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Abstract  

Although the biomechanical behavior of the acetabular cup (AC) implant is determinant for the surgical 

success, it remains difficult to be assessed due to the multiscale and anisotropic nature of bone tissue. The 

aim of the present study was to investigate the influence of the anisotropic properties of peri-implant 

trabecular bone tissue on the biomechanical behavior of the AC implant at the macroscopic scale. 

Thirteen bovine trabecular bone samples were imaged using micro-computed tomography (µCT) with a 

resolution of 18 µm. The anisotropic biomechanical properties of each sample were determined at the scale 

of the centimeter based on a dedicated method using asymptotic homogenization. The material properties 

obtained with this multiscale approach were used as input data in a 3D finite element model to simulate the 

macroscopic mechanical behavior of the AC implant under different loading conditions.  

The largest stress and strain magnitudes were found around the equatorial rim and in the polar area of the 

AC implant. All macroscopic stiffness quantities were significantly correlated (R2>0.85, p<6.5 e-6) with 

BV/TV (bone volume/total volume). Moreover, the maximum value of the von Mises stress field was 

significantly correlated with BV/TV (R2>0.61, p<1.6 e-3) and was always found at the bone-implant 

interface. However, the mean value of the microscopic stress (at the scale of the trabeculae) decrease as a 

function of BV/TV for vertical and torsional loading and do not depend on BV/TV for horizontal loading. 

These results highlight the importance of the anisotropic properties of bone tissue. 

 

Keywords: Acetabular cup; total hip replacement; finite element analysis; bone; Homogenization 
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1. Introduction 

While hip arthroplasty has become a common surgical intervention with more than 450,000 

interventions each year in the USA [1], failures still occur, leading to dramatic consequences. Aseptic 

loosening is one of the most common causes of failure [2, 3] and is related to the implant biomechanical 

behavior. The long-term fixation of the acetabular cup (AC) implant is obtained through osseointegration 

phenomena [4, 5], which leads to a bonded bone-implant interface after the bone healing process. Load 

transfers at the bone-implant interface are complex due to i) their multiaxial nature (caused by body weight 

bearing), ii) the complex multiscale properties of bone tissue (in particular, bone is an anisotropic material) 

and iii) the evolving properties of bone tissue due to remodeling phenomena. The determination of the 

biomechanical behavior of the AC implant is important to assess its stability and to understand 

osseointegration phenomena [6, 7] around the implant [8]. Nowadays, the surgeons rely on their 

proprioception to assess empirically the AC implant stability by applying manually forces and/or torques to 

the ancillary. 

Coupling three-dimensional images obtained with micro-computed tomography (µCT) and numerical 

simulation has allowed the development of biomechanical analyses taking into account the influence of the 

bone microstructure on implants behavior [9, 10]. Peri-implant bone microarchitecture has been shown to 

play an important role in the distribution of stresses by forming load transfer paths [11, 12].  Bone properties 

also determine the dynamic implant pull-out force [13]. To analyze the properties of peri-implant bone 

tissue, biomechanical investigations based on the trabecular bone structure are necessary. However, none 

of the aforementioned studies have investigated so far the AC implant behavior. The difficulty lies in the 

size of the AC implant, that requires to take into account a large volume of trabecular bone in the 

computation, which explain why, to the best of our knowledge, classical micro-finite element analyses 

taking into account bone  microstructure around the implant have not been applied to study the mechanical 

behavior of the AC implant. 

Numerous studies focused on the effect of the AC implant shape [14-17], material [18] and surface 

treatment [2] on its biomechanical properties. However, the relation between trabecular bone properties and 

the AC implant macroscopic mechanical behavior remains poorly established [19]. Moreover, the effect of 

the anisotropic nature of bone tissue as well as the distribution of the stress and strain fields around an AC 

implant remains unknown. Several models have been developed to assess the deformation of the AC implant 

and the stability obtained after the press-fit insertion [20, 21]. Other numerical studies have computed the 

stress field in peri-implant bone tissue while the AC implant was progressively implanted and identified the 

AC periphery as the zone with the highest stresses due to the press-fit configuration [16, 20]. Our group has 

developed a method that can provide information on the implant insertion conditions based on the variation 

of the force applied between the hammer and the ancillary as a function of time [22-25]. However, trabecular 
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bone was modeled as an isotropic medium in all the aforementioned studies and the effect of the peri-implant 

bone properties on the implant mechanical behavior at the macroscopic level has not yet been studied. 

Investigating the AC implant mechanical behavior is an important problem because it may help to better 

understand implant failures as well as osseointegration phenomena.  

The aim of this work is to study the influence of the peri-implant anisotropic bone mechanical properties 

on the mechanical behavior of the AC implant. In particular, we aim at studying the distribution of the strain 

and stress fields around an AC implant when anisotropic material properties are considered and at 

investigating the relation between bone properties and the AC implant macroscopic behavior. The proposed 

approach consists in coupling numerical simulation tools with high resolution imaging techniques and 

multiscale analyses in order to understand the determinants of the biomechanical behavior of the AC implant 

under physiological conditions. Stress and strain distributions in the homogenized peri-implant bone are 

computed for different loading conditions of the AC implant.  

 

2. Material and methods 

The general strategy employed herein is summarized in Fig. 1 and is described in more details below. The 

first step consists in the measurement of the microarchitecture of thirteen bone samples, which was used as 

input data in a homogenization procedure, leading to the determination of homogenized properties at the 

scale of the centimeter. These anisotropic material properties were then used in a finite element model to 

determine the macroscopic stiffness of the bone-implant system. All loads were applied through a bar 

protruding from the implant, which models the ancillary, because it corresponds to a simple situation of 

clinical interest (in particular when surgeons assess manually the AC implant stability). From the viewpoint 

of the computational cost and memory requirements, it remains difficult to consider the bone microstructure 

directly in the finite element computations due to the size of the AC implant, which justifies the use of 

homogenized bone properties. Such approach is therefore useful to consider the effect of the microstructure 

of trabecular bone in the numerical analyses.  

 

2.1. Determination of the homogenized bone properties  

Bone samples imaging 

Thirteen trabecular bone samples were obtained from bovine femurs similarly as what was done in 

[26]. The samples were then cut in the proximal region in order to obtain cubic specimens (with a size of 

approximately 10*10*10 mm) using an electric saw. A X-ray µCT device (Skyscan1176® scanner, 
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Skyscan, Kontich, Belgium) was used to obtain the 3-D image of each bone sample with a resolution of 18 

µm. The CT images were then binarized to separate the image into bone tissue and bone marrow. The value 

of BV/TV (bone volume fraction) was then determined for each sample. 

 

Homogenization method 

The binarized 3D images were used as input data in the homogenization procedure described in more 

details in [27] and in the appendix. Numerical models were automatically generated using 18 m sized voxel 

elements to determine the homogenized stiffness coefficients at the scale of the sample. For the mesh 

generation and analysis, the Voxelcon software (Quint Corp., Fuchu, Tokyo, Japan) was used, in which a 

two-scale homogenization method based on the asymptotic expansion theory was implemented [28, 29]. 

The interest of this homogenization method lies in that it can take into account the influence of any complex 

micro-architecture on the macroscopic properties of the bone-implant system. Using this approach, 

trabecular bone regions can be replaced by regions with homogenized material properties, which can in turn 

be discretized by coarse finite elements. The size of each microstructure model (or representative volume 

element; RVE) ranged from approximately 5.5 mm to 9.8 mm, which was large enough to represent the 

complex and random heterogeneity. The number of voxel finite elements of each RVE ranged from 

approximately 9 to 23 millions. 3-D periodic boundary conditions were applied to the numerical model to 

obtain the homogenized properties by solving a self-equilibrium problem based on the two-scale 

homogenization method. Theoretically, a scale ratio between macro- and micro-scales is assumed first and 

assigned to the principal of virtual work. Next, the averaging principle is used by taking the limit of zero 

ratio in order to split the problem into macro- and microscopic equations and to define the homogenized 

(averaged) properties [28,29]. Table 1 shows the material properties used for bone tissue in each RVE. 

 

The output of the homogenization procedure provides a stiffness tensor Co, which was defined 

according to the local axes of the original sample. However, since the axes of the samples did not necessarily 

coincide to the principal directions of anisotropy, a rotation procedure was applied to the stiffness tensor in 

order to determine its principal directions. The required rotation was defined by maximizing the coefficient 

C0
3333 and minimizing the coefficient C0

1111. The aim of this rotation procedure was to obtain the stiffness 

tensor for which the principal direction associated with C0
3333 is aligned with the z-axis, similarly as in 

physiological conditions. Here, the z-axis of the model is aligned with the stiffest principal direction of the 

homogenized elasticity tensor because the main trabecular orientation, which corresponds to the stiffest 

principal direction of the homogenized elasticity tensor, follows the main direction of the stresses applied 

in vivo, due to remodeling phenomena [30]. The main orientation of the mechanical stresses can be assumed 

to be oriented along the axis of the AC implant, which can be explained by simple gait analyses. The rotated 

homogenized stiffness tensor was computed as described in details in [31], leading to the determination of 
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the stiffness tensor CH, which is used as input data in the macroscopic finite element model (FEM) described 

below. This rotation procedure results in a main trabecular orientation parallel to the z axis, which 

corresponds to a situation of interest due to load bearing constraints. 

 

2.2 Geometry and material properties  

 A 3D FEM was employed to simulate the mechanical behavior of an AC implant inserted in 

trabecular bone tissue similarly as what was done in [32], which corresponds to a validation of the 

computational method. Figure 2 shows the geometrical configuration which consists of three subdomains: 

trabecular bone Ωt, the AC implant (merged with a bar representing the ancillary) Ωac and cortical bone Ωc. 

The origin of the z-axis is taken in the top region of the system. 

The implant and bone sizes were chosen similarly as in previous studies [25, 33, 34]. Based on 

typical AC implants used in the clinic, the cup was designed as a cobalt-chromium alloy with an inside 

diameter of 50 mm and a wall thickness of 4 mm (see Fig. 2). Trabecular (Ωt , 21 mm thickness) and cortical 

(Ωc, 2 mm thickness) bone regions were defined as hemispheric cups around the AC implant. All 

subdomains are assumed to be homogeneous and to have a linear elastic behavior. While cortical bone and 

the cobalt chromium cup were assumed to be isotropic (see Table 1), trabecular bone was assumed to be 

anisotropic. For each sample, the mechanical properties obtained after the application of the homogenization 

procedure described in subsection 2.1 were used for trabecular bone.  

 

2.3. Numerical simulation method 

The macroscopic problem was solved using the Ansys software (ANSYS Inc., Canonsburg, PA, 

USA). Twenty-noded elements were used to mesh the simulation domain, resulting in around 130,000 

elements. A 20 nodes element with quadratic approximation was employed because it is suitable to represent 

the curved boundaries by a piecewise-quadratic approximation. A mesh sensitivity study to determine the 

mesh size which provide converged finite element solutions (data not shown). Small displacement 

assumptions were used in order to simulate the mechanical behavior of the system. The problem is solved 

following the classical equation of elasticity at equilibrium considered for each subdomain and by neglecting 

body forces, which correspond to ∇.σ= 0 in Ωt, Ωac and Ωc, where ∇. is the divergence operator and 

σ is the stress tensor. 

 The boundary of each sub-domain is divided into different parts corresponding to the nature of the 

boundary condition: with imposed traction on 𝛤𝛼
𝜎, imposed displacement on 𝛤𝛼

𝑢 or with interface conditions 

on 𝛤𝛼
𝑖 (𝛤𝛼  = 𝛤𝛼

𝜎 U 𝛤𝛼
𝑢 U  𝛤𝛼

𝑖 ) as shown in Fig. 2.  
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Bone tissue is fixed on the outer circle located at the top surface of cortical bone (see Fig. 2). Therefore the 

boundary condition imposed on this line 𝛤𝑐
𝑢 is given by: 

𝒖 = 0                                    on  𝛤𝑐
𝑢

.                                                  (1) 

where 𝒖 is the displacement field vector. 

Continuity conditions of traction and of displacement were assumed on 𝛤𝛼
𝑖 , which corresponds to the 

interfaces between Ωac and Ωt, and between Ωt and Ωc. These conditions represent fully bonded interfaces, 

which will be discussed in Section 4. 

 

All boundary conditions in 𝛤𝛼
𝜎 except in 𝛤𝑎𝑐

𝜎  (see Fig. 2) were considered as free boundary conditions given 

by:  

𝝈𝒏 = 0                                                                                          (2) 

where 𝒏 is the normal unit vector of the three subdomains Ωt, Ωac and Ωc. 

 

The movement of the system is governed by the stresses applied to 𝛤𝑎𝑐
𝜎 , which corresponds to the 

circular part of upper part of Ωac. Four different loading conditions were successively considered based on 

physiological conditions described in [16, 35]. First, an axial loading in the z-direction consisted in applying 

a load of Fz =1000 N to the top of the bar. Then, a torsional loading (Tz) of 20 N.m was applied to the top of 

the bar. Eventually, two horizontal loadings consisted in applying horizontal forces (Fx and Fy) of 1000 N 

to the top of the bar along the x- and y-directions. The forces Fx and Fy were homogeneously applied to the 

top of the bar. 

 

 

  

2.4. Data analysis 

The mechanical behavior of the AC implant was described by macroscopic stiffness quantities, which 

are defined according to the type of loading conditions. Moreover, the effect of the anisotropic properties 

was assessed qualitatively by plotting the von Mises stresses and the strain field for the various loading 

conditions described below. The stress field was determined at Gauss points. 

 

When considering the vertical loading condition (application of Fz), the implant stiffness Sz was 

defined based on the vertical displacement dz of the point located on the axis of symmetry of the AC implant 

and at the interface between bone tissue and the implant by: 

𝑆𝑍 =  
𝐹𝑧

𝑑𝑧
.      (3) 
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For the torsional loading (application of Tz), the implant stiffness Sθ was defined based on the rotation 

angle θz of the AC implant by: 

𝑆𝜃 =  
𝑇𝑧

𝜃𝑧
.      (4) 

For the horizontal loading along the x-axis (respectively y-axis), the implant stiffness Sx (respectively 

Sy) was defined based on the displacement dx in the x-direction (respectively dy in the y-direction) of the  

points located on the axis of symmetry of the AC implant and at the interface between bone tissue and the 

implant by: 

𝑆𝑥 =  
𝐹𝑥

𝑑𝑥
  (respectively 𝑆𝑦 =  

𝐹𝑦

𝑑𝑦
 ).    (5) 

The relationship between each quantity defined above (corresponding to the macroscopic stiffness of 

the AC implant) and BV/TV was studied using a linear regression analysis.  

 

Moreover, for each sample and each loading condition, all components of the stress and strain tensors 

were determined and the von Mises stress field was then determined. The maximum value of the von Mises 

stress was then determined for each sample and each loading condition. 

 

 

3. Results 

Figure 3 shows the relationship between the different macroscopic stiffness properties (Sz, Sθ, Sx and 

Sy, obtained for the four loading conditions) and BV/TV. All macroscopic stiffness properties are shown to 

increase significantly as a function of BV/TV (R2 >0.85, p<6.5 e-6), because the rigidity of trabecular bone 

tissue increases as a function of BV/TV (see section 4 for further details). 

 

Figure 4 shows the relationship between the maximum value of the von Mises stress (noted <σMacro>) 

obtained in the entire trabecular region (Ωt) for the four loading conditions and BV/TV. Again, for all 

loading scenarios, the maximum value of the von Mises stress is shown to increase significantly as a function 

of BV/TV (R2 >0.61, p<1.6 e-3),which will be explained in section 4.  

 

Figure 5 shows the cartography of the von Mises stresses for a sample with a BV/TV value equal to 

18% (which was chosen because it corresponds to typical values found in the acetabulum) in the plane Πyz 
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 in the AC implant and in the peri-implant bone tissue under vertical, torsional and horizontal loading along 

the x-axis. Figure 5 shows that all stress fields are not symmetric compared to the z-axis, which can be 

explained by the anisotropic properties of bone tissue.  

 

Figure 6 shows the cartography of the von Mises stresses for the same sample obtained by cutting the 

sample in the plane Πxy corresponding z= -26.5 mm (the origin z=0 corresponding to 𝛤𝑢
𝑐, i.e. the upper end 

of cortical bone where the boundary conditions correspond to fixed displacements). For each image, two 

regions of interest (ROI) can be distinguished. The first ROI corresponds to the outer part of the image and 

shows the cartography of the von Mises stresses in bone tissue located in the plane Πxy. The second ROI 

corresponds to the inner part of the image and shows the projection of the von Mises stresses obtained in 

the bone-implant interface located under Πxy (i.e. for z < -26.5mm) on Πxy. The results are shown under 

vertical loading (a), torsional loading (b) and horizontal loading along the x-axis (c). Figures 6 a) and 6 b) 

show that even if the applied loading and geometry of the structure are symmetric with respect to the z-axis, 

the resulting stress fields are not symmetric due to the anisotropy of trabecular bone tissue. Similarly, Fig. 

6 c) shows that the stress field is not symmetric compared to the x-axis, which can also be explained by the 

anisotropic properties of bone tissue.  

 

Figure 7 shows the cartography of different components of the strain tensor 𝜺 in the vertical loading 

configuration. Figure 7a) (respectively 7b) and 7c)) shows the results corresponding to εzz (respectively εyz 

and εxz) obtained in the plane Πyz. Figure 7d) shows the results corresponding to εxz obtained in the plane 

Πxz. Again, Fig. 7 a) shows that the strain field is not symmetric compared to the z-axis, which can also be 

explained by the anisotropic properties of bone tissue.  

 

Figure 8 shows the cartography of different components of the strain sensor in the torsional loading 

configuration. Figure 8a) (respectively 8b)) shows the results corresponding to εzz (respectively εxz) obtained 

in the plane Πyz. Moreover, Figure 8c) (respectively 8d)) shows the results corresponding to εzz  (respectively 

εyz) obtained in the plane Πxz.   

 

Figure 9 shows the cartography of different components of the strain sensor in the horizontal loading 

configuration along the x-axis. Figure 9a) (respectively 9b), 9c) and 9d)) shows the results corresponding 

to εxx (respectively εxz, εyz, and εxy) obtained in the plane Πyz. Figure 9 b) shows that the strain field is not 

symmetric compared to the z-axis, which can be explained by the anisotropic properties of bone tissue. 
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4. Discussion 

The approach carried out in the present study may be compared with other works published in the 

literature. Micro-finite element analyses (see for example [36]), which consist in converting trabecular bone 

µCT images into finite element models has now become a routine procedure in bone biomechanics. 

However, such approaches are difficult to be carried out at the scale of the AC implant due to the huge 

computational power required to account for the trabecular bone microstructure in the entire volume of 

interest. Approaches based on micromechanics constitute alternative methods to model the multiscale 

properties of bone tissues [37, 38]. For example, methods involving micromechanics-based conversion of 

µCT data into anisotropic elasticity tensors were applied to the mandible [39] and to human femoral bone 

[40]. However, the microstructure of trabecular bone was taken into account through an average rule of the 

X-ray attenuation coefficients. A similar approach has been carried out in [41, 42] but bone tissue was 

modeled as an isotropic material.  

While studying the effect of impingement on stresses at the bone-implant interface, Voigt et al. [42] 

found similar level of stresses in bone tissue. Differences between the various models in terms of 

geometrical configurations and bone mechanical properties may explain the slight variations in stress fields 

and magnitude [42], which remain however difficult to quantify due to the difference in terms of geometrical 

configuration. The originality of the approach proposed herein is to employ multiscale mechanical modeling 

approaches in order to understand the behavior of the AC implant in bone tissue and to determine the effect 

of the anisotropic biomechanical properties of bone tissue, which is a problem of clinical importance 

because bone properties depends on load transfer from the AC implant to peri-implant bone.  

      

The choice of applying the loading conditions through the ancillary was made because of several 

reasons. First, it corresponds to a simple configuration compared to the complex interaction of the AC 

implant with the liner, which is out of scope of this study since we aim at studying the effect of bone 

properties on the mechanical behavior of the AC implant. Second, various loading scenarios may be applied 

to the ancillary during surgery when surgeons assess the AC implant stability manually. Third, we have 

already studied this configuration in a previous numerical study (in dynamic mode) and we eventually aim 

at assessing the loading distribution during impaction. The loading conditions were chosen in the range of 

loads used in experimental [2, 43, 44] and numerical studies [41, 42] and because it corresponds to typical 

stresses that can be applied in vivo. However, hip contact forces may sometimes be higher since they have 

been measured to be up to three times body weight under normal walking conditions [45]. Since all analyses 

are linear, the mechanical behavior of an AC implant subject to loading conditions with higher stresses can 

be derived from the results obtained herein using a simple linear extrapolation. Moreover, the mechanical 
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response of the system to a multiaxial loading can be obtained by a summation of the responses against 

three fundamental loading conditions presented in this paper. 

    

The results shown in Fig. 3 indicate that the correlation coefficient of the linear regression analysis of 

the stiffness as a function of BV/TV is comprised between r²=0.85 and 0.97, which indicates that BV/TV 

of the surrounding trabecular bone tissue may explain from 85% up to 97% of the AC implant stiffness, 

according to the loading condition considered. This correlation can be explained by the fact that the apparent 

Young’s modulus E of trabecular bone is known to be highly correlated with BV/TV when measured 

according to the same direction of anisotropy, with determination coefficients typically around 0.85 [46]. 

However, the correlation between E and BV/TV is lower when all directions of testing are pooled (with a 

typical determination coefficient around 0.5 or lower [47, 48]) because of the influence of the anisotropic 

properties of trabecular bone tissue. In the present study, complex heterogeneous and multiaxial stress field 

is generated in bone tissue around the AC implant for each loading configuration described in subsection 

2.3. Therefore, the overall stiffness of the bone-implant system is determined by a spatial averaging over 

the entire trabecular bone volume of the anisotropic local mechanical response of bone tissue. Such spatial 

averaging is realized over a multiaxial stress field, which explains the significant correlation with BV/TV 

since the effect of anisotropy has been integrated spatially. However, more samples are needed to compare 

the correlation coefficient obtained between the stiffness and BV/TV according to the loading conditions.   

 

In order to understand the behavior of the AC implant rigidity, the relation between the maximum value 

of the von Mises stress obtained in the simulation domain and BV/TV was plotted in Fig. 4. The results are 

consistent with those obtained in Fig. 3 since the maximum von Mises stress is shown to increase when 

BVTV increases. However, the increase of the von Mises stresses as a function of BV/TV does not indicate 

an increase of fracture risk because bone strength is also known to increase with BVTV [49-51]. Moreover, 

the maximum of the Von Mises stresses (denoted <σMacro> in what follows) indicated in Fig. 4 corresponds 

to macroscopic stresses, which can be related to the mean value of the microscopic (at the scale of the 

trabeculae) Von Mises stresses <σµ> through the simple following first order relationship: 

<σMacro>= BV/TV * <σµ>.         (6) 

The interest of determining <σµ> lies in the fact that <σµ> is an important determinant of possible 

microfractures at the scale of the trabeculae. Figure 10 shows the variation of <σµ> as a function of BV/TV 

for the four different loading conditions. The results show a significant decrease of the value of <σµ> as a 

function of BV/TV for the vertical and torsional loading configurations, which may indicate that bone 
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strength at the trabecular level might increase when BV/TV increases. However, such tendency was not 

found for the two horizontal loading configurations, which may be explained by the more complex and 

heterogeneous stress fields obtained in horizontal loading configurations. However, these results should be 

interpreted with caution due to the strong approximation employed in Eq. (6) and to the relatively low 

number of samples. 

 

For all loading conditions and all samples, the maximum value of the von Mises stress field was always 

obtained on the bone-implant interface 𝛤𝛼
𝑐, which emphasizes the critical importance of this interface for 

the implant outcome. Note that the fact that the maximum value of the von Mises stress is obtained at the 

bone-implant interface can also be seen in the results shown in Fig. 5. Figure 5 also shows that the stresses 

magnitude is the highest around the equatorial rim as well as in the polar area according to the loading 

scenario, which suggests important bone remodelling in these areas. More specifically, in the vertical 

loading configuration (Fig. 5a)), important levels of stresses were obtained around the rim periphery and 

around the cup dome. Figure 7a) shows that the compressive strains are mostly present around the cup dome, 

while Figs. 7b&d) indicate that shear strains (εxz and εyz) are dominant below the rim periphery. For the 

torsional loading condition (Fig. 5b)), important levels of stresses were obtained around the rim periphery. 

Figures 8b&d) show that the shear strains (εxz and εyz) are mostly present below the rim periphery. For the 

horizontal loading condition (along the x-axis) (Fig. 5c)), important levels of stresses were obtained around 

the rim periphery and around the cup dome. Figure 9 shows that the shear strains are significant below the 

rim periphery (εxy) and around the cup dome (εxz).  

 

The stress field distributions shown in Fig. 5 and the strain field distributions shown in Figs. 7a) and 

9b&d) are not axisymmetric compared to the z-axis, which is due to the anisotropic properties of trabecular 

bone. Similarly, the stress field distributions shown in Fig. 6 are not symmetric compared to the center of 

the image, which is also related to the anisotropy of trabecular bone.  

The strain field distributions shown in Figs. 7b&d) are shown to be slightly different, although similar 

images are obtained when considering isotropic bone material properties (data not shown). Therefore, the 

difference in the two images shown in Figs. 7b&d) can also be explained by the bone anisotropy. The same 

explanation applies when comparing the images shown in Figs. 8b&d).  

 

Another effect of bone anisotropy is shown in Figs. 7c), 8a&c) and 9c), where all corresponding strain 

field distributions are not equal to zero. We verified (data not shown), that for all the aforementioned 
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configurations, the corresponding strain fields are always equal to zero when considering isotropic bone 

properties. More quantitatively, in the case of vertical loading (Fig. 7), the magnitude of εxz is equal to 

around 3% (respectively 10%) of that of εyz (respectively εxz). In the case of torsional loading (Fig. 8), the 

magnitude of εzz is equal to around 10% of that of εyz and εxz. Eventually, in the case of horizontal loading 

(Fig. 9), the magnitude of εxx is equal to around 4% of that of εxy and εxz. 

 

This study has several limitations. First, bovine bone samples were used, which have different 

biomechanical properties compared to human peri-implant bone. However, the range of BV/TV values is 

comprised in [0.11 , 0.44], which is similar to published values for human peri-implant bone [52] and thus 

bovine bone tissue was chosen to model human pelvis tissue. Moreover, a relatively low number of samples 

were considered, which is due to availability of the sample. However, the distribution of the BV/TV values 

cover a relatively wide range of variation. 

Second, the procedure using the homogenization method employed in this study leads to uniform 

material properties around the implant, which constitutes a strong approximation since bone properties are 

likely to be heterogeneous around the implant. However, to the best of our knowledge, the heterogeneity of 

bone tissue around an AC implant has not been precisely quantified. Therefore, we chose to consider 

homogeneous bone properties and more work is needed to quantify bone heterogeneity and to investigate 

the effect of heterogeneous bone properties on the AC implant behavior. Moreover, we assumed that the 

main trabecular orientation is aligned with the z-axis, which corresponds to a simple approximation. More 

work would be required to determine the (possibly non homogeneous) orientation of the trabecular network 

around the AC implant, which is out of scope of the present study. 

Third, the geometrical configuration is quite simple since cancellous and cortical bone geometry were 

chosen as hemispheric domains to model the hip configuration in a simple and reproducible manner. 

Different geometrical configurations have been used in the literature to model the AC implant 

biomechanical behavior. Some studies have considered bone as a 2D cylinder made of cancellous bone [20, 

53], while others have integrated a cortical layer to represent the pelvic configuration [21, 54].  3D finite 

element studies took into account the anatomy of the hip bone [16, 35, 55, 56]. We chose not to consider 

the anatomy of the acetabulum for the sake of simplicity and because the aim was to focus on the effect of 

trabecular bone properties in a standardized situation, which allows to simply investigate the effect of bone 

properties only on the AC implant mechanical behavior. Moreover, the ancillary was modeled by a 21 mm 

long bar in order to reduce the computation time and because it does not affect the results obtained in this 

study.  

Fourth, the interface conditions between the implant and bone tissue were chosen as fully bonded over 

the entire bone-implant interface since the implant was considered as fully osseointegrated, similarly as 

what was done in [42]. However, interfacial parameters may affect the implant behavior [56] in particular 
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when considering stronger solicitations and/or healing interfaces, which is out of scope of the present study. 

Moreover, in clinical practice, polar gaps may occur [57] between the AC implant dome and the peri-implant 

bone and correspond to non-contact conditions in polar areas. Important polar gaps constitutes a critical 

clinical issue since osseointegration may not occur around this area [57]. Migration of the AC implant has 

even been observed for cases with polar gaps larger than 2 mm [58]. However, the influence of polar gap is 

out of scope of this study. 

Fifth, we used an assumption of small displacements, which is justified by the relatively low amplitude 

of the strain field. As shown in Figs. 7 & 8, the magnitudes of the strain field obtained in the studied cases 

is always lower than 1.5 10-3, which justifies the assumption of small displacements. Using large 

displacement hypotheses and nonlinear analyses would be relevant to take into account sliding phenomena 

at the bone-implant interface, but it is out of scope of this paper and will be examined in future studies. 

Sixth, in this paper, we focused mainly on the macroscopic behavior of the bone-implant system in 

relation with external forces. However, the results obtained at the macroscale can also be used using a 

downscaling analysis that allows to assess local behaviors of bone tissues at the microscale [32]. Such 

approach is useful to predict localized effects such as the stress concentration at trabeculae around the 

acetabular cup, and then to estimate the damage potential at the microscale. However, such analysis is out 

of scope of this study and further investigations need to be carried out in this direction in the future. 

5. Conclusion 

The present study investigates the influence the anisotropic properties of trabecular bone properties on 

the AC implant biomechanical behavior in a controlled configuration. It also shows that BV/TV is an 

important parameter determining the AC implant biomechanical behavior. The phenomena occurring 

around the equatorial rim and in the polar area are important for the AC implant mechanical behavior. The 

present approach may be used in the future to improve the design of the implant which should take into 

account the anisotropic biomechanical properties of the trabecular bone. 

 

 

 

Appendix: Two-scale asymptotic homogenization method 
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The aim of this appendix is to describe the multiscale method employed to determine the effective 

anisotropic material properties of trabecular bone based on the 3D images of trabecular bone retrieved using 

the X-ray microcomputed tomography device (see subsection 2.1).  

The method uses the principle of virtual work for the linear elastic problem described in Fig. 2, which 

can be written by: 
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where iu , ku  and if  denotes the displacement, the virtual displacement and the traction, respectively. 

H

ijklC  denotes the homogenized elastic tensor of trabecular bone, which is a symmetric forth order tensor 

representing the anisotropy. Note that the coordinates given in Fig. 2 are written by ix  in Eq. (A.1) to use 

the Einstein notations. The other notations follow the definition given in subsection 2.3.  

 The analysis of trabecular bone is carried out at the microscale based on µCT images. To do so, 

coordinates at the microscale defined by iy  are introduced. A scale ratio 
l

L
  is defined between macro- 

and microscales, where L and l are characteristic lengths associated respectively with macro- and 

microscales. The constitutive equation is defined at the microscale in the trabeculae by; 
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where ij  and kl  are the tensor components of microscopic stress and strain, respectively. The elastic 

tensor of bone tissue is given in Table 1. Therefore, the homogenized elastic tensor for the trabecular bone 

satisfies 
t
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indicates a volumetric average in the trabecular bone region influenced 

by its morphology. It can be calculated by:  
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where Y  and Y  denote a representative volume element (RVE) of the microstructure in trabecular bone 

region and its volume, respectively. kl
m  is the characteristic displacement in the RVE, which forms the 

perturbed displacement due to microscopic heterogeneity and morphology. It is obtained by solving the 

following microscopic equations, which is associated with the self-equilibrium of the system: 
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The above equations are derived by taking the limit of 0  for averaging, as described in more details in 

[29, 59]. 

 This two-scale asymptotic homogenization theory has the advantage over micromechanics methods 

such as Mori-Tanaka scheme used in [39, 40] that arbitrary complex microarchitecture can be considered 

without any additional assumption. Moreover, such method is reliable has been validated experimentally by 

one of the authors by considering porous titanium [60], porous alumina [61], fiber reinforced plastics [62] 

and epoxy perforated plates [63]. The methods has also been validated experimentally in vertebral trabecular 

bone [64, 65]. Note that, in [65], stochastic analysis was performed, and the expected value of the stiffness 

coefficients coincides with the deterministic prediction used in this paper. However, one drawback of the 

asymptotic homogenization analysis is the computational cost when compared with the approaches based 

on micromechanics.  
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Figure captions 

 

 

Figure 1 – Simulation procedure employed in the present study. Images obtained from 

microcomputed tomography scans were processed to determine the elasticity tensor of the 

trabecular bone sample. This elasticity tensor was then rotated and used in the finite 

element model. Four loading conditions were studied.  
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Z=0.

 

Figure 2 - Cross-section of the geometrical configuration (lengths are expressed in mm) 

considered in the 3D finite element model. The black triangles represent the fixation of the 

outer circle of cortical bone denoted by 𝜞𝒄
𝒖   

 

a) b)

c) d)
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Figure 3 - Macroscopic stiffness values as a function of BV/TV for all data pooled for: a) the 

vertical loading (Sz), b) the torsional loading (Sθ), the horizontal loading along the x-axis 

(Sx) and d) the horizontal loading along the y-axis (Sy).  

 

 

a) b)

c) d)

 

Figure 4 – Variation of the maximum of the von Mises stress <σMacro> obtained in the entire 

trabecular region (Ωt) and BV/TV in the case of a) vertical loading, b) torsional loading, c) 

horizontal loading along the x-axis and d) horizontal loading along the y-axis. The 

maximum value of the von Mises stress was obtained on the bone-implant interface for all 

samples and all loading configurations. 
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Figure 5 - Cross-

sectional view in the plane Πyz of the strain field in the implant and in the peri-implant bone 

for a bone sample (BV/TV=18.0%) under a) vertical loading Fz, b) torsional loading Tz and 

c) horizontal loading Fx.  
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Figure 6 - Cross-sectional of the Von-Mises stresses (MPa) in the plane Πxy corresponding 

z= -26.5 mm for a given sample (BV/TV = 18.0%) under a) vertical loading Fz, b) axial 

torque Tz and c) horizontal loading in the x-axis. In the outer ring, the field of the von Mises 

stresses in bone tissue is shown. In the inner region, the color codes the projection of the 
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von Mises stresses obtained at the bone-implant interface located under Πxy (i.e. for z<-26.5 

mm) on Πxy. 
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Figure 7 - Cross-sectional view of the strain field in the implant and in the peri-implant 

bone for a bone sample (BV/TV=18.0%) under vertical loading for a) εzz in the plane Πyz, b) 

εxz in the plane Πyz, c) εyz in the plane Πyz and d) εxz in the plane Πxz.  

 

 

 

 



Biomechanics of the acetabular cup implant 

 

  27 

b)

c)

-0.2
-0.13
-0.07
0.
0.07
0.13
0.2

-4.
-2.7
-1.3
0.
1.3
2.7
4.

0.
0.06
0.11
0.17
0.23
0.29
0.35

a)

c)

-4.
-2.7
-1.3
0.
1.3
2.7
4.

zz in the plane Πxz (10-4) yz in the plane Πxz (10-4)
a)

c)

zz in the plane Πyz (10-4) xz in the plane Πyz (10-4)

-0.2
-0.13
-0.07
0.
0.07
0.13
0.2

d)

b)

 

Figure 8 - Cross-sectional view of the strain field in the implant and in the peri-implant 

bone for a bone sample (BV/TV=18.0%) under torsional loading for a) εzz in the plane Πyz, 

b) εxz in the plane Πyz, c) εzz in the plane Πxz and d) εyz in the plane Πxz.  
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Figure 9 - Cross-sectional view in the plane Πyz of the strain field in the implant and in the 

peri-implant bone for a bone sample (BV/TV=18.0%) under horizontal loading along the x-

axis for a) εxx, b) εxz, c) εyz and d) εxy.  
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a) b)

c) d)

Figure 10 - Variation of the maximum of the von Mises stress divided by BV/TV <σµ>, 

(which corresponds to an approximation of the Von Mises stress at the scale of the 

trabeculae) as a function of BV/TV in the case of a) vertical loading, b) torsional loading, c) 

horizontal loading along the x-axis and d) horizontal loading along the y-axis.  

 

 

 

 

Table 1. Mechanical properties of materials.  

 

Material Young's modulus 

(MPa) 

Poisson's ratio References 

Cortical bone 

Co-Cr 

15000 

210000 

0.3 

0.3 

[34, 35, 56, 66] 

[21] 
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