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ABSTRACT
We propose a nonrigid registration method whose motion es-
timation is cast into a feature matching problem under the
Log-Demons framework using Graph Wavelets. We inves-
tigate the Spectral Graph Wavelets (SGWs) to capture the
shape feature of the images. The advantages of the Spec-
tral Graph Wavelet (SGW) over the classical wavelet is that
data representation on graphs is more adapted to data with
complex structures. Our experiments on T1 brain images and
endomicroscopic images show that this method outperforms
the existing nonrigid image registration techniques (i.e. Log-
Demons and Spectral Log-Demons) with improved similarity
values.

Index Terms— Image Registration, nonrigid deforma-
tion, Graph Wavelets, Log-Demons Registration

1. INTRODUCTION

Nonrigid image registration is critical for many applications
in computer vision such as medical image applications, at-
las construction and remote sensing applications. Nonrigid
methods can be classified into two categories: intensity based
[1, 2], and geometric based [3, 4]. The former finds corre-
spondence between images using intensity values while the
latter deals with the image structures. Intensity based method
mostly relies on a gradient based method to optimize the
intensity difference between images, which suffers from a
various number of aspects (e.g. local minima, noise, image
distortion). In contrast, the geometric based method is more
robust to structure changes and scene movements with global
transformation but limited in case of local deformation. Mo-
tivated by the fact that intensity based and geometric based
methods complement each other, many applications have
combined these two techniques for large and complex defor-
mations [5, 6], and they have facilitated many other studies.

Thanks to the development of computer science, the idea
of applying graph theory in image processing has been ex-
tensively explored. This is due to its simplicity to provide a
discrete and mathematical representation of different types
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of images. It was observed in [5] that the graph spectrum
is geometric invariant. This work obtained a noticeable suc-
cess in diffeomorphic registration with large and complex
deformation that utilizes graph spectrum in the Log-Demons
framework. However, experiments showed that the graph
spectrum is noise prone.

On the other hand, one of the widely used geometric
based approaches is wavelet based registration because of its
ability to perform multiresolution scheme and image repre-
sentation in both time and frequency domains, as well as its
ability to characterize texture images. In this case, the image
features are extracted via wavelet coefficient. The registration
step then becomes a feature matching problem [4, 7, 8, 9].
Although wavelet decomposition preserves strong features,
these methods are limited to rigid and affine transformations.

Recent research on graph theory is proposed by Ham-
mond et al [10]. They introduced a new computation of
Spectral Graph Wavelet Transform that is defined in the
graph Fourier domain. This allows us to utilize the bene-
fits of the image representation on graph while keeping the
advantages of wavelets. The advantages of wavelets are the
image representation at different frequencies and the ability
to accentuate shape feature. A prominent number of recent
SGW based applications in computer vision, such as shape
classification [11], shape retrieval [12, 13], local texture
characterization[14], image denoising [15] have proven the
benefits of Graph Wavelets.

In this paper, we propose a SGW based nonrigid image
registration method. We investigate the lower bands of the
SGWs on entire image at different scales as the geometric
constraint of the similarity measurement, together with the
intensity and spatial constraints. In order to archive diffeo-
morphic registration, the motion estimation is under the well
known Log-Demons framework. To the best of our knowl-
edge, this is the first time SGW is applied to the problem of
nonrigid image registration. Our experiments show that our
method outperforms the existing methods, especially when
noise exists.



2. THEORY AND METHOD

2.1. Non-parametric Image Registration

Classically, image registration is the process of spatially
aligning a source image IS to fit a target image IT . The goal
of non-parametric registration is to find the transformation
s(p) from IT to IS for each point p, such that for the full
field IS◦s = IT . The transformation is obtained by optimiz-
ing the energy function that contains intensity similarity and
regularization energy:

E(IT , IS , s) = αiEsim(IT , IS◦s) + αrEreg(s), (1)

where αi, and αr represent the intensity and regularization
weights of registration. The intensity and regularization en-
ergy forms are denoted by the sum of square differences of
image intensity and spatial coordinates: Esim(IT , IS◦s) =
||IT − IS◦s||2, and Ereg(s) = ||XT −XS◦s||2, with XT , XS

are spatial coordinates of target and source images.

2.2. Data Representation by Graph

Graph definition: A graph is defined as G = (V, E), where
V = v0, ..., vN−1} is a set of vertices and E is a set of edges
representing the weight between vertices [16]. In graph based
image processing, vertices can represent pixels and therefore,
edges represent the neighboring structure of these pixels.
Such graph can be represented on an adjacency matrix A
where Aij is the undirected edge weight of vertex vi and
vertex vj .
Graph Laplacian Matrix: Matrix D is a diagonal degree
matrix where each value Dii on the diagonal is the sum of
the weights of all the edges incident to vertex vi, such that:
Dii =

∑
j

Ai,j . The Laplacian matrix is given as: L = D−A.

The normalized Laplacian matrix introduced in [16] is given
as:L = D−1/2LD−1/2.
Obviously, graph construction is about how Laplacian matrix
is built. It fully depends on how points are connected and
the computation of the edge weights. This will be briefly
discussed later in this paper.

2.3. Spectral Graph Wavelet Transform

Graph Fourier Transform: Given graph signal f ∈ RN , ac-
cording to [17] the graph Fourier transform of the signal is
defined as:

f̂(`) =< v`, f >=

N∑
n=1

v∗` (n)f(n), (2)

where {λ`, v`}`=1,...,n forms eigensystem of Laplacian ma-
trix, with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN = λmax,
and associated eigenvectors v1, v2, . . . , vN .
Graph wavelet transform: The SGWs are modulated by a

generating kernel g, which performs as a band-pass filter in
the spectral domain, T t

g denotes the wavelet operators at scale
t.

Wavelet coefficients of graph signal f at scale t are de-
fined as:

Wf (t, i) =< ψt,i, f >=

N∑
`=1

g(tλ`)f̂(`)v`(i). (3)

In order to encode the low frequency of signal f , a sec-
ond class of waveforms h is defined similarly to the low pass
filter in classical wavelet transform, such that: h(0) > 0 and
limx→∞ h(x) = 0. This scaling function Sf (n) is denoted
by:

Sf (i) = (h(tL)f) (i) =
N∑
`=1

h(λ`)f̂(`)v`(i). (4)

3. PROPOSED REGISTRATION ALGORITHM

3.1. Graph Computation

The construction of a graph mainly focuses on point connec-
tivity and the computation of the edge weights. The Sim-
plest definition of adjacency matrix can be uniform, in which
Aij = 1 if vi, vj are connected and Aij = 1 otherwise. In
a more advanced way, edge weight can rely on the intensity
difference between vertices, given as below:

Aij =

{
exp

(
− (Ii−Ij)2

K2

)
if (i, j) ∈ E ,

0 otherwise.
(5)

Parameter K > 0 controls the sensitivity to edges in the im-
ages. In another word, the value of K affects the influence
of the difference between every two adjacent pixels. When
the value of K increases, the influence of pixel difference
decreases. It is chosen depending on the noise and texture
characteristics of the image.

Concerning the graph topology, in fact, there is no general
rule of how points are connected. In general case, one can use
the k-nearest neighbor scheme to find adjacent points, or for
each point, choose its adjacent points in one circle. In case of
regular data, such as image, each pixel in the image is con-
sidered as one vertex, each vertex can connect with its four
closest neighbors, or with additional diagonal neighbors. In
principle, for stronger graph connection, edges can be built
on pixels with any larger spatial distance, but the graph com-
munication cost will increase.

3.2. Objective function

At this stage, we briefly introduced the graph representation
and construction. We also described the SGW decomposi-
tion. To recall to the problem of the state-of-art, classical in-
tensity based methods are limited to the local scope and lacks



geometric invariance. A spectral approach that is geometric
invariant is well known to adapt with non-local deformation.
Such complementary approaches motivate a hybrid method
that combines intensity based and geometric based. SGW
approach is a multiscale graph based technique, that is de-
fined in graph spectral Fourier domain. Therefore, SGW not
only is geometric invariant but also allows us to analyze graph
data in different frequencies. In this section, we provide our
objective function that contains SGW constraint for geomet-
ric invariance. Suppose we analyze the SGWs of each image
at t scales, the constructed Graph Wavelets then compose of
t+1 components, where the first component is of the scaling
function, and the rest are the SGWs at scales 1, . . . , t. Each
component is at the same size with the image. We choose the
first k components to use for registration, denoted as WT and
WS for the target and source images. The choice of t and k
depends on the image characteristics. In fact, t controls how
image details are stretched in frequency domain, and t defines
the levels of details that we want to use.
We exploit the specifications of the generating kernel function
g and the scaling function h in [10]. Our objective function is
defined as:

E(IT , IS , s) = αi||IT − IS◦s||2 + αr||XT −XS◦s||2

+αw||WT −WS◦s||2,
(6)

where αi, αr, and αw are respectively the intensity, regular-
ization, and spectral wavelet weights. In each iteration, the
transformation field is achieved by performing optimization
on Lie algebra [?] through an exponential map of the station-
ary velocity v according to [1]. SGWs are computed for both
updated images. The update fields ufw and ubw are obtained
by a nearest neighbor search, such that the energy defined in
Eq. 6 is minimized in both forward (IT to IS◦s) and backward
(IS to IT◦s−1 ) matching. The symmetric update field u is the
average of ufw and−ubw: 1

2 (ufw−ubw). The next step is to
smooth the update field u with a Gaussian kernel Kfluid with
standard deviation σfluid. The velocity field v is updated by
the computed update field, and then smoothed with a Gaus-
sian kernel Kdiff with σdiff. The registration process can be
summarized as in Algorithm 1.

4. RESULTS

In order to show the benefits of our proposal, we benchmark
our method against two existing algorithms (i.e. Log-Demons
and Spectral Log-Demons). We use the same set of weight-
ing parameters (αi = 20, αr = 4, αw = 1. αw is the spec-
tral weight of Spectral Log-Demons, and SGW weight in our
method). We use eight neighbor graph connectivity in all of
the experiments. To have an application that is less sensitive
to noise, we choose a large value of K (K = 30) to have less
influence of intensity difference on the computation of edge
weight (Eq. 5). We use t = 4 number of scales for SGW com-

Input: Target and source images: IT , IS
Output: Transformation field s = exp(v)
Initialize: Velocity field v
while i < maxiter do

s = exp(v);
WT◦s−1 ,WS◦s;
ufw ← argmin(E(IT , IS◦s, u));
ubw ← argmin(E(IS , IT◦s−1 , u));
u← 1

2Kfluid ∗ (ufw − ubw);
v ← log(exp(v) ◦ exp(u));
v ← Kdiff ∗ v;

end
Algorithm 1: SGW Demons Registration

putation and choose k = 3 first components at lower bands
(including the scaling function component) for registration.

Fig. 1 shows the output of the proposed algorithm com-
pared to existing solutions. The first and second rows of
show the registration results on two T1 images. In the first
row, the target and source images are shown on the first and
second images, the following from left to right are the regis-
tered images of the Log-Demons, Spectral Log-Demons and
our method respectively. The second row displays the corre-
sponding graphical Absolute Difference of the methods. The
top right figure of Fig. 1 shows the result in term of Mean
Square Error (MSE) between the registered image and the
target image of all algorithms with respect to the iteration
step. Similarly, the third and fourth rows show the registra-
tion results on endomicroscopic images. The target image is
cropped from an endomicroscopic image. The source image
is generated by performing a random bspline transform on the
target image. The bottom right figure shows the MSE curves
of the methods with respect to number of iterations.

As can be seen in Fig. 1, the methods with a geometric
constraint (Spectral Log-Demons method and our method)
fall faster to the convergence of the registration. However, in
the registration of T1 images, at further iterations, the MSE of
the Log-Demons method decreases and gets close to the MSE
value of the Spectral Log-Demons method.

In order to show that the SGW based method is robust to
noise, we add a Gaussian noise to the target and source im-
ages with standard deviation σnoise ranging from 0 to 0.1. The
MSE value of the algorithms with respect to noise is shown
in Fig. 2. To see more clearly, we shows the target (in red
channel) and registered (in green channel) images of the al-
gorithms when σnoise = 0.014 at the rightmost of the figure.
The significant misalignment of Log-Demons and Spectral
Log-Demons are shown in the cropped regions (in blue rect-
angle close to the nose, and in yellow rectangle close to the
neck region). We observe that the performance of the Spectral
Log-Demons method fluctuates unpredictably with respect to
noise. But in all of the tested cases, our proposal provides the
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Fig. 1. Comparison between our proposal and the existing methods when no noise is added
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Fig. 2. MSE of Log-Demons, Spectral Log-Demons meth-
ods, and our method with respect to Gaussian noise (standard
deviation σnoise)

best results compared to other methods.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a nonrigid image registration
method based on a hybrid approach that consists of inten-
sity based and SGW based matching. Our contribution is
first, we showed that the SGWs can be applied to spectral
matching, and then adapted to the Log-Demons framework.
Secondly, the SGWs that can represent strong shape features
can be applied to noisy images. Our experimental results on
brain images at different levels of Gaussian noise show that
our method outperforms the existing methods on a similar
framework, and more robust to noise. However, graph based
methods are still limited to low resolution images. In our
future work, we will experiment on different graph connec-
tivities and the computation of edge weights to study how
they affect the image registration.
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