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ON A CLASS OF MARKOV BSDES WITH

GENERALISED DRIVER

ELENA ISSOGLIO1 AND FRANCESCO RUSSO2

Abstract. We are concerned with BSDEs where the driver con-
tains a distributional term (in the sense of generalised functions).
We introduce an integral operator to give sense to the equation
and then we show the existence of a strong solution. Because of
the irregularity of the driver, the Y -component of a couple (Y, Z)
solving the BSDE is not necessarily a semimartingale but a weak
Dirichlet process.

Key words and phrases. Backward stochastic differential equa-
tions (BSDEs); distributional driver; weak Dirichlet process; pointwise
product; generalised and rough coefficients.
2010 MSC. 60G20; 60H30; 60J60.

1. Introduction

In this paper we consider backward stochastic differential equations
(BSDEs) of the form

Yt = ξ +

∫ T

t

Zrb(r,Wr)dr +

∫ T

t

f(r,Wr, Yr, Zr)dr −
∫ T

t

ZrdWr. (1)

We are interested in a class of coefficients b of distributional type of
the form b ∈ C([0, T ];H−β

q (Rd;Rd)) for some β ∈ (0, 1/2). The objects
appearing in (1) take values in the following sets: t ∈ [0, T ], ξ,W, Y ∈
R

d, Z ∈ R
d×d and f(t,W, Y, Z) ∈ R

d (all vectors being column vectors).
Here ξ = Φ(WT ) for some deterministic function Φ.
The classical notion of Brownian BSDE was introduced in 1990 by

E. Pardoux and S. Peng in [16], after an early work of J. M. Bismut
in 1973 in [2]. It is a stochastic differential equation with prescribed
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terminal condition ξ and driver f̂ expressed by

Yt = ξ +

∫ T

t

f̂ (r, ω, Yr, Zr) dr −
∫ T

t

ZrdWr. (2)

The unknown is a couple (Y, Z) of adapted processes. Of particular
interest is the case where the randomness of the driver is expressed
through a forward diffusion process X and the terminal condition only
depends on XT . Existence and uniqueness of the solution for the above
equation was established first supposing (essentially) only Lipschitz

conditions on the driver f̂ with respect to the y and z variables. In
subsequent works those conditions were considerably relaxed, see [17]
and references therein for recent contributions on the topic. When b =
0, formally speaking (1) can be obtained as a special case of (2) setting

f̂(r, ω, y, z) = f(r,Wr(ω), y, z). However, the driver in (1) includes
the term r 7→ Zrb(r,Wr(ω)), where b is a distribution in the second
variable, hence this cannot be reduced to the classical case. As an
example of generalised functions b which are allowed here, one can
think of the derivative of a Hölder continuous function with Hölder
parameter larger than 1

2
(plus some growth condition at infinity).

One of the main applications of BSDEs is their use in providing
probabilistic representations to the solution of certain non-linear PDEs.
It is known (at least in the classical case) that when ξ = Φ(WT ), then
BSDE (1) is linked to a PDE of the form

{

∂tu+
1
2
∆u = −∇u∗ b− f(u,∇u)

u(T ) = Φ,

see Section 2 for details about the notation. If u is the solution of
the PDE, then one has the probabilistic representation u(t,Wt) = Yt
and ∇u∗(t,Wt) = Zt, also known as non-linear Feynman-Kac formula.
In this paper we obtain indeed a probabilistic representation for the
solution u of the PDE using the BSDE. The novelty here is the rough
driver b and the fact that the analysis is done entirely in terms of the
original Brownian filtration even when the driver has the singular term
Zb.
The topic of stochastic equations involving distributional coefficients

has attracted a lot of interest, in particular for (forward) SDEs. See for
example [6, 10, 9] in the case where the solution is not a semimartin-
gale. See also [20] and more recently [8, 4]. For what concerns the case
of backward SDEs involving a distribution we mention the works [7]
on (reflected) BSDEs with distribution as terminal condition, and [23]
whose authors studied a one-dimensional BSDE (with random termi-
nal time) involving distributional coefficients via a forward stochastic
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process. Recently [1] considered a BSDE with a general forward pro-
cess that covers various singular situations, including the case when
the drift is distributional. [5] considered BSDEs where the driver is a
Young integral. The work that is mostly related to our paper though,
is [13]. There the authors study a BSDE like (2) where the driver has a
component Zrb(r,Wr), and b is a distribution like in the present paper.

It is clear that the integral
∫ T

t
Zrb(r,Wr)dr needs to be carefully de-

fined because the distribution b(r, ·) cannot be evaluated at the point
Wr and moreover a distribution in general cannot be multiplied by a
function (in this case by the stochastic process Zr). The way that this
is carried out in [13] is by means of the Itô trick: they effectively re-
place the (not well-defined) distributional term Zrb(r,Wr) with known
quantities, and get a new stochastic equation. For the latter, they are
able to show existence and uniqueness of a solution under Lipschitz
continuity conditions on the remaining part of the driver f (and some
growth condition at 0).
In this paper we make a substantial step towards a deeper under-

standing of equations with distributional drivers. The main difference
with [13] is that here we give a meaning to the distributional term
Zrb(r,Wr) rather than replacing it with known objects, and effectively
we solve the original BSDE rather than a different one. In this paper
the underlying forward process is the Brownian motion itself. This
means that the BSDE is constructed on the probability space where
the Brownian motion lives, rather than the space where a (weak) solu-
tion of a forward SDE lies. Thus we provide a genuine strong solution
to the BSDE.
We start by introducing an equivalent formulation of the BSDE (see

Definition 3.3) that makes use of an integral operator AW,Y (b) intro-

duced in Definition 3.1 to replace the term
∫ T

t
Zrb(r,Wr)dr. The op-

erator is well-defined for smooth bs and coincides with the classical
integral. The idea is to extend such operator to a class of drivers b that
includes the original distributional driver. We carry out this study in
Section 5.1 in the Markovian setting, where the component Y and the
terminal condition ξ are deterministic functions of the Brownian mo-
tion W . In Proposition 5.5 we show that the integral operator satisfies
certain continuity properties which are essential to prove the existence
of the extension in the first place. Furthermore, a representation prop-
erty is needed to effectively employ this operator and solve the original
BSDE. For instance we show a chain rule in Proposition 5.7 which pro-
vides an explicit representation for the integral AW,W (b) even in the
case when b is a distribution. Note that when b is a distribution then
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AW,W (b) is defined as a limit, so having an explicit representation (chain
rule) is very useful. The chain rule we just mentioned is shown for the
special case AW,W and it is then linked to the general case AY,W via
the deterministic transformation γ, where Yr = γ(r,Wr). In Section
5.2 we state and proof the main results of existence (and uniqueness
in a special class) of a solution to the BSDE (12) under the Markovian
framework. The Markovian analysis is based on analytical properties of
the PDE associated to the BSDE, which is introduced and investigated
in Section 4.

Note. When we talk about smooth drivers we mean drivers for which
the classical BSDE theory can be applied. For example smooth drivers
are elements of Cc([0, T ]× R

d;Rd). On the other hand, when we talk
about rough drivers we mean elements in C([0, T ];H−β

q ), for which a
new framework within BSDEs theory is developed here.
Throughout the paper c and C denote positive constants whose spe-

cific value is not important and may change from line to line.

2. Preliminaries and notation

Function spaces - notation. We denote by C0,1([0, T ]×R
d) the space of

real-valued continuous functions on [0, T ]×R
d which are continuously

differentiable in the variable x ∈ R
d. By ϕn → 0 in C0,1 we mean

that ϕn and ∇ϕn (the gradient taken w.r.t. the x-variable) converge
to 0 uniformly on compacts. The space C0,1 is then endowed with the
topology related to this convergence. For a vector ϕ = (ϕ1, . . . , ϕd) such
that ϕi ∈ C0,1([0, T ]× R

d) for all i, we write ϕ ∈ C0,1([0, T ]× R
d;Rd)

or ϕ ∈ C0,1 for shortness. Similarly we denote by C1,2([0, T ]× R
d) the

space of real-valued functions on [0, T ] × R
d which are continuously

differentiable once in t and twice in x, and by C1,2 := C1,2([0, T ] ×
R

d;Rd). The topology is similar to the one for C0,1. Moreover we use
Cc(R

d) to denote the space of continuous functions of x with compact
support and C∞

c (Rd) to denote the space of infinitely differentiable
functions with compact support. Again the short-hand notation for
R

d-valued functions is Cc := Cc(R
d;Rd) and Cc := C∞

c (Rd;Rd). The
Euclidean norm in R and R

d, and the Frobenius norm in R
d×d will be

denoted by | · |. For a vector v, its transpose is denoted by v∗. If v
is a real-valued function of x ∈ R then ∇v∗ denotes the transpose of
the column vector ∇v. Moreover is u is a vector-valued function of x
then ∇u is a matrix where the j-th column is given by ∇uj so that
(∇u)i,j = ∂

∂xi
uj . For the matrix ∇u, we denote its transposed by ∇u∗.
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Stochastic analysis tools. Throughout the paper (Ω,G, P ) is a proba-
bility space on which a d-dimensional Brownian motion W := (Wt)t is
defined, with Brownian filtration F := (Ft)t.
We denote by C the space of continuous stochastic processes indexed

by [0, T ] with values in R
d. In this space we will consider u.c.p. con-

vergence (uniform convergence in probability) for stochastic processes.
More precisely, we say that a family of stochastic processes Xn indexed
by [0, T ] converges u.c.p. to X in C if

sup
s∈[0,T ]

|Xn
s −Xs| → 0 in probability.

The following definitions of covariation process and weak-Dirichlet
process are taken from [11], see also [21] for more details.
Given two stochastic processes Y := (Yt)t and X := (Xt)t, we denote
by [Y,X ] the covariation process of Y and X which is defined by

[Y,X ]t := lim
ε→0

1

ε

∫ t

0

(Ys+ε − Ys)(Xs+ε −Xs)ds,

if the limit exists in the u.c.p. sense in t. If X, Y are d-dimensional
processes then [Y,X ] ∈ R

d×d is the tensor covariation and it is defined
component by component by ([Y,X ])i,j = [Yi, Xj ], if it exists. Note that
the covariation is not symmetric because the matrix does not need to
be squared and in particular we have [Y,X ] = [X, Y ]∗. This concept
extends the classical covariation of continuous semimartingales. We
remark that the covariation of a bounded variation process and a con-
tinuous process is always zero.
Given a filtration F := (Ft)t, a real process D is said to be an F-weak
Dirichlet process if it can be written as D =M + A where

(i) M := (Mt)t is an F -local martingale;
(ii) (At)t is an orthogonal martingale process, namely a process such

that [A,N ] = 0 for every F -continuous local martingale N . For
convenience we also set A0 = 0.

It was shown that the decomposition D = M + A is unique and
every F -semimartingale is an F -weak Dirichlet process. A vector
D = (D1, . . . , Dd) is an F -weak Dirichlet process if every component
Di is an F -weak Dirichlet process. We will drop the F and simply
write weak Dirichlet process when it is clear what filtration F we are
considering.

Proposition 2.1. Let v ∈ C0,1([0, T ]×R
d) and S1 (resp. S2) be an R

d-
valued (resp. R-valued) continuous F-semimartingale with martingale



6 ON A CLASS OF MARKOV BSDES WITH GENERALISED DRIVER

component M1 (resp. M2). Then

[v(·, S1), S2]t =

∫ t

0

∇v∗(r, S1
r )d[M

1,M2]r. (3)

Proof. Let us denote by Mv
t :=

∫ t

0
∇v∗(r, S1

r )dM
1
r . By [11, Corollary

3.11] we have that v(·, S1) is a weak Dirichlet process with martingale
component Mv. If Av is the related orthogonal martingale process, we
know that [Av, N ] = 0 for any F -continuous local martingale N , see
[22, Proposition 1.7.(b)]. Consequently the left-hand side of (3) gives

[v(·, S1), S2]t = [Mv,M2]t

=

[
∫ ·

0

∇v∗(r, S1
r )dM

1
r ,M

2

]

=

∫ t

0

∇v∗(r, S1
r )d[M

1,M2]r,

where the last equality holds true because the covariation [·, ·] extends
the one of semimartingales. �

When v is a vector-valued function (say u), the covariation becomes
a matrix and an analogous result holds, as stated in the corollary below
(in the special case when u is a function of Brownian motion).

Corollary 2.2. Let φ ∈ C0,1([0, T ] × R
d;Rd), W be an R

d-valued F-
Brownian motion and N an F-continuous local martingale with values
in R

d. Then

[φ(·,W ), N ]t =

∫ t

0

∇φ∗(r,Wr)d[W,N ]r.

Heat semigroup and fractional Sobolev spaces. We denote by S(Rd)
the space of Rd-valued Schwartz functions and by S ′(Rd) the space of
Schwartz distributions. The heat semigroup (P (t), t ≥ 0) with ker-

nel pt(x) = 1
(2πt)d/2

exp
(

− |x|2

2t

)

acts on S(Rd) and can be extended

to S ′(Rd) by duality. One can also consider the restriction of the
semigroup mapping any Lr(Rd) into itself for 1 < r < ∞, which
is denoted again by (P (t), t ≥ 0). This restriction is a bounded a-
nalytic semigroup, see [3, Theorems 1.4.1, 1.4.2]. It is known that
one can define fractional Sobolev spaces using such semigroup and
its generator 1

2
∆, more precisely if we define A := I − 1

2
∆, then

its fractional powers are well-defined for any power s ∈ R (see [18])
and Hs

r (R
d) := A−s/2(Lr(Rd)). These are Banach spaces endowed

with the norm ‖u‖Hs
r
:= ‖As/2u‖Lr . Using the fact that D(As/2) =

D((−1
2
∆)s/2) = Hs

r (R
d) and that A−α/2 is an isomorphism between
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Hs
r (R

d) and Hs+α
r (Rd), for each α ∈ R, one has for δ > β > 0, δ+β < 1

and 0 < t ≤ T that P (t) : H−β
r (Rd) → H1+δ

r (Rd) for all 1 < r < ∞
and

‖P (t)w‖H1+δ
r (Rd) ≤ Cett−

1+δ+β
2 ‖w‖H−β

r (Rd), (4)

for w ∈ H−β
r (Rd), t > 0. This follows from a similar property for the

bounded analytic semigroup (e−tP (t), t ≥ 0) generated by −A which is
stated in [8, Lemma 10], see also [12, Proposition 3.2] for the analogous
on domains D ⊂ R

d.
As done already before in this paper, we denote by Hs

r the spaces
Hs

r (R
d;Rd), whose definition is as above for each component. Note

that by slight abuse of notation the same Hs
r might be the space

Hs
r (R

d;Rd×d), especially when considering functions like ∇u. When
we write u ∈ Hs

r we mean that each component ui is in H
s
r (R

d). The
norm will be denoted with the same notation for simplicity.

Pointwise product. Here we recall the definition of the pointwise prod-
uct between a function and a distribution, for more details see [19]. Let
g ∈ S ′(Rd). We choose a function ψ ∈ S(Rd) such that 0 ≤ ψ(x) ≤ 1,
for every x ∈ R

d and

ψ(x) =

{

1, |x| < 1,
0, |x| ≥ 2.

For every j ∈ N, we consider the approximation Sjg of g as follows:

Sjg(x) := F
−1

(

ψ

(

ξ

2j

)

F (g)

)

(x),

where F (g) and F−1(g) are the Fourier transform and the inverse
Fourier transform of g, respectively. The product gh of g, h ∈ S ′(Rd)
is defined as

gh := lim
j→∞

SjgSjh, (5)

if the limit exists in S ′(Rd).

Lemma 2.3. [19, Theorem 4.4.3/1] Let g ∈ H−β
q (Rd), h ∈ Hδ

p(R
d)

for 1 < p, q < ∞, q > max(p, d
δ
), 0 < β < 1

2
and β < δ. Then the

pointwise product gh is well-defined, it belongs to the space H−β
p (Rd)

and we have the following bound:

‖gh‖H−β
p (Rd) ≤ c‖g‖H−β

q (Rd) · ‖h‖Hδ
p(R

d). (6)

In this paper we will always use this product in such fractional
Sobolev spaces.
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More on function spaces. We repeat that when we talk about smooth
drivers we consider elements of Cc([0, T ] × R

d;Rd) or of C∞
c ([0, T ] ×

R
d;Rd), which is defined to be the space of all f ∈ Cc([0, T ]× R

d;Rd)
such that ∂αf

∂xα exists for all multi-indexes α and ∂αf
∂xα ∈ Cc([0, T ] ×

R
d;Rd). It is clear that each function in C∞

c ([0, T ] × R
d) is an ele-

ment of Lr(Rd) for any fixed time t ∈ [0, T ] and for 2 ≤ r ≤ ∞, and
moreover it is continuous with respect to the topology in Lr(Rd). Since
Lr(Rd) ⊂ Hs

r (R
d) for s ≤ 0 we have the inclusion C∞

c ([0, T ]×R
d;Rd) ⊂

C([0, T ];Hs
r).

For the following, see [24, Section 2.7.1]. The closures of S(Rd) with
respect to the norms

‖h‖C0,0
b (Rd) := ‖h‖L∞(Rd)

and

‖h‖C1,0
b (Rd) := ‖h‖L∞(Rd) + ‖∇h‖L∞(Rd)

respectively, are denoted by C0,0
b (Rd) and C1,0

b (Rd). For any α > 0, we
consider the Banach spaces

C0+α(Rd) = {h ∈ C0,0
b (Rd) : ‖h‖C0+α(Rd) <∞}

C1+α(Rd) = {h ∈ C1,0
b (Rd) : ‖h‖C1+α(Rd) <∞},

endowed with the norms

‖h‖C0+α(Rd) := ‖h‖L∞(Rd) + sup
x 6=y∈Rd

|h(x)− h(y)|
|x− y|α

‖h‖C1+α(Rd) := ‖h‖L∞(Rd) + ‖∇h‖L∞(Rd) + sup
x 6=y∈Rd

|∇h(x)−∇h(y)|
|x− y|α ,

respectively. We denote by C0+α and C1+α the analogous spaces for Rd-
valued functions and the corresponding norms by ‖·‖C0+α and ‖·‖C1+α.
Let B be a Banach space. We denote by C([0, T ];B) the Banach

space of B-valued continuous functions and its sup norm by ‖·‖C([0,T ];B).
For h ∈ C([0, T ];B) and ρ ≥ 1 we also use the family of equivalent

norms {‖ · ‖(ρ)C([0,T ];B), ρ ≥ 1}, defined by

‖h‖(ρ)C([0,T ];B) := sup
0≤t≤T

e−ρt‖h(t)‖B. (7)

The following lemma is a fractional Sobolev embedding theorem which
will be used several times in this paper. It is a generalisation of the
Morrey inequality to fractional Sobolev spaces. For the proof we refer
to [24, Theorem 2.8.1, Remark 2].
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1
p

δ

β

δ
(1/p, δ)

1− β

1
q

1
p

δ
d

β
d

1−β
d

Figure 1. The set K(β, q) for d > 1. Given any couple
β, q that satisfies the assumptions, the grey region shows
all possible δ, p.

Lemma 2.4 (Fractional Morrey inequality). Let 0 < δ < 1 and d/δ <
r < ∞. If h ∈ H1+δ

r (Rd) then there exists a unique version of h
(which we denote again by h) such that h is differentiable. Moreover
h ∈ C1+α(Rd) with α = δ − d/r and

‖h‖C1+α(Rd) ≤ c‖h‖H1+δ
r (Rd), ‖∇h‖C0+α(Rd) ≤ c‖∇h‖Hδ

r (R
d), (8)

where c = c(δ, r, d) is a universal constant. In particular h and ∇h are
bounded.

Assumptions. Later in the paper we will use the following assumptions
about the parameters and the functions involved.

Assumption 2.5. We always choose (δ, p) ∈ K(β, q), where the latter
set is defined below in two different cases.

Case d ≥ 2: Let β ∈
(

0, 1
2

)

and q ∈
(

d
1−β

, d
β

)

. For given β and q

as above we define the set

K(β, q) :=

{

(δ, p) ∈ R
2 : β < δ < 1− β,

d

δ
< p < q

}

, (9)

which is drawn in Figure 1.

Case d = 1: In this case we let β ∈
(

0, 1
2

)

and q ∈
(

2, 1
β

)

. For

given β and q as above we define the set

K(β, q) :=

{

(δ, p) ∈ R
2 : β < δ < 1− β,

1

δ
< p < q, 2 ≤ p

}

, (10)

which is drawn in Figure 2.

Note that K(β, q) is non-empty since β < 1
2
and d

1−β
< q < d

β
. The

set K(β, q) was first introduced in [8] without the restriction q, p ≥ 2.
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1
p

δ

β

δ
(1/p, δ)

1− β

1
q

1
p

δ
1

β
1

1−β
1

1
2

Figure 2. The set K(β, q) for d = 1. Given any couple
β, q that satisfies the assumptions, the grey region shows
all possible δ, p.

This is satisfied anyway if d > 1. If d = 1 then the set of admissible
couples (δ, p) is shown in Figure 2.
The following assumption concerns the driver f and the terminal

condition Φ (note that the terminal condition ξ in the BSDE will be
replaced by Φ(W ) in later sections).

Assumption 2.6. We assume the following.

• Φ : Rd → R
d is an element of H1+δ+2γ(Rd) for some 0 < γ <

1−δ−β
2

;

• f : [0, T ] × R
d × R

d × R
d×d → R

d is continuous in (x, y, z)
uniformly in t, and is Lipschitz continuous in (y, z) uniformly
in t and x, i.e. |f(t, x, y, z)−f(t, x, y′, z′)| ≤ L(|y−y′|+ |z−z′|)
for any y, y′ ∈ R

d and z, z′ ∈ R
d×d. Moreover f(t, x, 0, 0) is

continuous in (t, x);
• supt,x |f(t, x, 0, 0)| <∞ a.s. and supt∈[0,T ] ‖f(t, ·, 0, 0)‖Lp <∞.

3. Alternative representation for the BSDE

In this section we propose an alternative representation for the BSDE
(1) which turns out to be well-suited for BSDEs with rough drivers and
it is equivalent to the one above if the driver is smooth, see Proposition
3.5 below.
To be able to consider rough drivers, the main term in (1) that needs

to be (re)defined is the integral
∫ T

t
Zrb(r,Wr)dr. Here we recall that b

is a column R
d-vector and Z ∈ R

d×d so that the integral is a column
vector. We introduce the following integral operator.

Definition 3.1. Let W = (Wt)t be a d-dimensional Brownian motion
with filtration F = (Ft)t and Y = (Yt)t be a continuous R

d-valued
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stochastic process such that the (d×d)-covariation matrix [W,Y ] exists
and all the components have finite variation.
The integral operator AW,Y is defined on the space Cc([0, T ]×R

d;Rd)
by

AW,Y : Cc([0, T ]× R
d;Rd) → C

l 7→ AW,Y
· (l),

where

AW,Y
t (l) :=

(
∫ t

0

l∗(r,Wr)d[W,Y ]r

)∗

(11)

for all t ∈ [0, T ]. Here l and AW,Y
t (l) are d-dimensional column vectors.

We observe that in the special case when Y = W the operator AW,W

applied to l is nothing but
∫ ·

0
l(r,Wr)dr (see the introduction of Section

5.1 for more details).
Moreover, for this smooth class of drivers l ∈ Cc([0, T ] × R

d;Rd) the
integral in (11) is well-defined because [W,Y ] is a matrix with finite
variation components by assumption. Our aim is to define such integral
operator AW,Y for rough driver, as specified in the next definition.

Definition 3.2. Let E be a Polish space which contains Cc([0, T ] ×
R

d;Rd) as a dense subset. We define the integral operator AW,Y : E →
C as the continuous extension of the operator defined in Definition 3.1,
provided that the extension exists.

In Section 5 we will prove the existence of such extension for E =
C([0, T ];Hs

r) with 2 ≤ r < ∞ and −1
2
< s ≤ 0. Using this extension

we can reformulate BSDE (1) for a rough driver and give a precise
meaning to its solution.

Definition 3.3. Let b ∈ C([0, T ];S ′). Let E be a Polish space of S ′-
valued functions including Cc([0, T ]×R

d;Rd) as a dense subset and such
that b ∈ E. We say that a continuous R

d-valued stochastic process Y
is a solution of BSDE (1) if:

(i) AW,Y exists as an operator according to Definition 3.2;
(ii) AW,Y

· (b) is an orthogonal martingale process;
(iii) YT = ξ;
(iv) the process M = (Mt)t given by

Mt := Yt − Y0 + AW,Y
t (b) +

∫ t

0

f

(

r,Wr, Yr,
d[Y,W ]r

dr

)

dr (12)

is a square-integrable F-martingale, where F is the Brownian
filtration.
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Remark 3.4. • Such solution Y is a weak-Dirichlet process with
orthogonal martingale component given by

AW,Y
t (b) +

∫ t

0

f

(

r,Wr, Yr,
d[Y,W ]r

dr

)

dr.

• We have [Y,W ] = [M,W ], thus the covariation process is ab-
solutely continuous with respect to dr component by component
and hence all terms appearing in the driver f in (12) are well-
defined.

• Definition 3.3 above makes sense also in the case when ξ is
a generic square integrable random variable and the random
dependence in the driver f is allowed to be on the whole past
{Ws; s ≤ r} instead of only on Wr.

In the next proposition we see how the classical formulation of the
BSDE is equivalent to the one introduced above if b ∈ Cc([0, T ] ×
R

d;Rd). In this case clearly AW,Y is itself the trivial extension to E =
Cc([0, T ]× R

d;Rd) of the operator introduced in Definition 3.1.

Proposition 3.5. Let Y be a d-dimensional adapted process and b ∈
Cc([0, T ]×R

d;Rd). Then Y is a solution of (1) according to Definition
3.3 with respect to some E if and only if there exists a predictable
(d × d)-dimensional process Z such that (Y, Z) is a solution of BSDE
(1) in the classical sense.

Proof. Suppose that (Y, Z) is a classical solution of (1). We set E =
Cc([0, T ] × R

d;Rd). This ensures that point (i) of Definition 3.3 is
satisfied and AW,Y

· (b) =
(∫ ·

0
b∗(r,Wr)d[W,Y ]r

)∗
. Using (1) we have

[W,Y ]t

=

[

W,Y0 −
∫ ·

0

Zrb(r,Wr)dr −
∫ ·

0

f(r,Wr, Yr, Zr)dr +

∫ ·

0

ZrdWr

]

t

,

where the covariation is a matrix and it is calculated component by
component. Clearly the only non-zero term is given by the stochastic
integral and so we get

[W,Y ]t =

[

W,

∫ ·

0

ZrdWr

]

t

=

∫ t

0

Z∗
rdr,

hence d[W,Y ]r = Z∗
rdr, and in particular

AW,Y
· (b) =

(
∫ ·

0

b∗(r,Wr)Z
∗
rdr

)∗

=

∫ ·

0

Zrb(r,Wr)dr.
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Being of bounded variation, the latter is clearly an orthogonal martin-
gale process, which is point (ii) in Definition 3.3. Point (iii) is trivial.
Point (iv) is also satisfied because

Yt − Y0 + AW,Y
t (b) +

∫ t

0

f

(

r,Wr, Yr,
d[Y,W ]r

dr

)

dr =

∫ t

0

ZrdWr

and the right-hand side is a square integrable F -martingale.
Conversely, let Y be a solution of (1) according to Definition 3.3

with respect to E. We know that

Mt := Yt − Y0 + AW,Y
t (b) +

∫ t

0

f(r,Wr, Yr,
d[Y,W ]r

dr
)dr

is a square integrable martingale by point (iv) in Definition 3.3, hence
by the martingale representation theorem there exists a square-integrable
process Z such that Mt =

∫ t

0
ZrdWr. Moreover AW,Y is an orthogonal

martingale process by point (ii), thus [W,Y ]t = [W,M ]t =
∫ t

0
Z∗

rdr.

Therefore AW,Y
t (b) = (

∫ t

0
b∗(s,Ws)d[W,Y ]s)

∗ =
∫ t

0
Zsb(s,Ws)ds and

this concludes the proof. �

Remark 3.6. We observe that, in the classical formulation of BSDEs,
Z is always directly determined by Y since d

dt
[Y,W ]t = Zt.

To conclude this section we point out that the new setting and for-
mulation introduced in Definition 3.3 in fact coincide with the classical
ones even in the case when b ∈ L∞

loc([0, T ]× R
d;Rd). This can be seen

by observing two facts. The first one is that a BSDE with a driver
b ∈ L∞

loc([0, T ] × R
d;Rd) makes sense without the introduction of the

operator A and can be studied with classical methods (à la Pardoux-
Peng). On the other hand we will show (see Theorem 5.11) that the
operator AW,W applied to a driver in C([0, T ];Hs

r )∩L∞
loc([0, T ]×R

d;Rd)
is compatible with integrals of drivers in L∞

loc([0, T ] × R
d;Rd) defined

classically. Hence the framework presented here coincides with the clas-
sical one not only for b ∈ Cc([0, T ]× R

d;Rd) (as shown in Proposition
3.5) but also for b ∈ L∞

loc([0, T ]× R
d;Rd).

4. Analytical PDE results

In this section we collect and prove some results about several PDEs
that will be used in Section 5. In particular, a key point in the subse-
quent analysis will be to show that the integral operator AY,W appear-
ing in (12) is well-defined for rough drivers and this will be done with
the aid of the following auxiliary PDEs and relative results.
The parameters β and q are fixed and chosen according to Assump-

tion 2.5. These are directly linked to the regularity of the rough driver
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b. Moreover the parameters (δ, p) are chosen in K(β, q) and in partic-
ular d

δ
< p < q.

The first auxiliary PDE is
{

∂tφ+ 1
2
∆φ = l

φ(T ) = Ψ,
(13)

where Ψ ∈ H1+δ
r and l ∈ C([0, T ];H−β

p ). Here the Laplacian ∆ acts on
φ componentwise and the resulting object is a vector with i-th compo-
nent given by ∆φi. With a slight abuse of notation we use ∆φ for the
whole vector. We consider the mild formulation of (13) which is given
by

φ(t) = P (T − t)Ψ +

∫ T

t

P (r − t)l(r)dr, (14)

where {P (t), t ≥ 0} is the semigroup generated by 1
2
∆.

It is known that if a classical solution exists then it coincides with
the solution of (14) (mild formulation) and it has certain regularity
properties as recalled in the lemma below for smooth Φ and l. For
more details and a proof see for example [15, Theorem 5.1.4, part (iv)].

Lemma 4.1. Let l ∈ C∞
c ([0, T ] × R

d;Rd) and Ψ ∈ C2+ǫ(Rd;Rd) for
some 0 < ǫ < 1. The solution φ to (13) is at least of class C1,2+ǫ([0, T ]×
R

d;Rd).

In the general case that suits our framework (i.e. for rough ls and Ψ
in fractional Sobolev spaces) we have the following results.

Lemma 4.2. Let β, δ, p and q be chosen according to Assumption 2.5.

(i) If Ψ ∈ H1+δ
p then t 7→ P (T − t)Ψ is a continuous function with

values in H1+δ
p .

(ii) If l ∈ C
(

[0, T ];H−β
p

)

then the function t 7→
∫ T

t
P (s− t)l (s) ds

is in Cγ
(

[0, T ] ;H2−2ǫ−β
p

)

for every ǫ > 0 and γ ∈ (0, ǫ).
In particular one can always choose ǫ such that 2−2ǫ−β = 1+δ.

Proof. Item (i) is well-known and can be shown using the theory of
semigroups and the fact that P (t) is the heat semigroup (contractive
semigroup).
Item (ii) follows by first applying [8, Proposition 11] with the time t
replaced by T − t and then making a change of time to the resulting
integral to get a backward integral, namely transforming the integrator
variable r into s = t− r. �

Lemma 4.3. Let Assumption 2.5 hold, and let Ψ ∈ H1+δ
p and l ∈

C([0, T ];H−β
p ). The expression φ given in (14) is well-defined and
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belongs to C([0, T ];H1+δ
p ) ⊂ C([0, T ];C1+α) and to C0,1, where α =

δ − d/p. Moreover we have

‖φ(t)‖H1+δ
p

≤ ceT‖Ψ‖H1+δ
p

+ (T − t)
1−δ−β

2 ‖l‖C([0,T ];H−β
p )

and
‖φ‖C([0,T ];C1+α) ≤ c‖φ‖C([0,T ];H1+δ

p ).

Proof. For the first term in (14) we have that t 7→ P (T − t)Ψ ∈ H1+δ
p

is continuous by Lemma 4.2, item (i). Moreover by the mapping prop-
erty (4) of the semigroup in Sobolev spaces, its norm is bounded by
supt∈[0,T ] ‖P (T − t)Ψ‖H1+δ

p
≤ ceT‖Ψ‖H1+δ

p
. For the second term in (14)

we have continuity as a function of time by Lemma 4.2, item (ii) and
again by the mapping property of semigroups we get the bound

∥

∥

∥

∥

∫ T

t

P (s− t)l(s)ds

∥

∥

∥

∥

H1+δ
p

≤ ceT
∫ T

t

(s− t)−
1+δ+β

2 ‖l(s)‖H−β
p
ds

≤ c(T − t)
1−δ−β

2 ‖l‖C([0,T ];H−β
p ),

which ensures that φ ∈ C([0, T ];H1+δ
p ) since 1−δ−β > 0 by assumption

on the parameters. Moreover δ > d/p again by Assumption 2.5 and so
by the fractional Morrey inequality (Lemma 2.4) we have

‖φ(t)‖C1+α ≤ c‖φ(t)‖H1+δ
p
.

Hence taking the supremum over t ∈ [0, T ] we get

‖φ‖C([0,T ];C1+α) ≤ c‖φ‖C([0,T ];H1+δ
p ).

From this it follows that the solution φ is jointly continuous in t and x
and once differentiable in x, namely φ ∈ C0,1 as wanted (for a proof of
a result similar to the last claim see [8, Lemma 21]). �

The following corollary follows from Lemma 4.3 by the linearity of
the PDE.

Corollary 4.4. Let Assumption 2.5 hold. Let (ln)n ⊂ C([0, T ];H−β
p )

be a sequence such that ln → l in this space and let Ψn → Ψ in H1+δ
p

with (Ψn)n ⊂ H1+δ
p . Let φn denote the solution of (13) with ln in place

of l. Then φn → φ in C0,1.

Another important PDE that will appear in the next section is the
PDE associated to BSDE (1) in the Markovian case, which will be used
to construct the solution to the BSDE, namely

{

∂tu(t) +
1
2
∆u(t) = −∇u∗(t) b(t)− f(t, ·, u(t),∇u(t))

u(T ) = Φ.
(15)
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We note that the term ∆u (as in PDE (13) above) and the term ∇u∗ b
are defined componentwise, in particular the i-th component of ∇u∗ b
is given by ∇u∗i b. A mild solution to PDE (15) is a function u that
satisfies

u(t) =P (T − t)Φ−
∫ T

t

P (r − t) (∇u∗(r)b(r)) dr (16)

−
∫ T

t

P (r − t)f(r, ·, u(r),∇u(r))dr

in an appropriate function space (specified below). Each component
in the term ∇u∗(r)b(r) is defined by means of the pointwise product
(recalled in Section 2) and it is well-defined as an element of H−β

p when

b(t) ∈ H−β
q and ∇u∗(t) ∈ Hδ

p .

Equation (15) was first studied in [12] on a bounded domain D ⊂ R
d

and with f ≡ 0. It was then solved in R
d in [8] with f = 0, and in [13]

with f non zero. In particular in [13] the authors obtain an existence

and uniqueness result for a function f̃ : [0, T ]×H1+δ
p ×Hδ

p → H0
p with

some Lipschitz regularity and boundedness at 0. We want to apply this
result later on, but we will need to consider f̃ to be the same function
f appearing in BSDE (1). Clearly some care is needed because the f
appearing in the BSDE is a function of t, x, y and z and its regularity
stated in Assumption 2.6 is given pointwise, unlike f̃ . On the other
hand, to get a fixpoint for the PDE we need some Lipschitz regularity
in terms of the function spaces. The way to merge these two settings
is to consider a function f̃ (which will have the appropriate Lipschitz

regularity) by setting f̃(t, u, v) = f(t, ·u(t),∇u(t)) for any u ∈ H1+δ
p

and v ∈ Hδ
p , with f from Assumption 2.6 (we will abuse the notation

and write f for both). Then f̃ satisfies the required conditions, as

explained in [13, Remark 2.5], in particular f̃ is Lipschitz continuous
in the Sobolev spaces

‖f̃(t, u, v)− f̃(t, u′, v′)‖H0
p
≤ c(‖u− u′‖H1+δ

p
+ ‖v − v′‖Hδ

p
). (17)

Theorem 5, and Lemmata 5 and 8 in [13] give the following existence,
uniqueness and regularity result.

Theorem 4.5 (Issoglio, Jing). Under Assumption 2.5 and Assumption
2.6 there exists a unique mild solution u to (15) in C([0, T ];H1+δ

p ).

Moreover u(t) ∈ C1+α for all t ∈ [0, T ], where α = δ − d/p, and
u ∈ C0,1([0, T ]× R

d).

A small note: in [13] the result is valid even if b ∈ L∞([0, T ];H−β
q ).
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5. The Markovian case with distributional driver

In this section we carry out the analysis of BSDE (1) when b ∈
C([0, T ];H−β

q ) in the Markovian setting. The Markovian setting means
that the process Y and the r.v. ξ are deterministic functions of W ,
namely ξ = Φ(WT ) and Yt = γ(t,Wt) for some deterministic functions
Φ and γ, the regularity of which is specified below.
As already mentioned previously, one of the main issues when dealing

with rough drivers is to show that the integral operator AW,Y can be
extended to C([0, T ];H−β

q ). This extension is performed in Subsection
5.1 below. In Subsection 5.2 we will show existence (and uniqueness)
of a solution to BSDE (1) according to Definition 3.3 when b is a rough
driver.

5.1. Preliminary properties. In this section we show how to extend
the operator AW,Y to rough drivers. Let us focus on the smooth case for
a moment. The first key observation is that in the Markovian setting
we can rewrite AW,Y in terms of AW,W , where we recall that

AW,W : Cc([0, T ]× R
d;Rd) → C (18)

is the integral operator from Definition 3.1 when Y = W and C is the
space of continuous paths on [0, T ] with values in R

d. In the special
case when Y = W , the covariation is a multiple of the d-dimensional
identity matrix Id, so that d[W,W ]r = Iddr. In particular this means
that for any l ∈ Cc([0, T ]× R

d;Rd) we have

AW,W
t (l) =

(
∫ t

0

l∗(r,Wr)Iddr

)∗

=

∫ t

0

l(r,Wr)dr, (19)

for all t ∈ [0, T ]. To see that AW,Y can be written in terms of AW,W

in the Markovian case, suppose that there exists a function γ ∈ C0,1

such that Yt = γ(t,Wt), hence by Corollary 2.2 we have [γ(·,W ),W ]t =
∫ t

0
∇γ∗(r,Wr)dr and so [W,Y ]t = [W, γ(·,W )]t =

∫ t

0
∇γ(r,Wr)dr. Thus

for any smooth driver l in Cc([0, T ]×R
d;Rd) we have the following rep-

resentation for the integral operator:

AW,Y
t (l) =

(
∫ t

0

l∗(r,Wr)d[W,Y ]r

)∗

=

(
∫ t

0

l∗(r,Wr)∇γ(r,Wr)dr

)∗

=

∫ t

0

∇γ∗(r,Wr)l(r,Wr)dr

=AW,W
t (∇γ∗ l). (20)
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By Theorem 4.5 u ∈ C0,1 and so equation (20) holds true also in the
case where γ is replaced by the solution u of PDE (15).

Before going into details on the extension of AW,Y we state a useful
density result, the proof of which is postponed to the Appendix.

Lemma 5.1. We have C∞
c ([0, T ] × R

d;Rd) ⊂ C([0, T ];Hs
r) for any

−1
2
< s ≤ 0 and 2 ≤ r <∞, and the inclusion is dense.

Remark 5.2. In Lemma 5.1 one can replace C∞
c with the larger space

Cc and therefore obtain that also the space Cc([0, T ]×R
d;Rd) is dense

in C([0, T ];Hs
r).

The next result provides us with an explicit representation (chain
rule) of AW,W for smooth l, and this representation will still hold in the
rough case.

Proposition 5.3 (Chain rule - smooth case). Let Assumption 2.5 hold,
let l ∈ Cc([0, T ] × R

d;Rd) and Ψ ∈ H1+δ
p . Let us denote by φ the

function given by the expression (14). Then for the integral operator
AW,W given in (18) we have the representation

AW,W
t (l) = φ(t,Wt)− φ(0,W0)−

∫ t

0

∇φ∗(r,Wr)dWr, (21)

for all t ∈ [0, T ].

We note that the structure of the representation (21) does not change
when Ψ changes (although obviously the actual function φ changes
when Ψ changes).

Proof. Let (ln)n be a sequence in C∞
c ([0, T ]×R

d;Rd) such that ln → l
in C([0, T ];H−β

p ), which can be constructed by Lemma 5.1 since −1
2
<

−β ≤ 0 and 2 ≤ p ≤ ∞ by Assumption 2.5. Moreover a similar
approximation can be done for Ψ, namely since C∞

c is dense in H1+δ
p

(see Step 1 of the proof of Lemma 5.1) we can also construct a sequence
(Ψn) ⊂ C∞

c such that Ψn → Ψ in H1+δ
p . Let φn denote the expression

(14), where l is replaced by ln and Ψ by Ψn. Then φn is at least of
class C1,2 on [0, T ]×R

d by Lemma 4.1. Given the expression (19), the
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PDE (13) and Itô’s formula we get

AW,W
t (ln) =

∫ t

0

ln(r,Wr)dr

=

∫ t

0

(

∂tφn(r,Wr) +
1

2
∆φn(r,Wr)

)

dr (22)

= φn(t,Wt)− φn(0,W0)−
∫ t

0

∇φ∗
n(r,Wr)dWr

for 0 ≤ t ≤ T . By Corollary 4.4 we have that φn → φ in C0,1, thus
applying Lemma 5.4 below we conclude that

AW,W
· (l) = lim

n→∞
AW,W

· (ln)

= lim
n→∞

(

φn(·,W·)− φn(0,W0)−
∫ ·

0

∇φ∗
n(r,Wr)dWr

)

= φ(·,Wt)− φ(0,W0)−
∫ ·

0

∇φ∗(r,Wr)dWr

and the proof is complete. �

Lemma 5.4. Let gn, g ∈ C0,1 such that gn → g in the same space.
Then

gn(·,W·)− gn(0,W0)−
∫ ·

0

∇g∗n(r,Wr)dWr (23)

converges to

g(·,W·)− g(0,W0)−
∫ ·

0

∇g∗(r,Wr)dWr

u.c.p. in C.
Proof. Obviously it is enough to consider g = 0. Clearly gn(·,W )
converges uniformly to 0 a.s., and in particular uniformly in probability.
Setting fn = ∇g∗n it remains to show that

∫ ·

0

fn(r,Wr)dWr → 0 u.c.p.

According to [14, Proposition 2.26] it is enough to show that
∫ T

0

|fn(r,Wr)|2dr → 0 (24)

in probability. Now fn → 0 uniformly on each compact by assumption,
which implies that (24) holds a.s. �

The following proposition will be used to extend the integral operator
AW,W to the space of rough drivers, see Remark 5.6, part (1).
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Proposition 5.5. The operator AW,W (defined in Definition 3.1 in
the special case Y = W ) is continuous with respect to the topology
C([0, T ];H−β

p ).

Proof. Let (ln)n ⊂ Cc([0, T ]× R
d;Rd) be a sequence such that ln → 0

in C([0, T ];H−β
p ). Let φn be given by (14) with l replaced by ln. By

Corollary 4.4 we get φn → 0 in C0,1. Using the chain rule (Proposition
5.3) and taking the u.c.p.-limit in C as n→ ∞ we get by Lemma 5.4

lim
n→∞

AW,W
· (ln) = lim

n→∞

(

φn(·,W )− φn(0,W0)−
∫ ·

0

∇φ∗
n(r,Wr)dWr

)

= 0.

The continuity of the integral operator AW,W at 0 implies the continuity
everywhere by linearity. �

In what follows we are interested in drivers b ∈ C([0, T ];H−β
q ), so

we would like to extend the operator AW,Y to b ∈ C([0, T ];H−β
q ). This

will be done by using the operator AW,W , which will be calculated
in ∇γ∗ b for some appropriate function γ, and ∇γ∗ b will belong to
C([0, T ];H−β

p ). For this reason we start by extending the operator

AW,W to the space E = C([0, T ];H−β
p ), as explained below.

Remark 5.6. (1) By Lemma 5.1 and Proposition 5.5 we can ex-
tend the operator AW,W continuously to E = C([0, T ];H−β

p ),
where the parameters p and −β are chosen according to As-
sumption 2.5. So AW,W is well-defined according to Definition
3.2.

(2) Clearly the extended operator AW,W defined in Remark 5.6 part
(1) is continuous, i.e. we have

AW,W
· (l) = lim

n→∞
AW,W

· (ln)

in C for any sequence (ln)n such that ln → l in C([0, T ];H−β
p ).

We can now easily prove the chain rule in the rough case, thus we
get an explicit representation of AW,W

t (l) in terms of the solution φ of
equation (13) when l ∈ C([0, T ];H−β

p ).

Proposition 5.7 (Chain rule - rough case). Let Assumption 2.5 hold,
l ∈ C([0, T ];H−β

p ) and φ be given by (14) for a terminal condition

Ψ ∈ H1+δ
p . Then for all t ∈ [0, T ] we have the representation

AW,W
t (l) = φ(t,Wt)− φ(0,W0)−

∫ t

0

∇φ∗(r,Wr)dWr. (25)

Moreover AW,W (l) is an orthogonal martingale process.
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Note that this chain rule does not depend on the actual Ψ chosen,
in particular we can pick Ψ = 0 or Ψ = Φ.

Proof. By Lemma 5.1 we can take a sequence ln → l in C([0, T ];H−β
p )

such that (ln)n ⊂ C∞
c ([0, T ]×R

d;Rd). By Remark 5.6 part (2) and the
chain rule for the smooth case (Proposition 5.3) we get

AW,W
· (l) = lim

n→∞
AW,W

· (ln)

= lim
n→∞

(

φn(·,W )− φn(0,W0)−
∫ ·

0

∇φ∗
n(r,Wr)dWr

)

.

Moreover we can apply Corollary 4.4 to φn because indeed ln → l in
C([0, T ];H−β

p ) and thus φn → φ in C0,1. Finally by Lemma 5.4 we can
take the u.c.p. limit in C when n→ ∞ and we get

AW,W
· (l) = φ(·,W )− φ(0,W0)−

∫ ·

0

∇φ∗(r,Wr)dWr.

To show that AW,W (l) is an orthogonal martingale process we use the
representation (25) and calculate the covariation of each term on the
right-hand side with an arbitrary continuous F -local martingaleN with
values in R

d. By Corollary 2.2

[φ(·,W )− φ(0,W0), N ]t = [φ(·,W ), N ]t =

∫ t

0

∇φ∗(r,Wr)d[W,N ]r,

having used the fact that φ ∈ C0,1. Since the covariation operator
extends the one of semimartingales, the covariation of N and the last
term on the right-hand side of (25) gives

[−
∫ ·

0

∇φ∗(r,Wr)dWr, N ]t = −
∫ t

0

∇φ∗(r,Wr)d[W,N ]r,

thus [AW,W (l), N ]t = 0 as required. �

The next lemma is a continuity result that will be used in Proposition
5.9 to show the extension of the operator AW,Y to C([0, T ];H−β

q ).

Lemma 5.8. Let γ ∈ C([0, T ];H1+δ
p ). For any sequence (ln)n ⊂

C([0, T ];H−β
q ) such that ln → l in C([0, T ];H−β

q ), then ∇γ∗ l is an

element of C([0, T ];H−β
p ) and ∇γ∗ ln → ∇γ∗ l in the same space.

Proof. In the space H−β
p the norm of the pointwise product for each t

‖∇γ∗(t)ln(t)−∇γ∗(t)l(t)‖H−β
p

= ‖∇γ∗(t)(ln(t)− l(t))‖H−β
p
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is bounded by c‖∇γ∗(t)‖H1+δ
p

‖ln(t) − l(t)‖H−β
q

thanks to Lemma 2.3

applied to each component. Taking the supremum over time t ∈ [0, T ]
we get

sup
t∈[0,T ]

‖∇γ∗(t)(ln − l)(t)‖H−β
p

≤ c‖γ∗‖C([0,T ];H1+δ
p )‖ln − l‖C([0,T ];H−β

q )

and the right-hand side goes to zero as n → ∞ by assumption. This
concludes the proof. �

Proposition 5.9. Let Assumption 2.5 hold. Suppose Yt = γ(t,Wt) for
some γ ∈ C([0, T ];H1+δ

p ). Then the map AW,Y is well-defined in the

sense of Definition 3.2 with E = C([0, T ];H−β
q ) and

AW,Y (l) = AW,W (∇γ∗ l), (26)

for all l ∈ E.

Proof. We start by observing that Cc([0, T ]× R
d;Rd) is dense in E =

C([0, T ];H−β
q ) by Lemma 5.1. Moreover AW,W is well-defined in C([0, T ];H−β

p )
by Remark 5.6 part (1) and it is continuous. Let ln → l in E. We want
to prove that AW,Y (ln) converges to the RHS of (26). Taking into
account (20) and the fact that ln ∈ Cc([0, T ]× R

d;Rd) we have

AW,Y (ln) = AW,W (∇γ∗ ln).
Note that the map l 7→ ∇γ∗ l is continuous from C([0, T ];H−β

q ) to

C([0, T ];H−β
p ) thus AW,W (∇γ∗ ln) → AW,W (∇γ∗ l) in C because of com-

positions of continuous maps. This concludes the proof. �

Remark 5.10. We observe that in [13] the authors deal with the sin-

gular integral term
∫ t

0
Zsb(s,Ws)ds by replacing it with known terms.

In particular, they define it using the chain rule (25) with l = ∇u∗ b
but without proving it. Obviously their virtual solution coincide with
the one constructed here.

Finally we end this section with a result on classical drivers g. We
show that for a function g ∈ C([0, T ];Hs

r) ∩ L∞
loc([0, T ] × R

d;Rd) with
−1

2
< s ≤ 0 and 2 ≤ r < ∞, then the operator AW,W defined as an

extension to E = C([0, T ];Hs
r) and evaluated in g coincides with the

classical integral
∫ ·

0
g(s,Ws)ds.

Theorem 5.11. Let g ∈ C([0, T ];Hs
r)∩L∞

loc
([0, T ]×R

d;Rd) with −1
2
<

s ≤ 0 and 2 ≤ r < ∞, with g column vector. Suppose that AW,W

is well-defined in the sense of Definition 3.2 with E = C([0, T ];Hs
r ).

Then

AW,W
· (g) =

∫ ·

0

g(s,Ws)ds. (27)
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Note that the operator AW,W is well-defined for example if s = −β
and r = p see Remark 5.6.

Proof. The proof is split in two steps. In Step 1 we show that (27) holds
for g ∈ C([0, T ];Hs

r )∩L∞
loc([0, T ]×R

d;Rd) and bounded functions with
compact support. In Step 2 we treat the general case.
The proof is written for real-valued functions, and can be applied

component by component.
Step 1. g bounded function with compact support.
We consider a sequence φN : Rd → R of mollifiers converging to the
Dirac measure and for each N we define an operator PN acting on
h ∈ Hs

r (R
d) by

PNh := (h ∗ φN).

It is easy to show that for every h ∈ Hs
r (R

d) then PN and A−s/2 :=
(I − 1

2
∆)−s/2 commute, that is

PN(A
−s/2h) = A−s/2(PNh). (28)

Indeed by the definition of the norm in the Hs
r (R

d)-spaces, we have
A−s/2h ∈ Lr(Rd). Denoting by F the Fourier transform in Lr(Rd) we
have

F
(

A−s/2(PNh)
)

(ξ) =

(

1 +
ξ2

2

)−s/2

F(PNh)(ξ)

=

(

1 +
ξ2

2

)−s/2

F(h)(ξ)F(φN)(ξ)

= F
(

A−s/2h
)

(ξ)F(φN)(ξ).

Taking the inverse Fourier transform on both sides we obtain the com-
mutation property as stated in (28). Now it easily follows that

PNh→ h in Hs
r (R

d), as N → ∞ (29)

for every h ∈ Hs
r (R

d), using the definition of the norm in the fractional
Sobolev spaces, the property that PNf → f in Lr(Rd) for f in the latter
space (in particular for f = A−s/2h) and the commutation property
(28). Moreover PN is a contraction in the same spaces, namely

‖PNh‖Hs
r (R

d) ≤ ‖h‖Hs
r (R

d). (30)

This can be seen by observing that

‖PNh‖Hs
r (R

d) = ‖A−s/2(PNh)‖H0
r (R

d) = ‖PN(A
−s/2h)‖H0

r (R
d),

where we have used (28), and the latter is bounded by ‖A−s/2h‖H0
r (R

d) =

‖h‖Hs
r (R

d) because PN is a contraction operator in H0
r (R

d) = Lr(Rd).
Property (30) is applied to h = g(t, ·) for all t ∈ [0, T ] to show that the
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function t 7→ PNg(t, ·) is continuous from [0, T ] to Hs
r (R

d). Indeed for
any sequence tk → t we have

‖PNg(tk, ·)− PNg(t, ·)‖Hs
r(R

d) = ‖PN(g(tk, ·)− g(t, ·))‖Hs
r(R

d)

≤ ‖g(tk, ·)− g(t, ·)‖Hs
r(R

d),

which goes to zero by assumption on g. To show that

PNg → g (31)

in C([0, T ];Hs
r(R

d)), we use Lemma A.1 with H = Hs
r (R

d). We can
do so since the family of operators (PN)N is linear and equibounded
in Hs

r (R
d) by (30), and it fulfils (29). Thus defining the compact K in

Hs
r (R

d) by K := {g(t) : t ∈ [0, T ]} we have

sup
a∈K

‖PNa− a‖Hs
r (R

d) = sup
0≤t≤T

‖PNg(t, ·)− g(t, ·)‖Hs
r(R

d)

and by Lemma A.1 the quantity above converges to 0 as N → ∞. At
this point we observe that PNg ∈ Cc([0, T ] × R

d;Rd) because both g
and φN have compact support. Therefore AW,W (PNg) is well-defined
and (27) holds for g replaced by PNg thanks to (19). Moreover by (31)
we can apply Remark 5.6, part (2) and get

lim
N→∞

AW,W (PNg) = AW,W (g) in C. (32)

Finally we can see that
∫ ·

0

PNg(s,Ws)ds→
∫ ·

0

g(s,Ws)ds (33)

u.c.p when N → ∞. Indeed

E

[

sup
0≤t≤T

|
∫ t

0

(PNg − g)(s,Ws)ds|
]

≤ E

[

sup
0≤t≤T

∫ t

0

|PNg − g|(s,Ws)ds

]

(34)

≤
∫ T

0

∫

Rd

|PNg − g|(s, y)ps(y)dyds,

where ps(y) is the mean-zero Gaussian density in R
d with variance

s. Now for almost all (s, x) ∈ [0, T ] × R
d we have |PNg(s, x)| ≤

‖g‖L∞([0,T ]×Rd) ≤ C, because g is bounded by assumption. This, to-
gether with the fact that

∫

[0,T ]×Rd

ps(y)dsdy = T
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implies that (34) is bounded by 2CT . Moreover for almost all (s, x) ∈
[0, T ]× R

d we also have

(PNg − g)(s, x) → 0.

By Lebesgue dominated convergence theorem the RHS of (34) con-
verges to 0. This implies (33) and with (32) we conclude.
Step 2. General case g ∈ C([0, T ];Hs

r(R
d)) ∩ L∞

loc
([0, T ]× R

d).
Let us define τM := inf{t ≥ 0 such that |Wt| > M}. Clearly τM → ∞
a.s. as M → ∞. Moreover we define a family of smooth functions

χM(x) =

{

1 if |x| ≤ M

0 if |x| ≥ M + 1

and with 0 ≤ χM(x) ≤ 1. Then we set gM(s, x) := g(s, x)χM(x). It is
clear that gM(s,Ws) = g(s,Ws) for all ω and for all s ≤ t∧ τM for any
arbitrary t, hence

∫ t∧τM

0

g(s,Ws)ds =

∫ t∧τM

0

gM(s,Ws)ds. (35)

On the other hand we know that gM is bounded and has compact
support by definition, and that gM ∈ C([0, T ];Hs

r(R
d)) because g is

in the same space and χM is smooth (using the pointwise multipliers
property, see [25, Section 2.2.2]). So Step 1 applies to gM

AW,W (gM) =

∫ ·

0

gM(s,Ws)ds.

and in particular it holds for the time t ∧ τM , that is

AW,W
t∧τM (gM) =

∫ t∧τM

0

gM(s,Ws)ds. (36)

Now we want to show that

AW,W
·∧τM

(gM) = AW,W
·∧τM

(g). (37)

To this aim, let us consider an approximating sequence (gn)n of g
in Cc([0, T ] × R

d), which exists due to Lemma 5.1. Then we set
gnM := gnχM for each n, and this is an approximating sequence for
gM in C([0, T ];Hs

r(R
d)). Indeed the linear map φ 7→ φχM is continu-

ous in C([0, T ];Hs
r (R

d)) by [25, equation (2.50)], namely there exists a
constant c(M) only dependent on χM such that

‖φχM‖Hs
r (R

d) ≤ c(M)‖φ‖Hs
r (R

d).
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Then

‖gnM − gM‖C([0,T ];Hs
r(R

d)) = ‖gnχM − gχM‖C([0,T ];Hs
r(R

d))

= sup
0≤t≤T

‖(gn(t, ·)− g(t, ·))χM‖Hs
r (R

d)

≤ c(M) sup
0≤t≤T

‖gn(t, ·)− g(t, ·)‖Hs
r(R

d)

= c(M)‖gn − g‖C([0,T ];Hs
r(R

d)),

and since gn converges to g in C([0, T ];Hs
r(R

d)) then so does gnM to gM .
For each n we have

AW,W
·∧τM

(gnM) = AW,W
·∧τM

(gn) (38)

because both sides are defined explicitly and the two functions coin-
cide before τM . We note that AW,W

· (gnM) (resp. AW,W
· (gn)) converges

u.c.p. to AW,W
· (gM) (resp. AW,W

· (g)) as n → ∞. The truncated pro-
cesses, which are the left-hand side and the right hand-side of (38) also
converge u.c.p., hence we get (37). This, together with (35) and (36)
gives

∫ ·∧τM

0

g(s,Ws)ds = AW,W
·∧τM

(g). (39)

For almost all ω there exists n0(ω) such that for allM > n0(ω) we have
τM(ω) ≥ T , then taking the limit as M → ∞ of (39) we conclude. �

Corollary 5.12 (chain rule for L∞
loc). If g ∈ L∞

loc
([0, T ] × R

d;Rd) ∩
C([0, T ];H−β

p ) then
∫ t

0

g(s,Ws)ds = φ(t,Wt)− φ(0,W0)−
∫ t

0

∇φ∗(s,Ws)dWr,

where φ is the solution of (13) with Ψ ∈ H1+δ
p , given by (14).

Proof. This follows by Theorem 5.11 and Proposition 5.7 with l =
g. �

5.2. Existence and Uniqueness. Here we show that in the Markov-
ian case we have existence and uniqueness of a solution to (1) when
b ∈ C([0, T ];H−β

q ). In particular, in Theorem 5.13 we construct a solu-
tion to BSDE (1) with ξ = Φ(WT ) using the solution to the associated
PDE (15), and we show that such solution is unique in Theorem 5.14
in the class of solutions Y that can be written as Yt = γ(t,Wt).
For ease of reading, we rewrite the formal meaning of the BSDE (1)

under consideration:

Yt = Φ(WT ) +

∫ T

t

Zrb(r,Wr)dr +

∫ T

t

f(r,Wr, Yr, Zr)dr −
∫ T

t

ZrdWr.
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Theorem 5.13 (Existence). Let Assumption 2.5 and Assumption 2.6
hold and let b ∈ C([0, T ];H−β

q ). We denote by u be the unique mild
solution to (15). Then Yt = u(t,Wt) is a solution of (1) according to
Definition 3.3 with E = C([0, T ];H−β

q ).

Proof. First we observe that thanks to Theorem 4.5 we have u ∈
C([0, T ];H1+δ

p ). Thus by Proposition 5.9 the operator AY,W appear-

ing in Definition 3.3 is well-defined in E = C([0, T ];H−β
q ) and we have

AW,Y
t (b) = AW,W

t (∇u∗ b). (40)

This is an orthogonal martingale process by Proposition 5.7 with l =
∇u∗ b. The latter is an element of C([0, T ];H−β

p ), and this is shown by
Lemma 5.8. Moreover u(T ) = Φ implies that YT = u(T,WT ) = Φ(WT )
so that parts (i)-(iii) of Definition 3.3 are verified. The last point to
check is part (iv) in the same Definition, namely that

Mt := Yt − Y0 + AW,Y
t (b) +

∫ t

0

f

(

r,Wr, Yr,
d[Y,W ]r

dr

)

dr

is a square integrable martingale. The term with the driver f becomes
∫ t

0

f

(

r,Wr, Yr,
d[Y,W ]r

dr

)

dr =

∫ t

0

f (r,Wr, u(r,Wr),∇u(r,Wr)) dr

=

∫ t

0

f̃(r,Wr)dr, (41)

where f̃(t, x) = f(t, x, u(t, x),∇u(t, x)). Since u ∈ C0,1 and f is con-

tinuous then f̃ ∈ L∞
loc([0, T ]×R

d). We also have that f̃ ∈ C([0, T ];Lp)
since f is Lipschitz in (y, z) uniformly in t, x, and x 7→ f(t, x, 0, 0)
is an element of Lp uniformly in t ∈ [0, T ] by Assumption 2.6 and
u(t),∇u(t) are in Lp uniformly in t since u ∈ C([0, T ];H1+δ

p ). So in

particular f̃ ∈ C([0, T ];H0
p) and hence by Theorem 5.11 we have

∫ t

0

f̃(r,Wr)dr = AW,W
t (f̃).

Moreover by (40) and the linearity of AW,W one gets

Mt = Yt − Y0 + AW,W
t (∇u∗ b) + AW,W

t (f̃)

= Yt − Y0 + AW,W
t (∇u∗ b+ f̃)

= Yt − Y0 − AW,W
t (−∇u∗ b− f̃).

Now we apply the chain rule to AW,W
t (−∇u∗ b− f̃), namely Proposition

5.7 with l = −∇u∗ b− f̃ on the RHS of (13). Note that in this case (25)
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holds for φ = u because the function u verifies (14) with l = −∇u∗ b−f̃ ,
see indeed (16). Thus we get

Mt =Yt − Y0 −AW,W
t (−∇u∗ b− f̃)

=u(t,Wt)− u(0,W0)

− u(t,Wt) + u(0,W0) +

∫ t

0

∇u∗(r,Wr)dWr

so that

Mt =

∫ t

0

∇u∗(r,Wr)dWr,

which is clearly a square integrable F -martingale because ∇u∗ is uni-
formly bounded since u ∈ C1+α by Theorem 4.5. �

Theorem 5.14 (Uniqueness in the class Yt = γ(t,Wt)). Let Assump-
tion 2.5 and Assumption 2.6 hold and let b ∈ C([0, T ];H−β

q ). If the

solution of (1) according to Definition 3.3 with E = C([0, T ];H−β
q )

can be written as Yt = γ(t,Wt) for some γ ∈ C([0, T ];H1+δ
p ), then it is

unique.

Proof. Suppose that Y i
t = γi(t,Wt), i = 1, 2 are solutions to (1) ac-

cording to Definition 3.3 and let us denote by

M i
t := Y i

t − Y i
0 + AW,Y i

t (b) +

∫ t

0

f

(

r,Wr, Y
i
r ,

d[Y i,W ]r
dr

)

dr, (42)

which is a martingale by part (iv) of Definition 3.3. Moreover

(∇γi)∗ b ∈ C([0, T ];H−β
p ) (43)

by Lemma 5.8. By assumption on Y i we can apply Proposition 5.9 and
write

AY i,W
t (b) = AW,W

t ((∇γi)∗ b). (44)

Furthermore by Corollary 2.2 we have
∫ t

0

f

(

r,Wr, Y
i
r ,

d[Y i,W ]r
dr

)

dr

=

∫ t

0

f
(

r,Wr, γ
i(r,Wr),∇γi(r,Wr)

)

dr

=

∫ t

0

f̃ i (r,Wr) dr, (45)

where f̃ i(t, x) := f(t, x, γi(t, x),∇γi(t, x)). We note that

f̃ i ∈ L∞
loc ∩ C([0, T ];Lp), (46)
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which can be proven similarly to the considerations below (41) in the
proof of the previous existence theorem. Thus we can apply Theorem
5.11, so (45) = AW,W

t (f̃ i) . By (44) and the additivity of AW,W we have

M i
t = Y i

t − Y i
0 + AW,W

t ((∇γi)∗ b+ f̃ i). (47)

Let us consider the PDE
{

∂th
i(t) + 1

2
∆hi(t) = (∇γi)∗(t) b(t) + f(t, ·, γi,∇γi)

hi(T ) = 0,
(48)

which is PDE (13) with (∇γi)∗(t) b(t)+f(t, ·, γi,∇γi) = (∇γi)∗(t) b(t)+
f̃ i(t, ·) ∈ C([0, T ];H−β

p ) (by (46) and (43)) on the right-hand side in

place of l. We denote by hi, i = 1, 2 the corresponding (mild solution)
expression (14), which belongs to C([0, T ];C1+α) by Lemma 4.3. Then
(∇hi)∗ is bounded. By the chain rule (Proposition (5.7)) we get

AW,W
t ((∇γi)∗ b+ f̃ i) = hi(t,Wt)− hi(0,W0)−

∫ t

0

(∇hi)∗(r,Wr)dWr.

(49)
Plugging (49) into (47) we get

M i
t =γ

i(t,Wt)− γi(0,W0) + hi(t,Wt)− hi(0,W0)

−
∫ t

0

(∇hi)∗(r,Wr)dWr.

Subtracting M i
T from both sides and rearranging the terms we obtain

γi(t,Wt) + hi(t,Wt) =− (M i
T −M i

t )−
∫ T

t

(∇hi)∗(r,Wr)dWr

+ γi(T,WT ) + hi(T,WT ) (50)

=Φ(WT )− (M̃ i
T − M̃ i

t ),

where we have set M̃ i
t :=M i

t +
∫ t

0
∇hi(r,Wr)dWr and we have used the

fact that hi(T,WT ) = 0 by (48) and that γi(T,WT ) = Φ(WT ) by item

(iii) of Definition 3.3. Clearly M̃ i is another martingale since (∇hi)∗ is
bounded. So the left-hand side of equality (50) can be represented by

γi(t,Wt) + hi(t,Wt) = E [Φ(WT )|Ft] .

The above equality holds for i = 1, 2 and since the right-hand side is
the same, we get

γ1(t,Wt) + h1(t,Wt) = γ2(t,Wt) + h2(t,Wt)

almost surely. From this we can infer that

γ1(t, x) + h1(t, x) = γ2(t, x) + h2(t, x), (51)
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for every t ∈ [0, T ] and x ∈ R
d in the following way: suppose that

we have a continuous function η such that η(t,Wt) = 0 almost surely.
Then

0 = E[|η(t,Wt)|] =
∫

[0,T ]×Rd

|η(t, x)|pt(x)dtdx

and since pt(x) > 0 we get that η(t, x) = 0 almost everywhere. In
fact this holds everywhere because η is continuous. Setting γi(t) :=
γi(t, ·) for all t ∈ [0, T ] and i = 1, 2, it remains to show that γ1 = γ2.
We know that γ1(t) − γ2(t) = h2(t) − h1(t) by (51). The idea is to
bound the difference h2 − h1 in the ρ-equivalent norm for the space
C([0, T ];H1+δ

p ). To do so we work with the time reversed functions

ĥi(s) := hi(T − s), which clearly have the same regularity as hi and
also the same norm in C([0, T ];H1+δ

p ) and ρ-equivalent norm. Setting

b̂(s) := b(T − s), γ̂i(s) := γi(T − s) and f̂(s, y, z) := f(T − s, y, z) we
have

ĥ2(t)−ĥ1(t) =
∫ t

0

P (t− r)
(

(∇γ̂2(r)−∇γ̂1(r))∗b̂(r)
)

dr

+

∫ t

0

P (t− r)
(

f̂(r, γ̂2(r),∇γ̂2(r)− f̂(r, γ̂1(r),∇γ̂1(r))
)

dr.

Taking the ρ-equivalent norm (see (7)) of the difference above, we have

‖ĥ2 − ĥ1‖(ρ)
C([0,T ];H1+δ

p )

= sup
0≤t≤T

e−ρt‖ĥ2(t)− ĥ1(t)‖H1+δ
p

≤ sup
0≤t≤T

e−ρt‖
∫ t

0

P (t− r)
(

(∇γ̂2(r)−∇γ̂1(r))∗b̂(r)
)

dr‖H1+δ
p

+ sup
0≤t≤T

e−ρt‖
∫ t

0

P (t− r)

(

f̂(r, γ̂2(r),∇γ̂2(r)

− f̂(r, γ̂1(r),∇γ̂1(r))
)

dr‖H1+δ
p

=: (A) + (B).

To bound the first term we use the pointwise product estimate for
fixed time r ∈ [0, T ] (Lemma 2.3), the mapping property (4) of the
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semigroup, and the definition of the ρ-equivalent norm (7). We get

(A) ≤ c sup
0≤t≤T

∫ t

0

e−ρt(t− r)−
1+δ+β

2 ‖b̂(r)‖H−β
q
‖∇γ̂2(r)−∇γ̂1(r)‖Hδ

p
dr

≤ c‖b̂‖C([0,T ];H−β
q ) sup

0≤t≤T

∫ t

0

e−ρ(t−r)(t− r)−
1+δ+β

2 ·

e−ρr‖γ̂2(r)− γ̂1(r)‖H1+δ
p

dr (52)

≤ c‖γ̂2 − γ̂1‖(ρ)
C([0,T ];H1+δ

p )
sup

0≤t≤T

∫ t

0

e−ρ(t−r)(t− r)−
1+δ+β

2 dr

≤ cρ
δ+β−1

2 ‖γ̂2 − γ̂1‖(ρ)
C([0,T ];H1+δ

p )
,

having used the Gamma function and the bound

∫ t

0

e−ρrrαdr ≤ Γ(α + 1)ρ−(α+1)

in the latter inequality, with α = −1+δ+β
2

. Note that −(α + 1) =
δ+β−1

2
< 0 so we have ρ

δ+β−1

2 → 0 as ρ→ ∞.
To bound term (B) we do similarly but use the mapping property of

the semigroup from H0
p to H1+δ

p and the Lipschitz regularity (17) of f̂
so we get

(B) ≤ c sup
0≤t≤T

∫ t

0

e−ρ(t−r)(t− r)−
1+δ
2 ·

e−ρr(c‖γ̂2(r)− γ̂1(r)‖H1+δ
p

+ ‖∇γ̂2(r)−∇γ̂1(r)‖Hδ
p
)dr

(53)

≤ cρ
δ−1

2 ‖γ̂2 − γ̂1‖(ρ)
C([0,T ];H1+δ

p )
.

Collecting the estimates (52) and (53), we get

‖γ1 − γ2‖(ρ)
C([0,T ];H1+δ

p )
≤ c(ρ

δ−1

2 + ρ
δ+β−1

2 )‖γ1 − γ2‖(ρ)
C([0,T ];H1+δ

p )
,

so

‖γ1 − γ2‖(ρ)
C([0,T ];H1+δ

p )
(1− c(ρ

δ−1

2 + ρ
δ+β−1

2 )) ≤ 0,

where c depends on b and T but not on γi or ρ. We choose ρ large

enough such that 1− c(ρ
δ−1

2 + ρ
δ+β−1

2 ) > 0, which implies γ1 = γ2 and
shows shows that Y 1 = Y 2. �



32 ON A CLASS OF MARKOV BSDES WITH GENERALISED DRIVER

Appendix A. A technical lemma and proof of Lemma 5.1

We first state and prove a technical Lemma that is used in the proof
of the density below and that has been used in the proof of Theorem
5.11.

Lemma A.1. Let (H, ‖ · ‖) be a normed space and (PN)N be a family
of linear equibounded operators on H such that for each a ∈ H we have
PNa→ a in H. Then for any compact K ⊂ H we have

sup
a∈K

‖PNa− a‖ → 0,

as N → ∞.

Proof. Let δ > 0. Since K is compact, we can construct a finite cover
of size δ, for example K ⊆ ∪m

i=1B(ai, δ). For a given a ∈ H there exists
j ∈ {1, . . . , m} such that a ∈ B(aj , δ). Then we write

‖PNa− a‖ ≤ ‖PN(a− aj)‖+ ‖PNaj − aj‖+ ‖aj − a‖
≤ (1 + c)‖a− aj‖+ max

i=1,...,m
‖PNai − ai‖

≤ (1 + c)δ + max
i=1,...,m

‖PNai − ai‖,

where c is the bound of the operator norms related to PN . Then
supa∈K ‖PNa − a‖ ≤ (1 + c)δ + maxi=1,...,m ‖PNai − ai‖ and so tak-
ing the lim sup on both sides we get

lim sup
N→∞

sup
a∈K

‖PNa− a‖ ≤ (1 + c)δ

since limN→∞ ‖PNai − ai‖ = 0 for all i ∈ {1, . . . , m}. By the fact that
δ is arbitrary we get

lim
N→∞

sup
a∈K

‖PNa− a‖ = 0

as wanted. �

Before proving Lemma 5.1 we introduce the Haar wavelet functions
and illustrate their use within the context of fractional Sobolev spaces
Hs

r . For simplicity of notation we recall only the case of the Haar
wavelets on R (see [26], Section 2.2, eqn (2.93)–(2.96)) and leave to the
reader the extension to R

d which can be found in Section 2.3 of the
same book. We define

hM(x) :=











1 if 0 ≤ x < 1
2
,

−1 if 1
2
≤ x < 1,

0 if x /∈ [0, 1),

hF (x) := |hM(x)|, h−1,m(x) :=
√
2hF (x−m), m ∈ Z,
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and

hj,m(x) := hM(2jx−m), j ∈ N0, m ∈ Z.

Then the family

{hj,m, j ∈ N0 ∪ {−1}, m ∈ Z} (54)

is an unconditional basis of Hs
r (R) for 2 ≤ r ≤ ∞ and −1

2
< s < 1

r
by [26, Theorem 2.9, (ii)]. Note that r = ∞ is included here but is
not included in Lemma 5.1 because of Step 1 in the proof below. The
analogous result in dimension d ≥ 1 is given in Theorem 2.21, (ii).
Moreover for any h ∈ Hs

r (R) we have the unique representation

h =

∞
∑

j=−1

∑

m∈Z

µj,m2
−j(s− 1

r
)hj,m

where

µj,m := 2j(s−
1

r
+1)

∫

R

h(x)hj,m(x)dx, (55)

and the integral has to be interpreted as a dual pairing as mentioned in
[26, Theorem 2.9], see also [25, Remark 1.14]. Rewriting the same series
with a different notation µ̄j,m := 2j

∫

R
h(x)hj,m(x)dx we get another

equivalent representation for h given by

h =

∞
∑

j=−1

∑

m∈Z

µ̄j,mhj,m. (56)

Defining the projector PN as

PNh :=

N
∑

j=−1

N
∑

m=−N

µ̄j,mhj,m, (57)

for h of the form (56), then clearly PNh ∈ Hs
r (R) and

‖h− PNh‖Hs
r (R

d) → 0, (58)

as N → ∞.

Remark A.2. We observe that the projector PN enjoys the bound

‖PNh‖Hs
r (R) ≤ ‖h‖Hs

r (R).

This can be seen as follows. We denote by µ(h) the collection of µj,m

given by (55) for some h. Then for 2 ≤ r ≤ ∞ the map h 7→ µ(h)
is an isomorphism between Hs

r and f−
r2, where the latter is a space

of sequences. For a precise definition of f−
r2, its norm and the state-

ment of this isomorphism property, see [26] in particular, see Section
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2.2.3, Theorem 2.9 for the 1-dimensional case and Section 2.3.2, The-
orem 2.21 for the d-dimensional one. Moreover the sequence of coeffi-
cients µ(PNh) coincide with µ(h) for all j, |m| > N and is zero other-
wise. Thus by definition of the norm of f−

r2, we have ‖µj,m(PNh)‖f−

r2
≤

‖µj,m(h)‖f−

r2
and this together with the isomorphism implies ‖PNh‖Hs

r (R) ≤
‖h‖Hs

r (R) as stated.

Proof of Lemma 5.1. We will show that the dense inclusion holds for
real-valued functions, namely that C∞

c ([0, T ]×R
d) ⊂ C([0, T ];Hs

r(R
d)).

To get the full statement it is then enough to apply this result to each
component of functions in C([0, T ];Hs

r) .
Step 1: Density of C∞

c (Rd) in Hs
r (R

d). It is a known result that
C∞

c (Rd) is dense in Hs
r (R

d) for all 1 < r < ∞ and −∞ < s < ∞. For
a proof see for example [24, Theorem in Section 2.3.2, part (b)].
Step 2: Non-smooth approximating sequence for l ∈ C([0, T ];Hs

r(R
d)).

We consider d = 1 in the proof for simplicity of notation and expla-
nation, but the same methodology extends to the case d ≥ 1, see for
example [26, Section 2.3.1]. We will use here the notation of Section
2.2.2 in the same book, which deals with the case d = 1, in partic-
ular let {hj,m, j ∈ N0 ∪ {−1}, m ∈ Z} be the Haar basis on L2(R)
defined in (54). Now let l ∈ C([0, T ];Hs

r (R)) and let t ∈ [0, T ]. We
recall that (PN)N defined by (57) is a family of linear operators act-
ing on Hs

r (R). The coefficients µ̄ of PN l(t) are now parametrized by
time, namely µ̄j,m(t) = 2j

∫

R
l(t, x)hj,m(x)dx. By (58) we have that

PN l(t) → l(t) in Hs
r (R) as N → ∞, for all t ∈ [0, T ]. It is clear by

definition of the coefficients that t 7→ µ̄j,m(t) is continuous and each
term t 7→ µ̄j,m(t)hj,m in the finite sum belongs to C([0, T ];Hs

r (R))
hence PN l ∈ C([0, T ];Hs

r(R)). We will now show that PN l → l in
C([0, T ];Hs

r(R)), namely that

lim
N→∞

sup
t∈[0,T ]

‖l(t)− PN l(t)‖Hs
r (R) = 0. (59)

To prove this, we want to use Lemma A.1 with the compactK := {l(t) :
t ∈ [0, T ]} ⊂ Hs

r (R) and the projection PN defined by (57). The family
of functions t 7→ PN l(t) is bounded in N in the space C([0, T ];Hs

r (R))
by Remark A.2. Since {l(t), t ∈ [0, T ]} is a compact set in Hs

r then we
can apply Lemma A.1 and we get (59).
Step 3: Smoothing of non-smooth approximating sequence. The last
step consists in showing that for any lN(t) := PN l(t) from Step 2 and

for any ε > 0, we can find an element t 7→ l̃N(t) which is an element of

C∞
c ([0, T ]× R) and such that supt∈[0,T ] ‖lN(t)− l̃N(t)‖Hs

r (R) < ε. Then
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this would conclude the argument and show the density of C∞
c ([0, T ]×

R) in C([0, T ];Hs
r(R)).

To find l̃N(·) we observe that lN (t) is a finite sum of terms of the
type µj,m(t)hj,m, where the µs are continuous in time and hj,m is an
element of the Haar basis. For each of this terms using Step 1 we can
find h̃j,m ∈ C∞

c (R) such that

‖hj,m − h̃j,m‖Hs
r (R) <

ε

maxt∈[0,T ]

∑

j,m |µj,m(t)|
,

where the sum appearing in the denominator is over the finite set of
indices j ∈ {−1, 0, . . . , N} and m ∈ {−N, . . . , 0, . . . , N}. Then we set

l̃N(t) :=
∑

j,m

µj,m(t)h̃j,m,

where again the sum over j,m is a finite sum. Then for any t ∈ [0, T ]
we have

‖l̃N(t)− lN(t)‖Hs
r (R) = ‖

∑

j,m

µj,m(t)(hj,m − h̃j,m)‖Hs
r (R)

≤ max
t∈[0,T ]

∑

j,m

|µj,m(t)|‖(hj,m − h̃j,m)‖Hs
r (R)

< ε. �
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