) SDE with dynamics on (0, c0)
given by

(1.4)

2 1
——* _dt+odB, L*(0)= —o
() b L) = )i

This implies the optimality of (1.2).
Theorem 1.2. Consider hyperbolic SPDE of the form

dL* =

1
du + §|Du|2 odBf = F(Du)dt onRY, (1.5)

2Equations of this form arise as (simplified) models of fluctuating hydrodynamics of the zero
range process about its hydrodynamic limit (cf. [14] and (1.10) below).

3In contrast, critical noise intensities regarding synchronization by noise have been observed
before (cf. e.g. [1,18,40]).
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where [H is a fractional Brownian motion with Hurst parameter H € (0,1), F €

C2(RY), and u(0,-) = ug € (BUC nWhe)(RN). Then, for all t >0,
P(| D*u(t, )|z~ < o0) =1

for u being a solution to (1.5).

In contrast, the solutions to the deterministic counterpart
1
Oyw + §|Dw|2 = F(Dw) or Ow=F(Dw) onRY
typically develop singularities in terms of shocks of the derivative, that is, Dw will
become discontinuous for large times, even if wq is smooth.

The following particularly simple example may help to illustrate the regularizing
effect of noise observed in this work (note that the bound does not depend on the
regularity of the initial condition).

Example 1.3. Consider hyperbolic SPDE of the form
1
du+§|Du|20d§t =0 onRY, (1.6)

with £ e C(R,) and u(0,-) =ug e BUC(RYN). Then
1
< — -
L (t)nL~(t)’
where L*(t) = & — mingoq &, L () = maxgeoq&s — &

| D*u(t, )|

Finally, let us mention that our regularity results imply some estimates for large
time behavior. For instance, if u is a solution to the stochastic Hamilton-Jacobi
equation

1
dut SO o df =0, u(0,) = (),
then, for all ¢ > 0, (cf. Proposition 3.7 below)

2ol .
IDu(t, )]~ < \’ I+2],

maXop<s<t /B(S) — infocee B(S) .

Note that when /3 is a Brownian motion, we get a rate of decay in ¢~/ which is
the same rate as obtained in [24].

The proof of the main abstract result is based on the regularizing effects of the
semi-groups Sy and S_p associated to the Hamiltonians H :=p — %pQ and -H. It
is well-known that Sy and S_g allow to obtain one-sided bounds (of the opposite
sign) on the second derivative (cf e.g. [34]), and the fact that one can combine
these two bounds to obtain C!! bounds goes back to Lasry and Lions [32]. Our
main theorem is in a sense a generalization of their result.
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1.1. Literature. The questions of regularizing effects and well-posedness by noise
for (stochastic) partial differential equations have attracted much interest in recent
years. The principle idea is that the inclusion of stochastic perturbations may lead
to more regular solutions and in some cases even to the uniqueness of solutions.
Historically, possible regularizing effects of additive noise have been investigated,
e.g. for (stochastic) reaction diffusion equations

dv=Avdt+ f(v)dt +dW;

in [28] and for Navier-Stokes equations in [20,21]. In [4,15,16], well-posedness and
regularization by linear multiplicative noise for transport equations, that is, for

dv =b(x)Vvdt + Vv odf,,

have been obtained. Regularization by noise phenomena have been observed in
several classes of nonlinear PDE, such as Navier-Stokes equations [20,21], nonlin-
ear Schrodinger equations [10], alpha-models of turbulence [3], dyadic models for
turbulence [19], nonlinear heat equations |9, 28], geometric PDE [13,39], Vlasov-
Poisson equations [11] and point vortex dynamics in 2D Euler equations [17],
among many more. We refer to [19,26] for more details on the literature.

Recently, regularizing effects of non-linear stochastic perturbations in the setting
of (stochastic) scalar conservation laws have been discovered in [24]. In particular,
in [24] it has been shown that quasi-solutions to

dv + %(911)2 odf;=0 onT (1.7)

where T is the one-dimensional torus, enjoy fractional Sobolev regularity of the
order

1
ve LY[0,T];W*!(T)) for all a< 2 P-a.s. (1.8)

This is in contrast to the deterministic case, in which examples of quasi-solutions
to

1
Ov + 58961)2 =0 onT
have been given in [12] such that, for all a > %,
v ¢ L([0, T]; WX(T)).

In this sense, the stochastic perturbation introduced in (1.7) has a regularizing
effect. In [24], the question of optimality of the estimate (1.8) remained open.

Subsequently, the results and techniques developed in [24] have been (partially)
extended in [25] to a class of parabolic-hyperbolic SPDE, as a particular example
including the SPDE

1 1
dv + 5896112 odf; = Eﬁmv?’ dt onT. (1.9)
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Equations of the type (1.9) arise as (simplified) models of fluctuating hydrodynam-
ics of the zero range process about its hydrodynamic limit, as informally shown
by Dirr, Stamatakis, and Zimmer in [14]. More precisely, in [14] the fluctuations
were shown to satisfy a stochastic nonlinear diffusion equation of the type

dv=A (D)) dt+ V- (Ved(v) o diV), (1.10)

where dW is space-time white noise. In the porous medium case ®(p) = p|p|™1,
choosing m = 4 and replacing dIW by spatially homogeneous noise, this becomes
(up to constants)

1
dv® = Oy (VUP) + 5&1}2 odf,.

In [25], the regularity of solutions to (1.9) was analyzed. More precisely, it was
shown that

2
ve LY[0,T];W*!(T)) for all a< o P-a.s.

However, neither optimality of these results nor regularization by noise could be
observed in this case. That is, the regularity estimates for solutions to (1.9) proven
in [25] did not exceed the known regularity for the solutions to the non-perturbed

cases
1 1 1
oy + 58351}2 = Eamv3 or 0w = E&wv?’ on T.
In [24,25] the estimation of the regularity of solutions to (1.7), (1.9) relied on
properties of the law of Brownian motion. The question of the path-by-path prop-
erties of 5 leading to regularization by noise could thus not be answered (cf. [7] for
related questions in the case of linear transport equations).

If w is the unique viscosity solution to the SPDE
1
du + %(&Cuf odfy; = E&B(ﬁzu)?’dt, on R,

then, informally, v = J,u is a solution to (1.9). Hence, in the present work both the
question of optimal regularity estimates for (1.9), as well as an analysis of path-by-
path properties of the driving noise leading to regularizing effects are addressed.

1.2. Organization of the paper. In Section 2 we give the precise statement of
the assumptions and the main abstract theorem. Subsequently, we provide a series
of applications of the main abstract result to specific SPDE in Section 3. The
proof of the main abstract result is given in Section 4, while sufficient conditions
for its assumptions are presented in Section 5. The proof of optimality is given in
Section 6. In the Appendix A we recall the employed well-posedness and stability
results for stochastic viscosity solutions.
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1.3. Notation. We let R, := [0,00) and SV be the set of all symmetric N x
N matrices. We further define CF([0,T];R) := {£ € C*([0,T];R) : £(0) = 0},
Lip,,.(RY) to be the space of all locally Lipschitz continuous functions on RY and
Lip,(R,) to be the space of all bounded Lipschitz continuous functions on R,. For
a cadlag path § we set ;=& —&;_.

Given a continuous function F' we let (Sp(s,t)),., be the (two-parameter) semi-
group, in the sense of viscosity solutions and in case it exists, for the PDE

Ow = F(t,x,v, Dv, D*v), (1.11)

namely if v is a solution to (1.11) with v(s,-) = vs then Sp(s,t;vs) = v(t,-). Simi-
larly for a given H we let (S (t)),o = (Su(0,t)),5o be the (one-parameter) semi-
group associated to the equation

o+ H(Dv) = 0.

For a locally Lipschitz continuous function V' : (0,00) - R we define V(%) :
R, - R,, as the solution flow to the ODE /(t) = V(¢) stopped when reaching
the boundaries 0 or +oo (i.e. t+ Y (t;¢) is the solution to this ODE with initial
condition ¢V (0;¢) = ¢).

For notational convenience, we set H(p) := 1|p|> and Sy (-0) := S_y(8) for & > 0.

A modulus of continuity is a nondecreasing, subadditive function w : [0,00) —
[0,00) such that lim,_ow(r) = w(0) = 0. We define UC(RY) to be the space of all
uniformly continuous functions, that is, u € UC(RY) if |u(z) —u(y)| < w(|z-y|) for
some modulus of continuity w. If, in addition, u is bounded, we say u ¢ BUC(RY).
Furthermore, USC(R¥Y) (resp. LSC(RY)) denotes the set of all upper- (resp.
lower) semicontinuous functions in RV, and BUSC(RY) (resp. BLSC(RY)) is
the set of all bounded functions in USC(RY) (resp. LSC(RY)).

We denote by |u|. the usual supremum norm of a function u : RV - R. For
E c RN we let |u|p=(g) = sup,eg [u(z)]. We further let |Du|. be the Lipschitz
constant of w.

We say that a function v : RY — R is semiconvex (resp. semiconcave) of order C' if
z ~ u(z) + 5C|zf? is convex (resp. z +— u(x) - 3C|z? is concave). We let | D?u«
be the smallest C' such that u is both semiconcave and semiconvex of order C.

For a,b € R we set a A b := min(a,b), a v b := max(a,b), a+ := max(a,0) and

a- = max(-a,0). For m > 1, u € R we define ul™ := |u/"u. We let K, K be
generic constants that may change value from line to line.

Acknowledgements. The work of PG was supported by the ANR, via the project
ANR-16-CE40- 0020-01. The work of BG was supported by the DFG through CRC
1283.
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2. MAIN ABSTRACT RESULT
We consider rough PDE of the form

1
du + §|Du|2 odé(t) = F(t,x,u, Du, D*u)dt
u(0) = uy,

(2.1)

where ug € BUC(RY), £ is a continuous path and F satisfies the typical assump-
tions from the theory of viscosity solutions, that is,

Assumption 2.1. (1) Degenerate ellipticity: For all XY € SN, X <Y and
all (t,x,r,p) € [0, T] xRN xR xRN,

F(t,z,r,p,X) < F(t,z,r,p,Y).
(2) Lipschitz continuity in r: There exists an L >0 such that
|F(t,z,7,p, X)-F(t,x,s,p,X)| < Lir-s| V(t,2,57,p,X) e [0, T]xR¥xRxRxR" xSV,
(3) Boundedness in (t,x):

sup |F(+,-,0,0,0)| < oo.
[0,T]xRN

(4) Uniform continuity in (t,z): For any R >0,
F is uniformly continuous on [0,T] x RN x [-R, R] x Bg x Bp.

(5) Joint continuity in (X,p,x): For each R > 0 there exists a modulus of

continuity wp g such that, for all o > 1 and uniformly int € [0,T], z,y e RV,
re[-R,R],

F(t,LU,T,Oé(I'—y),X) - F(t,y,r,oz(x—y),Y) < wF,R(a|'T_y|2 + |‘1: _y|)7
for all X, Y € SN such that

T O (X0 Ngo T T
Yo r)3\o v )\ r 1 )

We refer to the Appendix A for an according well-posedness result for (2.1).

We will make the following assumption on F' :

Assumption 2.2. There exists Vi : (0,00) —= R, locally Lipschitz and bounded
from above on [1,00) such that for all g€ BUC(R™), t >0, one has for all £ >0,

Id
S -
OVE(t;0)

the inequalities being understood in the sense of distributions.

D?g<('Id = D*(Sp(t,g))
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The above assumption yields a control on the rate of loss of semiconcavity for Sg.
Note that "7 may take the value 0 and thus no preservation of semiconcavity is
assumed.

Theorem 2.3. Let ug € BUC(RY), £ e C(R,), suppose that Assumptions 2.1, 2.2
are satisfied and let u be the unique viscosity solution (as defined in Theorem A.1)
to

du + 3| Dul? o d¢(t) = F(t,x,u, Du, D*u)dt,

u(0,-) = ug.
Suppose that D?ug < é—j for some ly € [0,00), in the sense of distributions. Then,

for each t >0,
Id

L(t)’
in the sense of distributions, where L is the mazimal continuous solution on [0, co)
to

D2u(t,) < (2.2)

dL(t) = Vi (L(t))dt + dE(t) on {t>0: L(t) >0}, L>0,

L(0) = 4. (2:3)

The proof of Theorem 2.3 is given in Section 4 below.

Corollary 2.4. Let ug e BUC(RY), £ e C(Ry) and suppose that Assumptions 2.1,
2.2 are satisfied by F* := F and F~(t,z,r,p, X) = —=F(t,z,-r,—p,-X). Let u be
the unique viscosity solution to (2.3) and suppose that —é—ii < D?uy < %i for some
0 0

(%t €[0,00), in the sense of distributions. Then, for each t >0,

1

l)2 t * o) S 9

in the sense of distributions, where L* is the mazximal continuous solution to (2.3)
with initial value €5, drift Vi and driven by +£.

This corollary follows from Theorem 2.3 applied to v and —u.

3. APPLICATIONS
In this section we provide a series of PDE for which regularization by noise can be
observed based on our main abstract Theorem 2.3.

We first present a series of PDE to which Assumption 2.2 applies. We defer the
proof of this fact (as well as the statement of a more general criterion) to Section

5.

Proposition 3.1. (1) First-order PDE: Let
F = F(t,2,p)  C([0,T); CA(RY x RY)).
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Then Assumption 2.2 is satisfied with
Ve(0) = = | Fazloo = 2| Fapll oo € = | Fppl -

More generally, let F'= F(t,z,p) € C([0,T] x RN xRN) such that (z,p) —
F(t,z,p) is semiconcave of order Cr. Then, Assumption 2.2 is satisfied
with
Vp(f) = —CF(I +€2).
(2) Quasilinear PDE: Let
F(x,p,A) =Tr(a(x,p)A) e C(RY x RN x SN

where a(x,p) € C?(RN xRN is nonnegative, has bounded second derivative
and (y,p) —\/a(y,p) is convex. Then Assumption 2.2 is satisfied with

1
Vi(€) = =N [azz] o € = 2N azpll o = N lapp] o0 5-

(3) Monotone, concave, fully nonlinear PDE: Let
F=F(tA)eC([0,T] x )

be concave and non-decreasing in A € SN. Then Assumption 2.2 is satisfied
with VF =0.

(4) One-dimensional, fully nonlinear PDE: Let F' = F(t,z,p,A) € C([0,T] x
R xR x R) such that (x,p) = F(t,z,p,A) is semiconcave of order Cp(A).
Then, Assumption 2.2 is satisfied with

V() = -Cp(1 + 0?).
Theorem 3.2. We consider the quasilinear PDE

1
du+ S| Duf o d¢(t) = a(Du)Audt - on [0,T]xRY,
u(0) = uo,

where ug € (BUC nWh)(RN), a € C?(RY) is nonnegative such that p — \/a(p)
18 convex. Then,

9 1
| D=u(t, )|l < TN ()

where L* are the mazimal solutions on R, to

N pp oo R + 1
ar(r) = - Nl L|+L(t<)B O) 4 agt), L*(0) = D%l

N ppll L= (BR - !
01() - SRS ), L0 e

with R := | Duyl|, -
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In particular this includes the p-Laplace equation in one space dimension
1 5 1 [m]
du + 5\8xu| od&(t) = —0,(0,u)™ dt,
m

with a(p) = |p|™ ' and m > 3.

Proof. We aim to apply Theorem 2.3. Hence, we have to verify Assumption 2.2.
Fix vy in BUC nW1>)(R¥) and let v be the (unique bounded) viscosity solution
to

0w =a(Dv)Av, v(0) =vy. (3.1)
Note that by Lemma 5.5, one has | Dv(t)| e < | Dvo| o, 80 that modifying a outside
of the ball of radius R does not change the solution to (3.1), and we may assume
that [|ap || L=~y = |ap| 2= (B (0))-

By Proposition 3.1 (2), Assumption 2.2 holds for both F*(p, A) = -Tr(a(p)A) and
F=(p,A) =-Tr(a(-p)A) with both of VZ given by

NH%}JHLW(BR(O))

1
The result then follows from Corollary 2.4. U

V() =-

Corollary 3.3. Under the same assumptions on a and ug as in Theorem 3.2
consider the SPDE

du + %IDuI2 °df(t) = a(Du)Audt on [0, T]xRY,
u(0) = uy,

with 0 > 0 and B a standard Brownian motion. Let R := |Dugl|,. Then, if
o> 2N||appHL°°(BR(O)); t>0,

|D*u(t)]eo < 00 P-a.s..
Proof. Immediate consequence of Theorem 3.2 together with Proposition 4.8 below.
O
Theorem 3.4. We consider the first-order PDE

1
du + §|Du|2 odé(t) = F(Du)dt on RY,

where ug € (BUC N W1L2)(RN) and F € C2(RN). Then,

1

| D*u(t,)| L~ < T AL (1)
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where L* are the mazimal continuous solutions on R, to

1
dL™(t) = =[ Fpp|l L (Brondt +d&(t),  L7(0) = W7

| _ 1 (3.2)
dL™(t) = = Fypllp(Broydt - d&(t), L7(0) = [(D2uo)-]

where R = | Dug| -

Proof. As in the proof of Theorem 3.2, this is a direct consequence of Corollary
2.4 and of Proposition 3.1 (1). O

The proof of Theorem 1.2 now follows from the fact that the solutions L* to (3.2)
with initial condition L*(0) =0 are given by
L7(t) = (€0 = [ Fop = mrcont) = min (€05) = [ Fppll (5 (0)5)

L (1) = max (65) + | Fopl =0 ®) = (€8) | Epl i)
Then, if £ = 57 is a fractional Brownian motion then for all ¢ > 0 one has P-a.s.

that
oy EO ) () - e(0)
stt t—s st t—s

so that L*(t) A L=(t) > 0.

+00

Y

Theorem 3.5. We consider the quasilinear, one-dimensional PDE

O + %|8xu|2 o dE(t) = F(Dypu)dt,
u(0) = ug € BUC(R),

where F' e CO(R) is non-decreasing. Then,

1
|0zeu(t, ) [ L < I+

DAL (D) (3:3)

where
L*(t) =¢(2) —Srg[loig]ﬁ(SL L(t) = max &(s) = &(1).

Proof. Note that the L* are the maximal continuous solutions to dL* = +d§, L* > 0,
L*(0) = 0. The results is then immediate from Corollary 2.4 and Proposition 3.1
(4). O

Remark 3.6. We emphasize that the estimate (3.3) is uniform in F and uy. For
example, consider F™(r) = rlml = |r|m=1r — sgn(r) for allr € R for m — 0 and let
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uft € (BUC n WHH)(R) with uf* - ug in WLL(R). Then, at least formally, (3.3)
continues to hold for the limit

1
du + §|8mu|2 o d&(t) = sgn(Dppu)dt
implying Lipschitz bounds for the stochastic total variation flow
1
dv + §8x02 o d¢(t) = Opsgn(0,v)dt.

These bounds improve the deterministic case. Indeed, in [5, Section 2.5] it has been
shown that the solution v(t,-) to the total variation flow in one spatial dimension

Oyv = 0 sgn(0,v)

is a step-function if vy is. In particular, for vg € BV (R) one only has v(t) € BV (R)
m general.

Proposition 3.7. Let u be the solution to
1
du + §|Du|2 o dé(t) = F(Du, D*u)dt,
u(0) = ug € BUC(RY),

(3.4)

where F' satisfies the assumptions of Theorem 2.3. Then for all t >0

HDu(t )H < inf \l 2(SUpu0—inqu)

O<s<t L*(s) v L(s)

where L* are the bounds on D?u from Theorem 2.3.

Proof. This is an immediate consequence of Theorem 2.3, noting that if u is semi-
concave (or semiconvex) of order C' then |Dufe < 1/2C (supu—infu) (e.g. [34,
p.240]), and the fact that since the coefficients in (3.4) only depend on Du and
D?u, (supu(t,-) —infu(t,-)) and |Du(t, )| are nonincreasing in ¢ (cf. Lemma
5.5). 0

4. PROOF OF THEOREM 2.3

The proof of Theorem 2.3 is based on a Trotter-Kato splitting scheme for (2.1).
The estimate (2.2) is then proven for the corresponding approximating solutions
u™ with respect to a discretization L™ of L, based on semiconvexity estimates
for Sy, with H(p) = 1|p|*>. The corresponding estimates are derived in Section
4.1 below. The rest of the proof then consists in proving the convergence of the
approximations L™ (cf. Section 4.2 below) and u™ (cf. Section 4.3 below). Finally,
the proof of Theorem 2.3 is given in Section 4.
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4.1. Inf- and sup-convolution estimates. In this section we provide Lipschitz
and semiconvexity estimates for Sy with H(p) = 3[p]>. We refer to [32,34] for
related arguments.

Recall that for ¢ € BUC(RY), Sg(0,¢) can be written as
sup, e (0(y) - 554 ), i 620
inf v (gb(y) . y‘ ) if §<0.

We then extend the definition of Sy (4, ¢) to arbitrary ¢ : RV — R by the above
formula (Sg (6, ¢) may possibly take the values +oo or —oo).

Lemma 4.1. If ¢ : RN - R is convex (resp. concave), then so is Sy (0,¢), for all
0eR.

Proof. We will prove the claim only for § > 0, the case < 0 then follows noting
that Sy (6,-¢) = =Sk (-9, ¢).

We begin by the case when ¢ is concave. Then for any x1,xs € RN and X € [0, 1],
S (6,0)(Ary + (1= N)x)
1
sup {9(y) - 55 - (o + (1= Naa)l*}
N 20

yeR
1
= sup {60+ (1= A)) = 55 M —0) + (1= ) (w2 - 22)}
y1,y2€RN
1 1 2
-y - 1- — o —
2% sup {9(01) = gl —i}+ (1-3) sup {9(02) = 5~}

= ASu(0,0)(x1) + (1= A)Su (0, ¢)(x2),
where in the third inequality we have used the concavity of ¢ and of —=1/(24)|- |*.

We now assume that ¢ is convex. Then for x1, 25 € RN and A € [0, 1],
Su(9,0)(Axy+ (1= N)x2)
= sup { A1+ (1=XN)zy—2) - |z| }

zeRN

< sup (A0 = 2) = 52 ) + (1= M@z - 2) - o 12P) )

zeRN

< A sup {¢(x1 -z) - %|z|2} +(1=X) sup {¢(9€2 -z) - 216]Z|2}

zeRN zeRN

=ASE(0,0)(x1) + (1 =X) S (5, 0)(x2).
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Proposition 4.2. Let ¢ € BUC(RN), 1 = Sy(6,0) for some § € R and X € [0, 00).
Then

D?*¢p<\'d = D% < (\-6);'1d, (4.1)
D?*¢p>-\"1Id = D*p>—-(\+0); 1d.

Proof. To prove (4.1), (4.2), we again may assume without loss of generality that
d > 0. We focus on (4.2) namely we prove that if ¢ = Sy (6, ¢),

b+ ﬁ| ]? convex = 1)+ 2()\1+ 5 |-|? convex.
Indeed,
1 - L e ! 2
ATo e L felﬂi%{¢(y) ST +2(A+6)|x|}
_ S TN S
= s {otw) + ol b - gl .

By a direct computation, 5x|y|* + 55|z — y[? - 2(/\—1+5)|x|2 can be written as a|r — Sy/?
for some o, > 0, so that (after an affine change of coordinates) one can apply
Lemma 4.1 to obtain convexity of ¢ + 2(/\—1+5)| -2

The proof of (4.1) is similar (using the preservation of concavity from Lemma
41). 0

4.2. Reflected SDE. In this section we first study stability properties of solutions
to reflected SDE and then their boundary behavior.

Let V' be locally Lipschitz on (0, +o0), bounded from above on [1,00), and £ be a
continuous path. In this section we study the maximal solution on [0,7] to

dX(t) =V(X(t))dt+d&(t) on {X >0}, X >0, X continuous
X(0) =z €R,.

More precisely, a function X € C'([0,T];R,) is said to be a solution to (4.3) if, for
all s<te[0,T],

(4.3)

X>0on [s,t] = X(t)=X(s) +/StV(X(u))du+§s,t.

Let S(V,&,x) be the set of solutions. Note that by the assumptions on V' there
exists a unique solution X to (4.3) until 7 = inf{t > 0 : lims; X (s) = 0}, and a
particular element of S(V, &, x) is given by letting X (¢) =0 for ¢t > 7.

Proposition 4.3. Let V' be locally Lipschitz on (0,+00), bounded from above on
[1,00), and & be a continuous path. Let

X’(t) =sup{Y(t): Y eS(V,&x)}.
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Then, X € S(V, ¢, ).

Proof. We first show that elements of S(V,¢,x) are equibounded and equicontin-
uous. Indeed, it is easy to see that

M=x+1+T ||V+HL0°([L+OO)) +2 &, ||L°°([0,T])
is an upper bound for X. Then letting for € > 0

wWe (1) =7 [V o ey + w0 (1)

where w¢ is a modulus of continuity for £ on [0,T'], one sees that each element
X of §(V, £, x) admits w. as a modulus of continuity on (connected subsets of)
{X >¢e}. Now let

w(r) = ing (2e + 2w (1))
and note that limsup,_,w(r) < inf..g (2 + 2w.(0*)) = 0. We now claim that w is
a modulus of continuity for X. Indeed, given s <t in [0,7T], either X > ¢ on [s,t],
or there exist sy <ty € [s,t] with X (s1), X (¢1) <e, with X > on (s, s;) and (¢1,t)
(these intervals might be empty if X <ein ¢ or s). Then one has
[X(#) = X (s)[ < [X (1) = X ()] + [X(#0)] + [X (s1)[ + | X () = X (1)
<2e+w(ty —t) +we(s—s1).
It follows that X is non-negative, finite and continuous on [0,7]. Note that since
S(V, &, x) is stable under the maximum operation, one can find an increasing se-

quence X" in S(V, &, x) converging to X uniformly. One then simply passes to the
limit to check that

X>0o0n[s,t] = X(t)=X(s) +/:V()A((u))du+§s,t.

0

For any given triplet (V,£,x) as above, we will now denote by X (V, €&, z) the
maximal element of S(V, &, x) given by the previous proposition.

Proposition 4.4. Let V' admit a Lipschitz continuous extension to [0,00). Let
(X, R) be the unique continuous solution to

dX(t) =V (X(t))dt +d&(t) + dR(t), X >0, dR >0, dR(t)l{X(t)>0} =0,

X(0) =z, R(0)=0. (4.4)

Then X = X(V,f, x). In particular, £ — X s continuous in supremum norm.
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Proof. Let X solve (4.4). Since X € S(V,¢,z), clearly X < X. Then if X > X on
[s,t], clearly X >0 on this interval, so that

(1) - X(1) = (X(5) - X() + [ (V(X() -V @))du~ [ dr(w)
< (X(s) - X(s)) + fstcv X (1) - X (u)|du
where C'y is the Lipschitz constant of V| so that by Gronwall’s lemma
X(t) - X(t) < (X(s)-X(s))eCvEs).

Letting s | inf{r € [0,¢] : X > X on [r,t]} we obtain that X(t) - X(¢) <0, a
contradiction. 0

Proposition 4.5. Let £ € C([0,T]), V € Lip(R,) and bounded from above, with
associated flow V. Let {t!},50 be a sequence of partitions of [0,T'] with step size
= sup; [t —tP - 0 asn — oo. Formn >0, define L™ by
n(4n _ Vim _4n 1n " n
L™ (thy) = (90 (th — 1 7Lty) + fti ’ti+1)+ (4.5)
L™(0) = 4.

Let (L, R) be the (unique continuous) solution to the reflected SDE
dL(t) = V(L(t))dt + d&(t) + dR(t), L(t) >0, dR(t) >0, 1{rws0dR(t) =0
L(0) = £y, R(0)=0.
Then, L™ converges uniformly to L on [0,T].
Proof. Given n, i 20, let k = sup{j <i,%} = 0}, or k = 0 if this set is empty. Then
one has
L(t7) < LM(t) + Vil (87 = 83) + &g ap| < lo+ |[VillooT + 2[€ |-

Hence, the (L"(t!')) are uniformly bounded, and since V' is continuous we may
assume w.l.o.g. that V' is bounded.

We then note that there exists a modulus @ such that for all n, for all ¢ < t%, one
has

L (t7) = LM ()| | < ot - 7). (4.6)
Indeed, taking ¢ <t7, we distinguish two cases :
(1) If L™(t}) > 0, for each i < k < j, we then have
L7 () = L (|| < [V oo (8 — 1) + w(t} ~ 27),

where w is the modulus of continuity of .
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(2) Otherwise considering the first and last times where L™ = 0 between {} and
and applying the above bound, we obtain

Lo () = L ()] < 2(IV o (8 = 1) + w(t} ~ 1))
We then extend L" to all of [0,T"] by letting L™(0) = ¢, and then

sAp;
L™(s) = L”(t?)+L V(L"(u))du, tP<s<tl,, where p}=inf{s >t L"(s) =0},

Ln(t?+1 (Ln(twl + gt” tr )

707+

We then obtain from (4.6) that for all ¢ <¢ in [0,77],
(L") = L"(8)] < en + (1" = 1),

where €, = ||V |, + w(m,) = 0 as n - oco. By an Arzela-Ascoli argument, this
implies that, passmg to a subsequence if necessary, L™ — L (locally uniformly) for
some continuous L, and it is enough to show that L=L.

Letting
RvY(s)= 3 (LM(tha=) +&oap, )

n
tz+1 <s

R (s) 1= (<V(0) [ Lizn-opdu.

note that R™?2 is identically 0 unless V' (0) <0, so that R" := R™! + R™? is nonde-
creasing. In addition, one has

) = [ V() s o + RIH),

and it follows that R™ converges uniformly to some R, which is nondecreasing and
such that

() - fot V(L(s))ds + o, + R(2).

Note that this implies in particular that R is continuous. It only remains to prove
that L(t)dR(t) = 0. Assume that L(s) > e > 0. Then for n large enough, one has
L"(s) > /2, and then taking h such that for instance |V|.h +w(h) < €/4, one
has L" >0 on [s - h,s + h]. In particular, dR"([s - h,s + h]) = 0, and passing to
the éimit, dR([s—h,s+h]) =0, and we have proven that 1,; . \dR(t) =0, for aél
e >U.

Proposition 4.6. Let V', V2 be locally Lipschitz on (0,+00), bounded from above
on [1,00), & be a continuous path, v € Ry, and let X! = X(V1 & x), X2 =
X(V2¢ x). Then

VI>V? on (0,+00) = X'> X% on R,.
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Proof. Fix x > & > 0, let V1 = V1 + ¢ and X'¢ be the corresponding solution
reflected at e (i.e. X1 = X(z—e,VIe(-+¢),£) +¢). We first prove that X1 > X2,
We proceed by contradiction, and let ¢ = inf{s > 0, X1(s) < X2(s)}. By continuity
of X1, X2 it holds that for some & > 0, V1(X1e(s)) > V2(X2(s)) for s € [t,t+0).
Note that V1#(- + ¢) is Lipschitz continuous in a neighbourhood of 0, so that we
can use Proposition 4.4 to obtain, for s € [¢,t+ ),

X1e(s) = X2(s) = ft TV (R () - VAR (1)) du + ft TdRY (u) > 0,

which is a contradiction.

By the same argument, we see that X1e decreases as € | 0, and as in the proof
of Proposition 4.3 we can show that the limit X! is in S(V,{,x). This yields
X2 < X' < X! which finishes the proof. O

We next analyze the boundary behavior of the solutions to (4.3). The first result,
Proposition 4.7 below, shows that if the signal ¢ is too regular compared to the
singularity of V' at zero, then zero is absorbing or repelling depending on the sign
of V. In contrast, in the case that ¢ is given by Brownian motion, Proposition 4.8
below shows that zero may be either absorbing, reflecting or repelling, depending
on the singularity of V' at zero.

Proposition 4.7. Assume that £ € C*, o€ (0,1]. Then :
(1) If V is nonincreasing and satisfies imsupg_ o7~ fOT V(s*)ds = +o00, then
Vi >0,X(t)>0.
(2) If V is nondecreasing and satisfies limsupp_, 7~ [OT V(s*)ds = —oco, then
X(t)=0=Vs>t,X(s)=0.

Proof. (1) The case where X (0) > 0 is treated in [37, Prop. 2.2], and we only need
to prove the case where X (0) = 0.

We fix § > 0, and take V? <V with V? bounded and Lipschitz on R,, and such
that

Vo(0*) > inf Soi_
5212520 (t — )

(4.7)

Let X := X(V%,£, x). Then by Proposition 4.6 one has X > X, and by Proposi-
tion 4.4, for all s <t,

XO(t) > X0(s) + ft VA(X9(s))ds + Eu .
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By (4.7), X° is not identically 0 on [0,6], and neither is X. Hence there is a

sequence ts — 0 with Xt5 > 0, and by the case XO > 0 we conclude that X > 0 on
(0, 00).

(2) is a consequence of (1) by time-reversal: If for some s < ¢, one has X (s) = 0 and
X >0 on (s,t), then letting Y (u) = X (¢t —u), Y satisfies the assumptions of (1)
(with V replaced by =V, £ by &,_.), and Y (¢ — s) = 0 which is a contradiction. [

When £ is a standard Brownian motion, one has a complete classification of the
boundary behavior at 0.

Proposition 4.8. Let V' be locally Lipschitz on (0,+00), bounded from above on
[1,00), x € Ry, B be a linear Brownian motion, and let X = X (V, B,x). Define

1,1 1,1
It = f f 2V dugydy T = / f e 2LV Wdugydy.
0 T 0 T

Then one has the following four possible cases :
(1) (Regular boundary) If It < co, I~ < oo, then :
V> 0,P(X(t)=0)=0, P(Is<t, X(s)=0)>0.
(2) (Ezit boundary) If I- =00, [t < o0 :
P(3s<t,X(s)=0)>0, P(Is<t,X(s)=0,X(t)>0)=0
(3) (Entrance boundary) If I* = o0, I~ < 0o :
P(Vt>0,X(t)>0)=1,
(4) (Natural boundary) If [T =1 =00 :
If >0, then P(Vt>0,X(t)>0) =1, if 2 =0 then P(Vt,X(t)=0) = 1.

Proof. This is mostly standard (cf. e.g. [30, sec. 15.6]), noting that I* = [, dm(z) [, ds(y),
- = fol ds(z) le dm(y) where s is the scale function and m is the speed measure
associated to (4.3).

In case (1) the diffusion admits several possible boundary behaviors (so that
S(V,&,x) is in general infinite), but it is known that there exists a process X €
S(V, &, x) which is instantaneously reflected i.e. such that P(X(¢) =0) = 0 for all
t>0. Since X > X this implies that P(X (¢) = 0) = 0. O

4.3. A Trotter-Kato formula. In this section we establish a Trotter-Kato for-
mula for viscosity solutions to (2.1).

From Theorem A.1 recall that for ug e BUC(RY), £,¢ € C([0,T];R) we have
|5 (uo) = 5¢(uo)| , < @ (0. = ol ) (4.8)
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for some function ® as in Theorem A.1.

We now show that, as a consequence of this estimate, it is possible to define S¢(ug)
for paths £ admitting jumps, in such a way that the estimate (4.8) remains true.

To this end, let £ be a piecewise continuous path on [0,7T] with jumps A{(¢;) :=
E(ti+) — &(t;—) for i = 1,...,m — 1 along a partition (¢;)o<i<m of [0,7]. We then
define u = S¢(ug) as the solution to

U(O’ ) = UO(')7
u(t) = (SStinlu(t;)) (t) on [t tin),VO<i<m -1,
u(tisr) = Sp(AL(ti)) (u(tivi-)), 0<i<m=2.
This definition is in the spirit of Marcus’ canonical solutions to SDE driven by
jump processes [36], and consists in replacing each jump A¢ by a "fictitious time”

during which the equation 0;+ H(Du) = 0 is solved. This interpretation is actually
used in the proof of the following proposition.

Proposition 4.9. Let ug € BUC(RY) and &, ( be piecewise-continuous paths.
Then, (4.8) holds.

Proof. The idea is to change the parametrization of £, { in order to replace the
piecewise-continuous paths by continuous paths.

We replace [0,77] by [0,7], obtained from [0,7] by adding an interval for each
jump of & and (. For instance, say that £ and ( have jumps at the points

I=um [t + (20 -1)0,t; +2i6), J=[0,T]~1.
We further fix a continuous function v° satisfying
0<y? <1,
Y’ =0on I, ¢°>0 on the interior of J,

ti+(2i-1)5
f D)o =t;, Yie{l,...,m).
0

Then s%(t) := [, 1°(u)du defines a bijection from .J to [0,7].

We define € such that € = £osd on J, € is continuous on [0, 71, and ¢ is affine linear
on each interval of I and analogously for (. We further let

Fo(t,) = F(s°(t), )0o(t), tel0,T].
Let @ be the solution to
div = F(t,z,u, Da, D*@)dt — H(Da) o d€(t)
ﬂ(O) = U,
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and define @¢ analogously. Then

SEQuo)(t,) = @ ((s°) (1), ), SC(uo)(t,-) =@ ((s°)}(t),"),

so that
HSE(UO) - SC(UO)HOO A3 HﬂE - aCHm <P (Héo - CZO,HOO) = (”50,- - C0,~Hoo),

where ® is given by Theorem A.1 applied to F,T. Now since F satisfies Assumption
2.1 (2)-(3)-(5) with the same quantities as F, and since T may be taken as close
to 1" as one wishes by letting 0 — 0, it follows that the estimate above also holds
with @ replaced by ®.

0

Corollary 4.10 (Trotter-Kato formula). Let £ € C([0,T]), up € BUC(RY) and
let u be the corresponding viscosity solution to (2.1). Further let (t') be a sequence
of partitions of [0,T] with step-size going to 0. Define u™ by

u"(t,-) = (SF(t 1) 0 Su(&en ) 0 Sp(tiq,t7) 00 Su(ouy) © SF(Ovt?)) (uo),
forte[ty,17,,). Then

|u™ = ull oo, ryxrry >0 for n — oo,

Proof. We have u™ = 5" (ug), where £ is the piecewise constant path equal to &

on [t7,t" ). The claim now follows from Proposition 4.9. U

4.4. Proof of Theorem 2.3. Let t} = % and

WN(1) = i€y ) 0 () 000 Sia(€pap) 0 ()l
By Corollary 4.10, one has
u(t,-) = lim u™(t,-).
Proposition 4.2 combined with Assumption 2.2 implies

Id

D2u”(t, ) < Ln—(t),

where L™ is defined by the induction
t
L(0) = o, L'(17) = ("7 (D)L (B1) =€)

Now If Vi admits a Lipschitz extension to [0, c0), then as n — oo L™ converges to
L by Proposition 4.5 and we are done.

Let now V' be only locally Lipschitz continuous. First assume that L > ¢ > 0
on [0,t] for some € > 0. Let V be Lipschitz continuous on [0, c0) with V =V
on (g,+00) and let L, L™ be the solutions to (2.3), (4.5) with V replaced by V
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respectively. Then L = Land L = lim,, L» by Proposition 4.5. Thus, Ln>¢e forn
large enough, which implies L™ = L™ and lim,, L™ = L.

Now assume that L(s) = 0 for some s € [0,¢] and L(t) > 0 (otherwise there is
nothing to prove). Hence, for all € > 0 (small enough), there exists an s. € (0,t)
with L, =¢,and L > e on [s.,t]. Let now u® be the solution to (2.1) on (s, t] xR"
with uf(s.,-) = Sy(-¢)u(s:,). By Proposition 4.2, D?u(s.,-) < eld, and since
L >0 on [s.,t), we may apply the Trotter-Kato formula as in the previous case
to conclude that D?us(¢,-) < %. Finally, note that u#(t) is the solution to (2.1)
driven by &° = £ + €1, ). Since £ — £ uniformly as € - 0, we conclude the proof
by Proposition 4.9.

5. SEMICONVEXITY PRESERVATION

In this section we provide sufficient conditions on F' to satisfy Assumption 2.2.
From [35] we recall

Proposition 5.1. Let F = F(t,xz,p, A) € C([0,T] x RN x RN x SN be degenerate
elliptic and such that, for all t >0, z,pe RN, ¢+ 0e RN,

(y,A) » F(t,x+y,p, B) is convex on (Rq)* x X, (5.1)
where X, ={Ae SN, Ag=0,A>0 on (Rg)*}, Bg=0, B=A"! on (Rg)*.

Let u be coercive in x i.e.

lim inf u(t,a:):+oo
le|>o0 te[0,7] |7

and a classical supersolution on [0,T] xRN to
owu = F(t,z, Du, D*u), (5.2)
and let

Usn (L, ) = inf{z Au(t,z), 0<N <Y N=1,> N = w}
i=1 i=1 i=1
be the partial convex envelope of u. Then u.,. is a viscosity supersolution to (5.2).

Proof. For the reader’s convenience we provide a proof. First note that by conti-
nuity of F, it is straightforward to see that the assumption (5.1) is equivalent to
the fact that for any subspace V' c R™ which is not reduced to {0}, the map

(y,A) » F(t,x +y,p, B) is convex on V* x Xy, (5.3)
where Xy = {A e SN Ay =0,A>0o0n VL}, By =0, B=A"1onV*

Now consider (t,z) € (0,7] x R?, and let (¢q,p, A) be in the parabolic subjet of
Uer at (t,x) (we refer e.g. to [8] for definitions). Assume that wu,.(t,z) < u(t,z)
(otherwise there is nothing to prove), let \;, z;, i = 1,...,m be such that u..(t,z) =
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Mu(t,zy) + ...+ Apu(t, z,,), and let V' be the span of (z; —x,...,x, — ). Then
by similar computations as in [2, pp.272-273], letting A; = D?u(t, z;), it holds that

420, A<(XaA)

q= Z)\iatu(t,xi),
i-1
p=Du(t,z;), i=1,....,m.

Note that since u,.(¢,-) is affine in the directions spanned by V' in a neighborhood
of x, one has A <0 on V, so that by ellipticity

q_F(tal‘7p7A)Zq_F(taI7p7B)7
where B = (X MA7) ! on Vi B=0on V, and by (5.3), we obtain

q-F(t,z,p, A) > > X(9wu(t,z;) - F(t,x;, Du(t,x;), A))
i=1

where A; = A; on V*, A; =0 on V, so that 4; < A;, and by ellipticity of ' and the
fact that u is a supersolution to the equation we finally obtain

q_F(tw%'ap?A) > 0.

We deduce the following

Theorem 5.2. Let F = F(t,z,p,A) € C([0,T] x RN x RN x SN) be degenerate
elliptic such that there exists a ® € Lip,,.(Ry;R) with ®(0+) > 0 such that for all
ANeR,, te[0,T],z,pe RN qg+0eRN,

{w) o F(ta+9,p =M +9), B- A1) + 280 | + o

is conver on (Rq)* x X,

(5.4)

where X, = {Ae SN, Aq=0,A>0 on (Rqg)*}, Bq =0, B = Al on (Rg)*. Let
ug € C2(RN) satisfy D*>ug > —XoI for some A\g >0 and assume that u satisfies for
some K >0,

lu(t,2)| < K(1+]z]) VYoxeRN te[0,T] (5.5)
and is a classical solution to

Owu = F(t,x, Du, D?u),
{ u(0,-) = uo, (5.6)
then if X(t) is the solution to
A(t) = 2(A(1)),
{ A0) = Ao, (5.7)

one has D*u(t,-) > -A(t)I for allt>0.
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Proof. Let ¢ > 0 arbitrary, fix and let A\* be the solution to (5.7) with initial
condition A*(0) = Ao +£. We set v(¢,z) := u(t, ) + $A(¢)[z[>. Since A(¢t) > 0, v(t)

v(t,x)

o — oo for [z] > co. Moreover, v is a

is coercive, in the sense that infycpor
classical solution to

1
O = F(t, @, Du, D*u) + 50X (1))

= F(t,z, Dv - X(t)x, D*v - X°(t)Id) + %tb(/\f(t))|x|2 (5.8)
= F(t,x, Dv, D*v).

By (5.4), F satisfies (5.1). Hence, by Proposition 5.1, the convex envelope v, 0f
v is a supersolution to (5.8). Equivalently, 4 := v,. — $A°(¢)]z[? is a supersolution
to (5.6). By (5.5) we have that

1
v(t,x) > 5)\8(75)|x|2 - K - K|z
for all z € R? which implies that
1 .
Ven (t, ) > 5)\E(t)|x|2 - K - Klx|,
for some K > 0 and all # € R%. Hence, @ > —K (1 + |z|) and we may apply the
comparison result [27, Theorem 4.2] to obtain
u < 4.
On the other hand, since v,, <v we have that
1
a<v- §A5(t)|a:|2 = .
Hence, © = v and, since v,, is convex, we conclude
D*u = D*i = D*v,, — N(t)Id > -)\(¢)1d.
Since this is true for all € > 0 the proof is finished. O
Since Theorem 5.2 applies to classical solutions only, in order to obtain results
for general viscosity solutions we must proceed by suitable approximations. The

following corollary is an immediate consequence of the stability of viscosity solu-
tions [8].

Corollary 5.3. Let F. satisfy the assumptions of Theorem 5.2 for a given ®., and
let u. be classical solutions to

Owu. = F.(t,x, Du., D*u.),
U(O,) = U%,
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with D?uf > -\§Id. Further assume that (F.,u§, ®.,\5) converges locally uni-
formly to (F,ug,®, ), with F satisfying Assumption 2.1, ug € BUC(RYN), and
® € Lip,,.(R,;R). Then, letting u be the unique bounded viscosity solution to

Oyu = F(t,z, Du, D?u),
u(0,-) = uo,

one has D*u(t,-) > -\(t)Id for all t >0 where A(t) is the solution to

{ A(t) = 2(A(1)),
/\(O) = /\0.

We now give examples (corresponding to the cases in Proposition 3.1) for which
(5.4) holds.
Proposition 5.4. (1) Let
F=F(t,z,p) e C([0,T]; CZ(RY x RY)).
Then (5.4) is satisfied with
O(N) = | Frallo + 20N | Foplloq + A [ Fppl., -

More generally, let F'= F(t,z,p) € C([0,T] x RN x RN) such that (z,p) —
F(t,z,p) is semiconvex of order Cr. Then, (5.4) is satisfied with

D(N) = Cr(1+2?).
(2) Let
F(z,p,A) =Tr(a(z,p)A) e C(RY x RN x SV),

where a(x,p) € C?2(RN xRN is nonnegative, has bounded second derivative

and (y,p) = ~Ja(y,p) is conver. Then (5.4) is satisfied with
P(A) = NAag oo + 2NN gy o, + NA [y, -

(3) Let
F=F(tA)eC([0,T] x SN)

be convex and non-decreasing in A € SN. Then (5.4) is satisfied with ® = 0.
(4) Let F = F(t,z,p,A) e C([0,T] x RxR xR) such that (x,p) » F(t,z,p,A)
is semiconvez of order Cr(A). Then, (5.4) is satisfied with

B(N) = Cr(\)(1+22).

Proof. (1): Immediate.
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(2): For A\eR,, x,pe RN, g+ 0eRY we aim to prove convexity of
(5. 4) = F (2 +y,p= Az +1), B A1)+ S0 + P
=a(x+y,p—- ANz +y))Tr(B)
—a(zx+y,p-Mx+y))AN + %(I)()\)kv +y)?

=: Fi(z+y,p,B) + Fa(x +y,p).

For the first part, F}, we note that, by [35, Theorem 3.1, Remark (ii)], convexity
of (y,A) » Fi(x +y,p, B) follows from convexity of \/a. For the second part F
we note that

Dy Fy = -ANDy,a(z+y,p—- XNz +y)) + N\*Da(z +y,p— Mz +y))
+ NX*Dyya(z +y,p - Mz +y)) + ®(N)
> =AN|Dyyale = NX*| Dypafle = NN Dppafco + ()
>0.

(3): Let ¢ # 0 e RN. By [2, Appendix] the map A » A~! is convex on X, which
implies (5.4) with ® = 0.

(4): Note that we have X, = {0} in (5.4) and thus only convexity in y has to be
checked, which easily follows from semiconvexity of F'. O

We are finally in the position to prove Proposition 3.1.

Proof of Proposition 3.1. Note that Assumption 2.2 deals with semiconcavity bounds
whereas Theorem 5.2 yields semiconvexity bounds, so in each case we pass from
one to the other by considering @ = —u, F := -F(t,z,-r,-p,—X). We also make
the change of variables ¢ = A\~ so that to a given ® corresponds Ve (¢) = =02 (¢71).

All the cases then follow by combining Corollary 5.3 and Proposition 5.4. The
only point to be verified is the existence of approximations by classical solutions.

We present the details for the case (1): Let v be the viscosity solution to
O = F(t,z, Dv), v(0,-) = vp.
For £ > 0 let w® be the classical solution (cf. e.g. [33, chapter XIV])) to
Oyw® = —=F(t,x,—Dw®) + eAw®,
w(0) = up,
where uf € CZ(RY) converges to ug locally uniformly. Note that if Fy, F; satisfy

(5.4) with &1, ®,, then so does F} + Fy with ®; + ®5. Hence by Proposition 5.4 (1)
and (3), we see that F.(t,x,p,A) = -F(t,z,-p) + eTr(A) satisties (5.4) with

(I)()‘):HFM +2|)“ HszHoo"')‘Q ”FppHoo'

[
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Hence, we can apply Corollary 5.3 to obtain that
D*u(t) < \(t)Id,
where A(t) = ®(A\(t)) and A(0) = [(D?vg),|e. Noting £(t) = A(t)~!, one has
0(t) = Vp(L(t)) with
Vr(€) = = | Fooll oo € = 2| Fapll oo € = | Fipl oo »

so that Assumption 2.2 is indeed satisfied.

The cases (2), (3), (4) follow similarly (the existence of smooth solutions for the
approximating equations follows for instance from the existence results in [33,
chapter XIV]). O

We also need the following standard lemma, we include its proof for completeness.

Lemma 5.5. Let ' be continuous and degenerate elliptic, and given vy bounded
and Lipschitz on RN let v solve in viscosity sense

oy = F(Dv, D*v), v(0,-) = vg.
Then for all t >0,
(supwv(t,-) —info(t,-)) < sup vy — inf vy,
| Do(t,-) o < | Dol o -
Proof. The first claim follows by comparing v with solutions of the form M +
tF(0,0), taking M equal to sup vy and inf v.

For a given z € RV note that v(,- + z) solves the same equation as v with initial
condition vg(- + z), so that by viscosity comparison, for all ¢ > 0,

sup (v(t,x +2) —v(t,x)) < sup (vo(x +2) —vo(x)) < | Do eol2|-

zeRN xeRN

6. OPTIMALITY

In this section we prove the optimality of the estimates given in Theorem 3.2 and
thereby also the ones given in Theorem 2.3 by providing an example of an SPDE
and suitable initial conditions for which these estimates are shown to be sharp.

We consider the class of functions

U ={u € BUC(R) is 2-periodic with u(z) = u(-z),u(l1+z) =u(l-z), VxeR

and s.t. 0 <uy, <1, Uz, <0 in the sense of distributions on (0, 1)}
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Note that if v € U, then

u(0) —u(0)

H(UM)+HOO = um(o) = Sup

c 02
) o1
u(l) —u(l-
| (uea)-llo = —tizz(1) = = sup 52 )
6¢(0,1)
where both of them may take the value +oo.
Theorem 6.1. Let u® e U, £ € Cy([0,T]) and let u be the solution to
du+ %|ugc|2 o de(t) = i|um|2um dt, u(0,-) = . (6.2)
Then, u(t,-) €U for allt >0, and
1 1
T t;O = TN T t,l =TT
BN ATO R 20
where L*, L~ are the maximal continuous solutions to
1
dL*(t) = ————dt + d&(t) on {L* >0}, L*(t)>0, L*(0)= (6.3)
2L+(t) [(u)+ ] m) oo
dL=(t) = dt —d¢(t) on {L™ >0}, L™(t)>0, L™(0)= (6.4)

2L (t) )+l m) leo

An application of Proposition 4.8 yields
Corollary 6.2. In Theorem 6.1 let £ = 0B where B is a Brownian motion. Then

(1) If 0 <1: a.s. there exists a T such that | D?u(t,-)| e = +oo for all t>T~.
(2) If o> 1: for each t >0, a.s. |D?u(t,)]e < +00.

We next proceed to the proof of Theorem 6.1. We shall concentrate on proving
Uge(,0) = L}(t), the other equality can be obtained analogously. By Theorem

3.2 we already know that L*(t) < - (tO)
o (6.3), it only remains to prove that t m e S(V, m,ﬁ), which is a
consequence of Proposition 6.5 and Proposition 6.7 below.

Lemma 6.3. Let u® € CPnlUd and & e WHL([0,T]) n CL(0,T). Let L*,L~ be the

mazimal solutions to (6.3), (6.4), let 7¢ = inf{t > 0,L*(t) = 0} and 7 = 7" A T".
Then ue CH4((0,7) x R) with u(t,-) €U for all t €[0,7).

Since also L* is the maximal solution

Proof. Without loss of generality, we assume that u is smooth and obtain L
estimates from the PDE applied to the derivatives of u. This can be easily justified
by considering solutions u¢ to the equations with an additional viscosity eu,, in the
right-hand side, and noting that the bounds obtained from the arguments below
are uniform in e.
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Now we first note that the fact that 0 <w, <1, u,, >0 is clear by (6.7), (6.8) and
the maximum principle, and so is the fact that u(¢,-), u(t,1+-) are even for all
t > 0. In addition, we already know from Theorem 3.2 that u,,(t,-) is bounded for
te[0,7). We set u; := (0,)'u and observe that

Oruz = 2udug + ugud + 2ugusug + Tusu? - £(t) (Buguy + uqy) (6.5)
uz(0,x) = (u®)3(x), uz(t,0) =0, uz bounded. '

One first checks that sup,g u3(0,z) <0 implies sup,g us(t, z) <0, by a maximum
principle argument. Since the only nonlinear term in the right hand side of (6.5)
is 3u3uy > 0, the maximum principle implies that on [0,7) x R,,

0> uy > ~[uo] exp (6lualr + fuzlee [ IECs)ids)

Then one writes in a similar way the equation for uy (and then us, ug), noting that
this time they are linear with coefficients depending on wq,us, us, (resp. uy to ug,
and wu; to us) so that uy, us and ug also stay bounded for ¢ < 7.

Finally, from (6.2), (6.7), (6.8), (6.5) one gets that boundedness of u1, . .., ug implies
continuity of dyu, ..., 0y, i.e. ue CH4([0,7) x R). O

Lemma 6.4. Let ug € U, £ € C([0,00]) and u be the solution to (6.2). Then,
u(t,-)eU for allt>0.

Proof. Let u%¢ € Y be smooth approximations of u?, £ be smooth approximations
of ¢ and uf be the unique smooth solution (cf. [31]) to

Ou” = ( ’ %Iu;F) Uy - %m;egs(t), u(0,-) = (). (6.6)

Since u¢ is smooth, as in the proof of the previous lemma we may differentiate
(6.6) and use the maximum principle to obtain that for each € > 0, u¢ is 2-periodic,
symmetric in z around 0 and 1, and 0 < u§ < 1,u,, <0 on [0,+00) x (0,1). Since

u® - u uniformly and i/ is stable under uniform convergence, we can conclude. [J
Proposition 6.5. Assume that u?,(0) < oo, then u.,(t,0) = L%(t) fort <7 =
inf {s>0,L*(s) =0}.

Proof. In the case of £ € C! and u € C'* with u(t,-) e U for all ¢ > 0, the result
follows from differentiating (6.2) twice

1 1 :
8tux = Z_luxzxui + éuizux - f(t)ua:xuza (67)
1 2 1 3 - 2
atuxw = Zurmrzug; + éuxmzuwmum + 5”193 - g(t) (uajz + uxmzuw) ) (68)

and noting that u,(¢,0) = uz.(t,0) = 0 for all ¢ > 0.
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Let &7 e WHLI([0,T]) n CY(0,T) with €71 &, £€7(0) = £(0). Further let udn e CP AU
with %07 - u0 uniformly, u®7(0) = u°(0), u®" < u® and such that uyy (0) 1 u2,(0).
Also assume that u%” (1) is chosen small enough that if L™, L=7 are the solution
to (2.3) driven by £7 and starting from the hitting times of 0 satisfy

1
o) o)
7=1 > 7+1). Let u" be the solution to (6.2) driven by &7 and starting from u%7.
By Lemma 6.3, for ¢ € [0, 7],

:cx(t ) = L+n(t)

We note that L*7(t) 1,0 L*(t) uniformly in [0, 7%] and, by Lemma 6.4, u7,(¢,0) =

SUDse(0,1) w. Finally, from (A.4) it follows that u” 1 u with w7(t,0) =

u(t,0)(=u°(0)), and we get

u(t,0) —un(t,0) 1

Uz (t,0) = sup sup =supu..(t,0) = .
( ) §e(0,1) n>0 o2 >0 ( ) L+(t)

O

Lemma 6.6. Let £ € C([0,T]), ug € (BUC nWH1)([0,2]) periodic and u be the
corresponding viscosity solution to (6.2). Then v = Oyu is the pathwise entropy
solution® to

dv + 61} odf(t)— Dpevl®lat

U(O) = 8$u0.
Let ul,ud € (BUC nWH)([0,2]) nU and u',u? be the corresponding viscosity
solutions to (6.2) such that Oyul > dyu a.e. on (0,1). Then for all t >0,

Oput(t,) 2 0,u?(t,”) a.e. on (0,1).

(6.9)

Proof. We consider uj smooth, periodic such that uj — wuo uniformly and in
WH1([0,2]). Further let £&" smooth with {® — ¢ uniformly. For € > 0 let us”
be the unique classical solution to

dus™ = (ﬁui uen 2ua n) uen 2¢n t
1 S (1) 6.10)
u®™(0) = ug.
Then v®" := 9, us" is the unique solution to
1 .
dve™ = - e,n dt——x 6,n2nt
v (&?v +7 3(1} )) 28(@ )7€™ (1) (6.11)

vo"™(0) = dpug.

By stability of viscosity solutions we have u®" — u” uniformly and v&" — o™
in C([0;T]; L') by [38], where u™ is the viscosity solution to (6.10) and v™ is
the kinetic solution to (6.11) with € = 0 respectively. By Theorem A.1 we have

4For a theory of pathwise entropy solutions to (6.9) we refer to [25].
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u™ — u uniformly and by [25, Theorem 2.3, Proposition 2.5] we have v - v in
C([0,T]; L"), where w is the viscosity solution to (6.2) and v is the kinetic solution
to (6.9).

Let now u}, ud € (BUCNWH)([0,2])nU with d,ul > 0,u? a.e. on (0,1). As above,
consider the respective approximations u*", u?", with u(l)’", ug’" smooth elements
of U with d,uy™ > ug™ in [0,1]. Then, as in Lemma 6.4, ulb=n(t,-),u2=n(t,-) € U
for all £ > 0. Note that for u € C* nU, J,u(0) = d,u(1) = 0. Hence, d,ut="(t,-) >
O,u?s"(t,-) on [0, 1] by the comparison principle for (6.11) with Dirichlet boundary
conditions on (0,1). Taking limits implies the claim. O

Proposition 6.7. The map t — u,,(t,0) € (0,00] is continuous.

Proof. First note that ¢ = u,,(¢,0) is lower semicontinuous as supremum of con-
tinuous functions by (6.1), and taking also into account Proposition 6.5, we only
need to prove that

bty 7t Upe(tn,0) = +00 = ., (t,0) = +o0. (6.12)

We fix M >0 and let u™ be solutions to (6.2) but starting from data u'»" at time
t,,, where u»" € Y is such that utx’},;"(()) =M and ulr™ < gz (tn,-) (this is possible at
least for n large enough). By Proposition 6.5, u?,(s,0) = L++(s) for s € [t,, 7",
where

dL*"(s) = ds+d&(s), LP™(t,) =M™

~ 1
2L+m(s)
and 7" = inf {s > ¢,, L*"(s) =0}. By Lemma 6.3 one has 7+ > ¢ for n large
enough, and, clearly, lim,,_,o, L*"(t) = M~1. Since wu,(¢,0) > u?.(¢,0) by Lemma
6.6, it follows that wu.,(¢,0) > M. Since M was arbitrary, this proves (6.12). O

APPENDIX A. STOCHASTIC VISCOSITY SOLUTIONS

In this section we briefly recall the definition and main properties of stochastic
viscosity solutions to fully nonlinear SPDE of the type

1
du + §|Du|2 odé(t) = F(t,x,u, Du, D*u)dt in RY x (0,T]
u(0,-) =uy on RY x {0},

where ug € BUC(RYN), F € C([0,T] x RN x R x RN x S¥) and ¢ is a continuous
path.

We recall from [23, Theorem 1.2, Theorem 1.3]

Theorem A.l. Let ug,vo € BUC(RN), T >0, £,¢ € C}([0,T];R) and assume
that Assumption 2.1 holds. If ue BUSC([0,T] xRY), ve BLSC([0,T]xRY) are

(A1)
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viscosity sub- and super-solutions to (A.1) driven by &, ( respectively, then,

sup (u—wv) <sup(uo —vo)+ + L€ = Clleqor), (A.2)
[0,T]xRN RN

where ® depends only on T, the sup-norms and moduli of continuity of ug,vy and
the quantities appearing in Assumption 2.1 (2)-(3)-(5), is non-decreasing and such
that ®(0*) = 0. In particular, the solution operator

S: BUC(RM) x C3([0,T];RY) - BUC([0,T] x RY)
admits a unique continuous extension to
S: BUCRY) x C([0,T];RY) - BUC([0,T] x RY).
We then call uw = S%(ug) the unique viscosity solution to (A.1). One then has
|54 (o) = S (vo) leqorixrny < luo = vol oy + @ (1€ = Cleqory) - (A.3)

In the case where F = F(p, X) only depends on its last two arguments, the estimate
simplifies to

_ _ _ |ZE—y|2 ) A
oS (u ”ﬁf@(w ) o (€(5) — () (4-4)

(with convention 0/0 =0, 1/0 = +oc0).
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