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Abstract

With the aim of surgical success, the evaluation of dental implant long-term stability is an
important task for dentists. About that, the complexity of the newly formed bone and the com-
plex boundary conditions at the bone-implant interface induce the main difficulties. In this
context, for the quantitative evaluation of primary and secondary stabilities of dental implants,
ultrasound based techniques have already been proven to be effective. The microstructure,
the mechanical properties and the geometry of the bone-implant system affect the ultrasonic
response.
The aim of this work is to extract relevant information about primary stability from the com-
plex ultrasonic signal obtained from a probe screwed to the implant. To do this, signal pro-
cessing based on multiscale analysis has been used. The comparison between experimental
and numerical results has been carried out, and a correlation has been observed between the
multifractal signature and the stability. Furthermore, a sensitivity study has shown that the
variation of certain parameters (i.e. central frequency and trabecular bone density) does not
lead to a change in the response.

Keywords: implant stability; multiscale analysis; numerical simulations; sensitivity study;10

wave propagation

1 Introduction
A correct evaluation of dental implant stability is crucial for surgical success. First of all, two
types of stability are of interest: i) primary or mechanical stability and ii) secondary or bio-
logical stability. Primary stability is reached during the implant placement, while secondary15

stability occurs after bone remodeling and osteo-integration. It is proven that long-term an-
chorage of a dental implant depends on the quantity and quality of the surrounding bone tissue,
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the peri-implant bone. Indeed, the bone remodeling occurring at the bone-implant interface
[8] leads to changes in the bone mechanical properties [14]. From a mechanical point of view,
modeling difficulties are mostly due to the complexity of newly formed bone tissue (a com-20

plex, anisotropic, porous-viscoelastic medium in constant remodeling), to its multiscale and
time-evolving nature [7], but also to the boundary conditions at the bone-implant interphase.
This means that primary and secondary stabilities are affected by several parameters, as bone
quality, bone density or amount of bone in contact with the implant.
In literature, ultrasound based techniques have already been proven to be effective in the quan-25

titative evaluation of primary and secondary stabilities of dental implant [15, 16, 18, 19, 20,
21], for both experiments and numerical simulations. The technique is based on the following
assumptions: i) dental implants act as wave guides for ultrasounds; ii) propagation in wave
guides is considerably affected by changes in boundary conditions, i.e. by different levels of
stability. The objective is to inspect the ultrasonic response of the implant information and30

correlate it to the evolution of stability, by using signal processing techniques. As already
pointed out, the ultrasonic response depends on parameters like bone structure, geometry or
mechanical properties, which, in vivo, all vary in parallel, and whose effect on stability is not
clear. Thus, with the aim of analyzing the effect of these parameters, mechanical modeling is
a key resource. Indeed, numerical simulation is advantageous with respect to experiences be-35

cause it can perform, in a controlled manner, a sensitivity analysis with respect to parameters
such as bone density and stiffness.
Now, two main issues arise: i) how to evaluate the specific signature left from the aforemen-
tioned parameters on the signal and ii) the extraction of the information.
Therefore, the signal issued from the measurements is complex. In recent studies developed40

by our group, the envelope of the signal has been taken into account in signal processing (see
e.g. [20]). In the literature, similar irregular and complex biological data have already been
approached with fractal and/or multifractal analysis [4, 9, 10], with the aim of characterization
and classification of complex signals. In order to analyze the signal in its wholeness, more ad-
vanced signal processing techniques based on wavelet techniques have been introduced in the45

context of multifractal analysis; but we will use them with a slightly different purpose since,
as we will see, multifractal analysis as such cannot be performed for such signals.
Following the technique employed in [15, 16, 18, 19, 20, 21] different levels of implant sta-
bility will be artificially induced by a progressive unscrewing on the dental implant. This
configuration has been used in both experimental and numerical analysis. The numerical re-50

sults are obtained by using the finite element method.
This paper is structured as follows. After this introduction, Section 2.1 introduces the geo-
metrical configuration of the problem (for which, with the aim of simplifying calculations, an
axisymmetric geometry has been considered) and then provides the axial symmetric equations
of motion; also the Finite Element (FE) analysis is introduced. Then, Section 3 presents a55

rapid overview on the wavelet based multiscale analysis. Section 4 is devoted to the presen-
tation and discussion of the obtained results. Finally, Section 5 sets out conclusion and some
perspectives.

2 Modeling wave propagation in the bone-implant system
2.1 Geometrical configuration and governing equations60

The geometrical configuration reported in Fig. 1 shows the axial symmetry with respect to the
implant central axis. According to that, an axisymmetric 2D model has been used. A contact
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Figure 1: Cross-section view of the 3-D axisymmetric geometrical configuration used in the numerical simula-
tions. The domains are denoted with a subscript corresponding to the trabecular bone (Ωt), the cortical bone (Ωc),
the implant (Ωi), and the absorbing layers associated to trabecular and cortical bone (Ωta and Ωca, respectively).

planar transducer is placed on the emerging surface of the implant. A double-layer structure
of a cortical bone 1 mm thick and an half-space of trabecular bone compose the considered
bone model. In the geometrical configuration shown in Fig. 1, the titanium dental implant65

commercialized by Implants Diffusion International (IDI1240, IDI, Montreuil, France), with
a length of L = 11.5 mm and a diameter of D = 4 mm, is recreated. In addition, a specific
healing abutment is inserted in the upper part of the implant. When the implant is totally
inserted in the bone specimen, as it is in the configuration considered in this work, we deal
with the typical clinical set-up. In the present study, volume forces are neglected and it is70

assumed that all the considered media exhibit isotropic homogeneous mechanical properties.
The cylindrical coordinates are used and designated by (r, θ, z).
The axisymmetric equations of motion in each subdomain are the following:

ρür −
∂σrr
∂r
− 1

r

∂σrz
∂z
− σrr − σθθ

r
= 0, (1)

ρüz −
∂σzz
∂z
− σrz

r
= 0, (2)

where ρ stands for the mass density, ur and uz represent, respectively, the radial and axial75

components of the displacement vector; σrr, σrz, σθθ, σzz are the components of the stress ten-
sor σ; furthermore, the double dot indicates the temporal second partial derivative. According
to Hooke’s relation, the constitutive relation for an isotropic homogeneous material can be
expressed as:

σ =
Eν

(1 + ν)(1− 2ν)
Tr(ε)I +

E

(1 + ν)
ε (3)
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where E and ν are Young’s modulus and Poisson coefficient, respectively, Tr() is the trace80

operator of a tensor, I is the identity tensor and ε is the strain tensor whose non-zero compo-
nents are given by:

εrr =
∂ur
∂r

, εθθ =
ur
r
, εrz =

1

2

(
∂ur
∂z

+
∂uz
∂r

)
, εzz =

∂uz
∂z

. (4)

Young’s modulus has been considered to be related to the density ρ according to the following
power-law relation [5]:

E = E0

(
ρ

ρ0

)1.96

, (5)

where the subscript 0 indicates the reference values for the Young’s modulus and the density.85

The contact planar transducer, placed on the upper emerging surface of the implant specimen
(see Fig. 1), generates a signal corresponding to a time pulse uniform pressure whose temporal
history is expressed as follows:

p(t) = A
[
exp−4(fct− 1)2

]
× sin(2πfct), (6)

where A is the amplitude, fc is the pulse central frequency and t is the time.

The continuity of displacement and stress fields between the subdomains is imposed. More-90

over, in order to prevent the nonphysical reflected wave generated from the lateral and bottom
boundaries of the bone domains, an absorbing layer has been added to the model, as shown in
Fig. 1.

The domain is at rest for t < 0, i.e. stress and displacement are set to zero everywhere in the
domain. At t = 0, the uniform pressure given by Eq. (6) is imposed on the upper emerging95

surface of the implant specimen.

2.2 Finite element simulation
In this subsection, the resolution method is described. The boundary value problem defined in
subsection 2.1 was solved by using the software COMSOL Multiphysics (Stokholm, Sweden)
which is based on the finite element method.100

By the discretization of the equations, a linear system of ordinary differential equations is
obtained, which is solved by an implicit generalized α-method in the time domain, a com-
plete description of which can be found in [20]. Briefly, an unstructured mesh of triangular
finite elements with quadratic Lagrange interpolating polynomials was used. A critical choice
for the convergence of the numerical results concerns the steps of the temporal and spatial105

discretization. Thus, the element’s size of each subdomain (see Fig. 1) was chosen equal to
λmin/10, where λmin represents the smallest wavelength in the domain and it can be computed
as λmin = cmin/fmax (for the isotropic elastic media considered here, cmin is the shear wave
velocity) and fmax the maximum value of the frequency range. For this reason, we considered
meshes with smoothly varied sizes of elements when there are interfaces between two mate-110

rials. The mesh of the considered model contains around 106 degrees of freedom. The time
step has been chosen in order to respect the Courant-Friedrichs-Lewy (CFL) condition, which
represents a necessary condition for stability. Thus, in these simulations, the time step is set
equal to 1.5× 10−9 s.
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2.3 Indicator of the implant stability115

The ultrasonic response of the implant is measured by using an echographic mode. The output
radio frequency (rf) signal was determined by computing the spatial average of the pressure
at the upper surface of the implant (see Fig. 1). In order to extract information, in [18, 19],
the signal envelope, that is the smooth curve outlining the extremes of the signal, has been
considered to build an indicator as a scalar quantity proportional to the implant stability. This120

indicator is indeed based on the temporal variation of the signal amplitude and is defined as:

I =
N∑
i=1

S(it0) (7)

where N designates the samples number, t0 is the sampling rate and S(t) the signal envelope.
As an example, in Fig. 2, an output signal obtained with our ultrasonic device is presented.

Figure 2: Example of an output signal obtained with our ultrasonic device.

In this work we want to extend the signal processing analysis to the inner structure of the
signal. Indeed, since the recorded signal came from multiple reflections at the interface bone-125

implant, a multi-scale or multi-fractal analysis seems to be appropriate. Details about this
signal processing technique will be given in the next section.

3 Signal processing and multiscale analysis
Multifractal analysis has been already employed in medicine to discriminate bone pathologies
like osteoporosis [9, 12], to characterize microstructure of porous media (and, in particular,130

bone tissue) [17] and infectious diseases [11], to differentiate dentate and edentulous regions
[24] and more.
In this work, multifractal tools are employed to extract relevant information from the
scaling properties of signals either derived from experimental and numerical data. The aim
is to discriminate the implant stability. Multifractal analysis consists in determining structure135

functions associated with the data and discussing their relevance using classification methods
or model selection.

3.1 Wavelet basis
Starting with the scaling function φ(x) and the wavelet ψ(x) (regular and well localized), an
orthonormal wavelet basis onL2(R) (whereLp(R) is the Lebesgue space of p-power integrable140
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functions on real numbers R) is defined as the set of functions φ(x − k) and 2j/2ψ(2jx − k),
where natural number j ≥ 0 and k ∈ Z for which j and k are natural numbers belonging to
Z. The basis is "r-smooth" if φ(x) and ψ(x) have derivatives up to order r which have fast
decay. The quantity r is a parameter which has to be picked larger enough depending on the
data analyzed; indeed it has to be larger than the highest Hölder exponent present in the data.145

We denote by cj,k and ck the wavelets coefficients on the function f , which are defined by:

cj,k = 2j
∫
R
f(x)ψ(2jx− k)dx, ck =

∫
R
f(x)φ(x− k)dx. (8)

These coefficients give information on the oscillations of f in the neighborhood of the dyadic
interval λ(= λ(j, k)) := [k2−j, (k + 1)2−j), which leads to a more compact notation, that is
cλ = cj,k and ψλ(x) = ψ(2jx − k). This kind of indexation is useful because the wavelet
ψλ is fundamentally located near the dyadic interval λ. Furthermore, we denote by Λj the set150

of dyadic intervals λ of width 2−j . A L1(R) normalization for wavelet coefficients is used
because it is more natural in order to express scale invariance relations.

3.2 Wavelets structure functions
The wavelet structure functions of f are defined by:

∀j ∈ N, ∀p > 0, Sf (p, j) = 2−j
∑
λ∈Λj

|cλ|p , (9)

where N refers to the set of all natural numbers.155

Multifractal analysis usually proposes to use classification tools based on log-log plot regres-
sions of structure functions (the so-called scaling functions, see [1, 2]). However, in our case,
log-log plots do not display a clear scaling-invariance behavior (see Figure 3). Therefore, it
seems more relevant to base classification directly on the structure functions (note that a similar
idea was followed in [3] for old photographic papers). One possibility is to consider quanti-160

ties which are used in the wavelet characterization of homogeneous Besov spaces Ḃ0,p
p (R)

(the space Ḃ0,p
p (R) is closely related with the Lp(R) space, see [1, 2]). Besov regularity and

the explicit estimation of Besov norms are widely used in signal and image processing, since
equivalent noms were derived by Y. Meyer and D. Donoho and his collaborators who showed
how they can be used in denoising algorithms and inverse problems, see e.g. [6]. Recall that165

the wavelet characterization of these spaces implies that, if wavelets are smooth enough (which
we assume), then

‖ f ‖p
Ḃ0,p

p (R)
∼

∑
j

2−j
∑
λ∈Λj

|cλ|p =
∑
j

Sf (p, j). (10)

4 Results and discussion
To realize this study, we used the Wavelet Leader and Bootstrap [22, 23] based multifractal
analysis (WLBMF) toolbox. This analysis has been performed to both experimental data and170

numerical simulations. As stated above, the signals we deal with have, from a qualitative point
of view, a complex structure, thus the aim is to extract a quantification of implant stability, and
study the sensitivity of this method with respect to changes in bone density, stiffness and with
respect to the probe central frequency.

In both experiments and simulations, the variation of stability has been induced in a controlled175
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manner by a progressive unscrewing of 2π-rad of the dental implant, that, in what follows, will
be indicated by the number of rotationsR. Higher values of the rotation parameters correspond
to lower stabilities.

4.1 Structure functions
The consideration of structure functions for classification purposes goes back to the seminal180

work of Kolmogorov in turbulence in 1941 [13], and their wavelet counterpart was introduced
by A. Arneodo and his collaborators at the end of the 1980’s.

The results presented in what follows correspond to a specific selection of process parameters
settings for the WLBMF toolbox. The two standard analysis methods have been performed,
i.e. the discrete wavelet transform coefficients (DWT) and the Leaders’ wavelets (LWT), with185

Nψ = 3 vanishing moments. The choice of a wavelet basis requires:

(i) the shortness of the filters (which implies faster decomposition algorithms and a larger
number of scales on which log-log plot regressions can be computed for the determina-
tion of scaling exponents);

(ii) the regularity of the wavelets and the number of vanishing moments (which allow to deal190

with larger classes of signals displaying a wider range of singularity exponents).

These two requirements are contradictory, since, for a given class of wavelets, the longer
the filters the more vanishing moments. However, when no specific additional requirement
is needed (such as e.g. a symmetry for the filters) Daubechies wavelets present an optimal
compromise, and therefore are usually preferred. So, in what follows, the results presented195

derive from using Daubechies wavelets.

The scaling range was chosen as 3 ≤ j ≤ 7. Over these scales a weighted polynomial
regression has been performed. Moreover, we remarked that information can be extracted
only for p ∈ [1, 3], and that the information is equivalent for each p in this range. Thus, in
what follows, we assume that p = 1.200

As stated above, this analysis is performed on experimental and numerical data. For the experi-
ments, with the aim of reproducing the buccal condition, the configuration considered presents
a bone porous structure saturated with water and completely immersed. All simulations have
been performed by means of the commercial software COMSOL Multiphysics (Stockholm,
Sweden).205

We start the analysis by the computation of the structure functions (which examine power-law
relations for all orders of moments) related to experimental tests and a numerical simulation,
in order to extract their main features. The results are plotted in Fig. 3, for different levels
of stability. From the analysis of the structure functions, and their evolution with respect to
rotations, the following observations may be exposed:210

– small scales (e.g. j < 3) do not include any information, in fact they are invariant for
each case considered;

– large scales (e.g. j > 6) correspond to phenomena not taken into account, such as large
fluctuations due to measurement conditions (e.g. small movements of the probe);

– following the previous considerations, it is reasonable to take into account only the scale215

corresponding to j ∈ [3, 6] ;
7



Figure 3: (Colors online). Wavelet structure functions (DWT) (for p = 1) performed on the experimental data.
On the top right corner a legend for the curves is presented, where "R1" represents the implant fully inserted in
bone tissue, "Ri" (i = 1, ..., n) the implant unscrewed of 2 × iπ-rad, and "Air" the implant located in the air
(which means that there is not bone tissue around the implant).

– in contradistinction with what is usually met in signal processing, deriving scaling ex-
ponents from log-log plots based on such data would not be relevant here.

Using such exponents for classification is the starting point of multifractal analysis methods.
Since this is not appropriate here, we will rather base the classification on the richer informa-220

tion supplied by the collection of structure functions at different scales. Note that this option
has already shown to be relevant in a different context: for ancient photographic papers clas-
sification, structure functions are not scaling invariant because of the typical scales due to the
texture of the paper, and classification is performed on structure functions (see [3]).

In the region of interest (ROI) we can observe that: i) the structure functions do not exhibit a225

linear behaviour; ii) the shape does not seem to depend on the configuration. In this context,
log-log regressions are not meaningful. As already mentioned earlier in this section, this is not
uncommon in multiscale analysis, as structure functions are used also for classification with
respect to their shape or the mean values. In light of these observations, mean values have
been used in this work.230

With the aim of validating this new technique with respect to the results presented in [18, 19,
20, 21], the same simulation with trabecular bone density ρ = 1170 kg/m3 and central fre-
quency fc = 10 MHz are compared for the indicator I , computed following Eq. (7), and the
mean value of the structure functions.

235

Therefore, following the classification method described in section 3.2, a polynomial regres-
sion on the mean values of the structure functions (see Fig. 4b) with respect to the unscrewing
has been performed. Figure 4b illustrates the results for the mean values of the structure func-
tions and, by a comparison with Fig. 4a, the coherence with the results for both methods can
be appreciated. These results show that a correlation can be clearly observed. A polynomial240

regression, where the fitted equation presents a quadratic form, well describes the trend of the
presented results.
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(a) (b)

Figure 4: (Colors online). Polynomial regression for a) the indicator I and b) the mean values of the structure
functions (for p = 1).

The fact that the mean value of the structure functions increases when the stability is reduced
is consistent with the mechanical interpretation of the phenomenon. Indeed, the higher the
stability, the more easily the mechanical energy can flow to the surrounding tissues. When245

the stability is decreased, only a fraction of energy can leave the implant, leading to an higher
amplitude of the ultrasonic field. In the specific case considered here, with each rotation of the
implant the contact surface with bone is reduced, and so is the mechanical energy flowing out.

In addition, the R-squared coefficient is indicated in the upper left of each figures. This coef-
ficient results to be very close for both cases under exam (see Figs. 4a and 4b). Additionally,250

Figs. 4a and 4b underline a saturation for low level of stability (i.e. for increasing number of
rotations).

4.2 Sensitivity study
A sensitivity study has been performed in order to test if parameters as trabecular bone density
ρ and excitation frequency fc have an influence on the multiscale study. Actually, the aim255

of a sensitivity study is to observe how much the variation of the parameters influences the
response.
In particular, for each implant unscrewing level, all combinations for the following parameters
have been examined:

– ρ: 936, 1053, and 1170 kg/m3;260

– fc: 8, 9, 10, 11, and 12 MHz.

As a reminder, concerning the experiences, the reference values of the trabecular bone density
and Young’s modulus are given by ρ0 = 1170 kg/m3 and E0 = 2.2108 GPa. In this sensitivity
study, a decreasing of 20% for the trabecular bone density has been considered which carries
out ρ = 936 kg/m3. The variation of density and, consequently, the ones of Young’s modulus265

are derived from Eq. (5). Moreover, it is important to point out that for all simulations the
Poisson’s ratio ν = 0.3 remains unchanged. Three trabecular bone densities are examined
which are associated to three Young’s modulus given in Tab. 1.
In this paragraph, the following "situations" will be presented and discussed:
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ρ (kg/m3) E (GPa)
1170 2.2108
936 1.4276
1053 1.7983

Table 1: Three trabecular bone densities associated to three Young’s modulus for the sensitivity study.

– mean values of the structure functions at fixed p-value, by varying the central frequency270

fc to the trabecular bone density ρ;

– mean values of the structure functions at fixed p-value, by varying the trabecular bone
density ρ to the central frequency fc.

The data are presented with respect the number of rotations where the configuration associated
is denoted by Ri, for i = 0, ..., n. As already said, the configuration associated with R1275

corresponds to the implant totally inserted, and then a progressive unscrewing of iπ-rad is
realized.

So, the mean values of the structure functions have been analyzed with respect to the variation
of frequency (at a fixed value of trabecular bone density) and also to the density (at a fixed
value of frequency). Figures 5a-5c show, by fixing the value of ρ, the evolution of the mean280

values of the structure functions to changing the frequencies. For a given frequency, the data
seem to evolve with implant unscrewing. Furthermore, it is evident that the variation of fc
induces a shift of the curves, but not a distortion in their shape. Actually, starting from 8 MHz,
the next curves are like shifted downwards one after another.

Similarly, Figs. 6a-6c show the behaviour of the mean values of the structure functions with285

respect to changing trabecular bone density and at fixed central frequency. Since the curves
are practically superposed, no relevant information can be extracted. It can be only highlighted
that a greater solicitation is observable on the implant unscrewing level R2, which corresponds
to unscrew the bone implant of π-rad. This consideration has been confirmed also by further
simulations considering lower and higher values of trabecular bone density.290

Finally, to sum up, with the aim of investigating if central frequency and trabecular bone
density represent incident parameters, a sensitivity study has been performed. Hence, the
mean values of the structure functions have been considered with respect to the number of
rotations R (i.e. a progressive unscrewing of the dental implant) by fixing once the central
frequency, and then the trabecular bone density. The results obtained show that the response295

is not affected by the parameters considered.

5 Conclusion
The present work aims at providing a first evidence on the possibility to explore and exploit
the multiscale structure of the ultrasonic signal for evaluating dental implant stability. In the
example provided, the ultrasonic signal is obtained from a probe fixed to the implant, and the300

stability is artificially reduced by performing a progressive unscrewing of the implant itself.

Experimental and numerical results have been compared and then analyzed by signal
processing with multiscale methods. Since the use of multifractal analysis has highlighted an
absence of log-log regression, the mean values of the structure functions have been
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(a) (b)

(c)

Figure 5: (Colors online). Plots of the mean values of the structure functions to the number of rotations in
function of the trabecular bone density: a) ρ = 936 kg/m3, b) ρ = 1053 kg/m3 and c) ρ = 1170 kg/m3. On
the top right corner of each figure the legend is given: the different curves represent the correspondent value of
central frequency.

considered. By comparison with the indicator used in [15, 16, 18, 19, 20, 21], a coherence305

between the results can be appreciated. Furthermore, a sensitivity study has been performed
by varying the density of the trabecular bone and the central frequency, showing that these
parameters do not have a significant incidence on the evaluation of the stability.
To summarize:

– a 3D axisymmetric configuration has been used for the finite element analysis;310

– some preliminary results from multifractal analysis have been carried out;

– the sensitivity study performed has not shown a particular incidence of the parameters
investigated in this analysis.

With the aim of introducing a certain fractality in the mechanical model, future works may
envisage the introduction of this feature from a geometrical point of view (e.g. by using ge-315

ometrical configurations like Menger sponges and Koch iterations) as well as to find a model
which contains "multifractal elements" [1, 2, 3] by using tools as the scaling exponent, the
multifractal spectrum [9] or the log-cumulants.
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(a) (b)

(c)

Figure 6: (Colors online). Plots of the mean values of the structure functions to the number of rotations in function
of the central frequency: a) fc = 8 MHz, b) fc = 10 MHz and c) fc = 12 MHz. On the top right corner of each
figure the legend is given: the different curves represent the correspondent value of trabecular bone density.
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[24] F. Yaşar and F. Akgünlü. Fractal dimension and lacunarity analysis of dental radiographs. Dentomaxillofa-

cial Radiology, 2014.

13



Highlights

– A mechanical modeling to extract information about primary stability of an implant

– A complex ultrasonic signal obtained from a probe screwed to the implant

– Multifractal analysis has evidenced a signature of the stability

– A correlation has been observed between the multifractal signature and the stability
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