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Abstract. In this paper, we study the behavior of solutions of the ODE associated to Nesterov acceleration.
It is well-known since the pioneering work of Nesterov that the rate of convergence O(1/t2) is optimal for the class
of convex functions. In this work, we show that better convergence rates can be obtained with some additional
geometrical conditions, such as  Lojasiewicz property. More precisely, we prove the optimal convergence rates that
can be obtained depending on the geometry of the function F to minimize. The convergence rates are new, and
they shed new light on the behavior of Nesterov acceleration schemes. We prove in particular that the classical
Nesterov scheme may provide convergence rates that are worse than the classical gradient descent scheme on
sharp functions: for instance, the convergence rate for strongly convex functions is not geometric for the classical
Nesterov scheme (while it is the case for the gradient descent algorithm). This shows that applying the classical
Nesterov acceleration on convex functions without looking more at the geometrical properties of the objective
functions may lead to sub-optimal algorithms.

Key-words. Lyapunov functions, rate of convergence, ODEs, optimization,  Lojasiewicz prop-
erty.

1. Introduction. The motivation of this paper lies in the minimization of a differentiable
function F with at least one minimizer. Inspired by Nesterov pioneering work [25], we study the
following ODE

(1.1) ẍ(t) +
α

t
ẋ(t) + ∇F (x(t)) = 0

where α > 0, with t0 > 0, x(t0) = x0 and ẋ(t0) = v0. This ODE is associated to FISTA [12] or
Accelerated Gradient Method [25] :

(1.2) xn+1 = yn − h∇F (yn) and yn = xn +
n

n + α
(xn − xn−1)

with h and α positive parameters. This equation, including or not a perturbation term, has
been widely studied in the literature [7, 27, 17, 11, 24]. This equation belongs to a set of similar
equations with various viscosity terms. It is impossible to mention all works related to the
heavy ball equation or other viscosity terms. We refer the reader to the following recent works
[13, 21, 24, 18, 4, 26, 3] and the references that can be found in these articles.

It was proved in [5] that if F is convex with Lipschitz gradient and if α > 3, the trajectory
F (x(t)), where x is the solution of (1.1), converges to the minimum F ∗ of F . It is also known
that for α > 3 and F convex we have

(1.3) F (x(t)) − F ∗ = O
(

t−2
)

Extending to the continuous setting the proof of Chambolle-Dossal [19] of the convergence of
iterates of FISTA, Attouch-Chbani-Peypouquet-Redont [5] proved that for α > 3 the trajectory
x weakly converges to a minimizer of F . Su et al. [27] proposed some new results, proving
the integrability of t 7→ t(F (x(t)) − F ∗) when α > 3, and they gave more accurate bounds
on F (x(t)) − F ∗ in the case of strong convexity. Always in the case of the strong convexity
of F , Attouch, Chbani, Peypouquet and Redont proved in [5] that the trajectory x(t) satisfies
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F (x(t)) − F ∗ = O
(

t−
2α
3

)

for any α > 0. More recently several studies including a perturbation

term [5, 10, 9, 1] have been proposed.
In this work, we focus on the decay of F (x(t))−F ∗ depending on more general geometries of

F around its set of minimizers than strong convexity. Roughly speaking, we consider functions
behaving like ‖x− x∗‖γ around the minimizer for any γ > 1. Our aim is to show the optimal
convergence rates that can be obtained depending on this local geometry. In particular we prove
that if F is strongly convex with a Lipschitz continuous gradient, the decay is actually better

than O
(

t−
2α
3

)

. We also prove that the actual decay for quadratic functions is O (t−α). These

results rely on two geometrical conditions: a first one ensuring that the function is sufficiently
flat around the set of minimizers, and a second one ensuring that it is sufficiently sharp.

The paper is organized as follows. In Section 2, we introduce the geometrical hypotheses
we consider for the function F , and their relation with  Lojasiewicz property. We then recap
the state of the art results on the ODE (1.1) in Section 3. We present the contributions of the
paper in Section 4: depending on the geometry of the function F and the value of the damping
parameter α, we give optimal rates of convergence. The proofs of the theorems are given in
Section 5. Some technical proofs are postponed to Appendix A.

2. Local geometry of convex functions. In this section we introduce two notions de-
scribing the geometry of a convex function around its minimizers.

Definition 2.1. Let F : Rn → R be a convex differentiable function, X∗ := argminF 6= ∅
and: F ∗ := inf F .

(i) Let γ > 1. The function F satisfies the hypothesis H1(γ) if, for any critical point
x∗ ∈ X∗, there exists η > 0 such that:

∀x ∈ B(x∗, η), 0 6 F (x) − F ∗
6

1

γ
〈∇F (x), x − x∗〉.

(ii) Let r > 1. The function F satisfies the growth condition H2(r) if for any critical point
x∗ ∈ X∗, there exists K > 0 and ε > 0, such that:

∀x ∈ B(x∗, ε), Kd(x,X∗)r 6 F (x) − F ∗.

The H1(γ) hypothesis has already been used in [17] and later in [27, 10]. This is a mild
assumption, requesting slightly more than the convexity of F in the neighborhood of its mini-
mizers. In particular, observe that any convex function automatically satisfies H1(1) and that

any differentiable function F ensuring that (F −F ∗)
1
γ is convex for some γ ≥ 1, satisfies H1(γ).

Nevertheless having a better intuition of the geometry of convex functions satisfying H1(γ) for
some γ ≥ 1, requires a little more effort:

Lemma 2.2. Let F : Rn → R be a convex differentiable function with X∗ = argminF 6= ∅,
and F ∗ = inf F . If F satisfies H1(γ) for some γ ≥ 1, then:

1. F satisfies H1(γ′) for all γ′ ∈ [1, γ].
2. For any minimizer x∗ ∈ X∗, there exists M > 0 and η > 0 such that:

(2.1) ∀x ∈ B(x∗, η), F (x) − F ∗
6 M‖x− x∗‖γ .

Proof. The proof of the first point of Lemma 2.2 is straightforward. The second point relies
on the following elementary result in dimension 1: let g : R → R be a convex differentiable
function such that 0 ∈ argmin g, g(0) = 0 and:

∀t ∈ [0, 1], g(t) ≤ t

γ
g′(t),
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for some γ > 1. Then the function t 7→ t−γg(t) is monotonically increasing on [0, 1] and:

(2.2) ∀t ∈ [0, 1], g(t) 6 g(1)tγ .

Consider now any convex differentiable function F : Rn → R satisfying the condition H1(γ),
and x∗ ∈ X∗. So there exists η > 0 such that:

∀x ∈ B̄(x∗, η), 0 6 F (x) − F ∗
6

1

γ
〈∇F (x), x − x∗〉.

For any x ∈ B̄(x∗, η) with x 6= x∗, we introduce the following univariate function:

gx : t ∈ [0, 1] 7→ F

(

x∗ + tη
x− x∗

‖x− x∗‖

)

− F ∗.

First, observe that, for all x ∈ B̄(x∗, η) with x 6= x∗ and for all t ∈ [0, 1], we have: x∗+tη x−x∗

‖x−x∗‖ ∈
B̄(x∗, η). Since F is continuous on the compact set B̄(x∗, η), we deduce that:

(2.3) ∃M > 0, ∀x ∈ B̄(x∗, η) with x 6= x∗, ∀t ∈ [0, 1], gx(t) ≤ M.

Note here that the constant M only depends on the point x∗.
Then, by construction, gx is a convex differentiable function satisfying: 0 ∈ argmin (gx),

gx(0) = 0 and:

∀t ∈ (0, 1], g′x(t) =

〈

∇F

(

x∗ + tη
x− x∗

‖x− x∗‖

)

, η
x− x∗

‖x− x∗‖

〉

>
γ

t

(

F

(

x∗ + tη
x− x∗

‖x− x∗‖

)

− F ∗

)

=
γ

t
gx(t)

Thus, using the one dimensional result (2.2) and the uniform bound (2.3), we get:

(2.4) ∀x ∈ B̄(x∗, η) with x 6= x∗, ∀t ∈ [0, 1], gx(t) 6 gx(1)tγ 6 Mtγ

Finally by choosing t = 1
η
‖x− x∗‖, we obtain the expected result.

In other words, the hypothesis H1(γ) can be seen as a “flatness” condition on the function
F in the sense that it ensures that F is sufficiently flat (at least as flat as x 7→ |x|γ) in the
neighborhood of its minimizers.

The hypothesis H2(r), r > 1, is a growth condition on the function F around any critical
point. It is sometimes also called r-conditioning [20] or Hölderian error bounds [16]. This
assumption is motivated by the fact that, when F is convex, H2(r) is equivalent to the famous
 Lojasievicz inequality [22, 23], a key tool in the mathematical analysis of continuous (or discrete)
dynamical systems, with exponent θ = 1 − 1

r
[14, 15]:

Definition 2.3. A differentiable function F : R
n → R is said to have the  Lojasiewicz

property with exponent θ ∈ [0, 1) if, for any critical point x∗, there exist c > 0 and ε > 0 such
that:

(2.5) ∀x ∈ B(x∗, ε), ‖∇F (x)‖ > c|F (x) − F ∗|θ.

where: 00 = 0 when θ = 0 by convention.
Observe that the inequality (2.5) is automatically satisfied at any non-critical point, so that

the  Lojasiewicz property is in fact a geometrical condition on the function F around any critical
points. Moreover, when the set X∗ of the minimizers is a connected compact set, the  Lojasiewicz
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inequality turns into a geometrical condition on F around X∗ as stated in [2, Lemma 1] whose
proof can be adapted to establish the following result:

Lemma 2.4. Let F : R
n → R be a convex differentiable function satisfying the growth

condition H2(r) for some r > 1. Assume that the set X∗ = argminF is compact. Then there
exist K > 0 and ε > 0 such that, for all x ∈ R

n:

d(x,X∗) 6 ε ⇒ Kd(x,X∗)r 6 F (x) − F ∗.

Typical examples of functions having the  Lojasiewicz property are real-analytic functions
and C1 subanalytic functions [22], or semialgebraic functions [2]. Strongly convex functions
satisfy a global  Lojasiewicz property with exponent θ = 1

2 [2], or equivalently a global version of
the hypothesis H2(2), namely:

∀x ∈ R
n, F (x) − F ∗

>
µ

2
d(x,X∗)2,

where µ > 0 denotes the parameter of strong convexity. By extension, uniformly convex functions
of order p > 2 satisfy the global version of the hypothesis H2(p) [20].

Let us now present two simple examples of convex differentiable functions to illustrate situa-
tions where the hypothesis H1 and H2 are satisfied. Consider the function F : x ∈ R 7→ |x|γ for
some γ > 1. We easily check that F satisfies the hypothesis H1(γ′) for some γ′ ≥ 1 if and only if
γ′ ∈ [1, γ]. By definition, F also naturally satisfies H2(r) if and only if r > γ. Same conditions
on γ′ and r can be derived without the uniqueness of the minimizer for functions of the form:

(2.6) F (x) =

{

||x| − a|γ if |x| > a,

0 otherwise,

with a > 0, and whose set of minimizers is: X∗ = [−a, a], since conditions H1(γ) and H2(r) only
make sense around the extremal points of X∗.

Let us now investigate the relation between the parameters γ and r in the general case: any
convex differentiable function F satisfying both H1(γ) and H2(r), has to be at least as flat as
x 7→ ‖x‖γ and as sharp as x 7→ ‖x‖r in the neighborhood of its minimizers. Combining the
flatness condition H1(γ) and the growth condition H2(r), we consistently deduce:

Lemma 2.5. If a convex differentiable function satisfies both H1(γ) and H2(r) then neces-
sarily r > γ.

Finally, we conclude this section by showing that an additional assumption of the Lipschitz
continuity of the gradient provides additional information on the local geometry of F : indeed,
for convex functions, the Lipschitz continuity of the gradient is equivalent to a quadratic upper
bound on F :

(2.7) ∀(x, y) ∈ R
n × R

n, F (x) − F (y) 6 〈∇F (y), x − y〉 +
L

2
‖x− y‖2.

Applying (2.7) at y = x∗, we then deduce:

(2.8) ∀x ∈ R
n, F (x) − F ∗

6
L

2
‖x− x∗‖2,

which indicates that F is at least as flat as ‖x− x∗‖2 around X∗. More precisely:
Lemma 2.6. Let F : Rn → R be a convex differentiable function with a L-Lipschitz continu-

ous gradient for some L > 0. Assume also that F satisfies the growth condition H2(2) for some
constant K > 0. Then F automatically satisfies H1(γ) with γ = 1 + K

2L ∈ (1, 2].
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Proof. Since F is convex with a Lipschitz continuous gradient, we have:

∀(x, y) ∈ R
n, F (y) − F (x) − 〈∇F (x), y − x〉 > 1

2L
‖∇F (y) −∇F (x)‖2,

hence:

∀x ∈ R
n, F (x) − F ∗

6 〈∇F (x), x − x∗〉 − 1

2L
‖∇F (x)‖2.

Assume in addition that F satisfies the growth condition H2(2) for some constant K > 0. Then
F has the  Lojasiewicz property with exponent θ = 1

2 and constant c =
√
K. Thus:

(

1 +
K

2L

)

|F (x) − F ∗| 6 〈∇F (x), x − x∗〉,

in the neighborhood of its minimizers, which means that F satisfies H1(γ) with γ = 1 + K
2L .

3. Related results. In this section, we recall some classical state of the art results related
to the ODE (1.1).

Let us first recall that as soon as α > 0, then F (x(t)) converges to F ∗ [10, 6]. As recalled in
Section 1, a larger value of α is required to show the convergence of the trajectory x(t).

If F is convex and α > 3 or if F satisfies H1(γ) hypothesis and α > 1 + 2
γ

then

(3.1) F (x(t)) − F ∗ = o

(

1

t2

)

,

and the trajectory x(t) (weakly in an infinite dimensional space) converges to a minimizer x∗

of F [27, 10, 24]. This means that thanks to the additional hypothesis H1(γ), the damping
parameter α can be chosen smaller.

Now, if F satisfies H1(γ) and α 6 1 + 2
γ

, then we can no longer prove the convergence of the

trajectory x(t) but we still have the following convergence rate for F (x(t)):

(3.2) F (x(t)) − F ∗ = O

(

1

t
2γα
2+γ

)

.

Moreover, this decay is optimal and reached for F (x) = |x|γ if γ > 1 (see [6] for with the sole
assumption of convexity which corresponds to the case γ = 1 and [10] for the general case and

the optimality of the rate). Notice that for convex functions, the decay is O
(

1

t
2α
3

)

. We can also

notice that the bound hidden in the big O is explicit and available also for γ < 1, that is for non
convex functions (for example for functions whose square is convex).

If F is the function F (x) = |x|γ , where x ∈ R, with γ > 2 and α >
γ+2
γ−2 , then the ODE (1.1)

admits an explicit solution of the form x(t) = K

t
2

γ−2

[6]. This simple calculation will show the

optimality of the convergence rate we obtain in Theorem 4.3.
Moreover, if F is strongly convex, then for any α > 0 we have [27]

(3.3) F (x(t)) − F ∗ = 0

(

1

t
2α
3

)

.

This shows that by assuming more on the geometry of the function F (in this case, strong
convexity), better rates of convergence can be achieved.
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Eventually several results about the convergence rate of the solutions of ODE associated to
the classical gradient descent :

(3.4) ẋ(t) + ∇F (x(t)) = 0

or the ODE associated to the heavy ball method

(3.5) ẍ + αẋ(t) + ∇F (x(t)) = 0

under geometrical conditions such that  Lojasiewicz properties have been proposed, see for ex-
ample Polyak-Shcherbakov [26]. The authors prove that if the function F satisfies H2(2) and
some other conditions, the decay of F (x(t)) − F ∗ is exponential for the solutions of both previ-
ous equations. These rates are the continuous counterparts of the exponential decay rate of the
classical gradient descent algorithm and the heavy ball method algorithm for strongly convex
functions.

In the next section we will prove that this geometric rate is not true for solutions of (1.1)
even for quadratic functions, and we will prove that from an optimization point of view, the
classical Nesterov acceleration may be less efficient than the classical gradient descent.

4. Contributions. In this section, we state the optimal convergence rates that can be
achieved when F satisfies hypotheses such as H1(γ) and/or H2(r). The first result gives optimal
control for functions whose geometry is sharp :

Theorem 4.1. Let γ > 1 and α > 0.
1. If F satisfies the hypothesis H1(γ) and if α 6 1 + 2

γ
, then

(4.1) F (x(t)) − F ∗ = O

(

1

t
2γα
γ+2

)

2. If F satisfies the hypotheses H1(γ) and H2(2) and if F has a unique minimizer, if
α > 1 + 2

γ
then

(4.2) F (x(t)) − F ∗ = O

(

1

t
2γα
γ+2

)

Moreover this decay is optimal in the sense that for any γ ∈ (1, 2] this rate is achieved for the
function F (x) = |x|γ .

Note that the first point of Theorem 4.1 is already proven in [10] and that the second point
of Theorem 4.1 only applies for γ 6 2, since there is no function that satisfies both conditions
H1(γ) with γ > 2 and H2(2) (see Lemma 2.2). The optimality of the convergence rate result is
precisely stated in the next Proposition:

Proposition 4.2. Let γ ∈ (1, 2]. Let us assume that α > 1 + 2
γ

. Let x be a solution of

(1.1) with F (x) = |x|γ with t0 >
√

α(γ+2−αγ)
(γ+2)2 , |x(t0)| < 1 and ẋ(t0) = 0. There exists K > 0

such that for any T > 0, there exists t > T such that

(4.3) F (x(t)) − F ∗
>

K

t
2γα
γ+2

.

Let us make several observations: first, to apply the second point of Theorem 4.1, more
conditions are needed than for the first point: the hypothesis H2(2) and the uniqueness of the
minimizer are needed (only for the second point) to prove a decay faster than O( 1

t2
), which is
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the uniform rate than can be achieved with α > 3 for convex functions [27]. The uniqueness of
the minimizer in the second point is crucial in the proof, but it is still an open problem to know
if this uniqueness is a necessary condition.

We can remark that if F is a quadratic function in the neighborhood of x∗, Theorem 4.1
applies with γ = 2 and thus

(4.4) F (x(t)) − F ∗ = O

(

1

tα

)

Likewise, if F is a convex differentiable function with a Lipschitz continuous gradient, and if F
satisfies the growth condition H2(2), then F automatically satisfies the H1(γ) hypothesis with
some 1 < γ 6 2 as shown in Section 2, and Theorem 4.1 applies with γ > 1. In both cases,

we thus obtain convergence rates which are strictly better than O
(

1

t
2α
3

)

that is proposed for

strongly convex functions by Su et al. [27] and Attouch-Chbani-Peypouquet-Redont [5]. Finally,
we can remark that the decay for quadratic or strongly convex functions is not geometric, while
it is the case for the classical gradient descent scheme (see e.g. [20]). This shows that applying
the classical Nesterov acceleration on convex functions without looking more at the geometrical
properties of the objective functions may lead to sub-optimal algorithms.

Remark 1 (The Least-Square problem).
1. We remark that if ẋ(t0) = 0, then for all t > t0 we have that x(t) belongs to x0+Im(∇F )

where Im(∇F ) stands for the vectorial space generated by ∇F (x) for all x in R
n. As a

consequence, Theorem 4.1 and 4.3 still hold true as long as the assumptions are valid in
x0 + Im(∇F ).

2. Let us consider the classical Least-Square problem defined by:

min
x∈Rn

F (x) :=
1

2
‖Ax− b‖2,

where A is a bounded linear operator and b ∈ R
n. If ẋ(t0) = 0, then for all t > t0, we

have thus that x(t) belongs to the affine subspace x0 + Im(A∗). We can therefore apply
the second point of Theorem 4.1 since we have uniqueness of the solution here.

The second result deals with geometries associated to γ > 2.
Theorem 4.3. Let γ1 > 2 and γ2 > 2. Assume that F is coercive and satisfies H1(γ1) and

H2(γ2) with γ1 6 γ2. If α >
γ1+2
γ1−2 then we have

(4.5) F (x(t)) − F ∗ = O

(

1

t
2γ2

γ2−2

)

.

One can notice that in Theorem 4.3 the uniqueness of the minimizer is not needed anymore.
In the case when γ1 = γ2, we have furthermore the convergence of the trajectory:
Corollary 4.4. Let γ > 2, if F is coercive and satisfies H1(γ) and H2(γ) and if α >

γ+2
γ−2

then we have

(4.6) F (x(t)) − F ∗ = O

(

1

t
2γ

γ−2

)

and

(4.7) ‖ẋ(t)‖ = O

(

1

t
γ

γ−2

)

.

Moreover the trajectory x(t) is finite and it converges to a minimizer x∗ of F .
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This decay is optimal since Attouch et al. proved that it is achieved for the function
F (x) = |x|γ in [5].

Comments on the hypotheses H1 and H2. From these two theorems we can make the fol-
lowing comments:

1. If the function F behaves like ‖x− x∗‖γ in the neighborhood of its unique minimizer x∗,
then the decay of F (x(t)) − F ∗ depends directly on α if γ 6 2, but it does not depend
on α, for large α if γ > 2.

2. For such functions the best decay rate of F (x(t)) − F ∗ is achieved for γ = 2, that is
for quadratic like functions around the minimizer, which is O

(

1
tα

)

. If γ < 2, it seems
that the oscillations of the solution x(t) prevent us to get an optimal decay rate. The
inertia seems to be too large for such functions. If γ > 2, for large α, the decay is not
as fast because the gradient of the functions decays too fast in the neighborhood of the
minimizer. For these functions a larger inertia could be more efficient.

3. In the second point of Theorem 4.1 and in Theorem 4.3 both conditions H1 and H2 are
used to get a decay rate. It turns out that these two conditions are important. Condition
H1(γ) ensures that the function is not too sharp and it may prevent from bad oscillations
of the solution, while condition H2(γ) ensures that the magnitude of the gradient of the
function is not too low in the neighborhood of the minimizers.

4. With the sole condition H1(γ) on F for any γ > 1, it is impossible to get a bound on the
decay rate like O( 1

tδ
) with δ > 2. Indeed, for any η > 2 and for a large friction parameter

α, the solution x of the ODE associated to F (x) = |x|η satisfies F (x(t))−F ∗ = Kt−
2η

η−2

and the power 2η
η−2 can be chosen arbitrary close to 2.

5. With the sole hypothesis H2(γ), it seems difficult to establish optimal rate. Indeed the
function F (x) = |x|3 satisfies H2(3). Applying Theorem 4.3 with γ1 = γ2 = 3, we know
that for this function with α = γ1+2

γ1−2 = 5, we have F (x(t)) − F ∗ = O
(

1
t6

)

.

Nevertheless, with the sole hypothesis H2(3), such a decay cannot be achieved. Indeed,
the function F (x) = |x|2 satisfies H2(3), but from the optimality part of Theorem 4.1
we know that we cannot achieve a decay better than 1

t
2αγ
γ+2

= 1
t5

for α = 5.

6. It seems that the use of both hypotheses is a simple way to provide optimal decay rates.

Relation with the state of the art.. As it was explained in the introduction, Attouch, Chbani,
Peypouquet and Redont in [8] following Su, Boyd and Candes [27] proved that F (x(t)) − F ∗ =

O
(

t−
2α
3

)

if F is strongly convex or has a strong minimizer, see also [6] for more general viscosity

term in that setting. The contribution of the present work with respect to these previous result
is the following

• It enlightens the fact that a flatness hypothesis H1 associated to classical sharpness
hypotheses like  Lojasievicz properties improve the decay rate of F (x(t)) − F ∗.

• We prove the optimality of the given decay rates. A consequence of this work is also the
optimality of the power 2α

3 in [8] with conditions H1(1) and H2(2).
• We prove that if a function F satisfies H2(2) and a Lipschitz gradient condition, it

satisfies H1(γ) for a γ > 1 and thus the decay rate of F (x(t)) − F ∗ is always strictly

better than O
(

t−
2α
3

)

.

• We prove that for quadratic functions we get F (x(t)) − F ∗ = O (t−α)
• This optimality also ensures that we cannot expect an exponential decay of F (x(t))−F ∗

for quadratic functions. Let us recall that we can achieve this exponential decay for the
ODE associated to Gradient descent or Heavy ball method [26]
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5. Proofs. Both proofs rely on Lyapunov functions E and H introduced by Su, Boyd and
Candes [27], Attouch, Chbani, Peypouquet and Redont [5] and Aujol-Dossal [10] :

(5.1) Eλ,ξ(t) = t2(F (x(t)) − F ∗) +
1

2
‖λ(x(t) − x∗) + tẋ(t)‖2 +

ξ

2
‖x(t) − x∗‖2 .

where x∗ is a minimizer of F and λ and ξ are two real numbers. The function H is defined from
E and it depends on another real parameter p :

(5.2) H(t) = tpE(t)

Using the following notations

a(t) = t(F (x(t)) − F ∗)(5.3)

b(t) =
1

2t
‖λ(x(t) − x∗) + tẋ(t)‖2(5.4)

c(t) =
1

2t
‖x(t) − x∗‖2(5.5)

we have

(5.6) E(t) = t(a(t) + b(t) + ξc(t))

From now on we will choose

(5.7) ξ = λ(λ + 1 − α)

and we will use the following Lemma whose proof is postponed to Appendix A:
Lemma 5.1. If F satisfies the hypothesis H1(γ), for any γ > 0 and if ξ = λ(λ−α+ 1) then

(5.8) H′(t) 6 tp ((2 − γλ + p)a(t) + (2λ + 2 − 2α + p)b(t) + λ(λ + 1 − α)(−2λ + p)c(t))

One can remark that this inequality is actually an equality for the specific choice F (x) = |x|γ .

5.1. Proof of Theorem 4.1. In this section we prove the second point of the Theorem
and we refer to [10] for a complete proof of the first point, including the optimality of the rate.
The proof of this first point is actually similar to the following one but simpler. The choice of p
and λ are the same, but due to the value of α, the function H is non increasing and sum of non
negative terms, which simplifies the analysis and necessitates less hypotheses to conclude.

Proof. We choose here p = 2γα
γ+2 − 2 and λ = 2α

γ+2 and thus

(5.9) ξ =
2α

(γ + 2)2
(2 + γ(1 − α))

Since we consider the case when α > 1 + 2
γ

, we have ξ < 0 and thus H is not defined as a sum
of positive functions.

Moreover, from Lemma 5.1 it appears that

(5.10) H′(t) 6 K1t
pc(t) with K1 = λ(λ + 1 − α)(−2λ + p).

Let us compute explicitely the value of K1. We have p = 2γα
γ+2 − 2 and λ = 2α

γ+2 , so that:

K1 =
2α

γ + 2

(

2α

γ + 2
+ 1 − α

)(

−2
2α

γ + 2
+

2γα

γ + 2
− 2

)

=
4α

(γ + 2)3
(2α + γ + 2 − αγ − 2α) (−2α + γα− γ − 2)

=
4α

(γ + 2)3
(γ + 2 − αγ) (α(−2 + γ) − γ − 2)
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Hence

(5.11) K1 =
4α(γ(1 − α) + 2)(α(γ − 2) − (γ + 2))

(γ + 2)3

Since α > 1 + 2
γ

, we have γ(1 − α) + 2 < 0. Hence the sign of K1 is the opposit of the sign of

α(γ − 2) − (γ + 2). More precisely, if γ 6 2, then α(γ − 2) − (γ + 2) < 0 and thus K1 > 0. If
γ > 2, then α(γ − 2)− (γ + 2) > 0 if and only if α > γ+2

γ−2 . Hence K1 > 0 if and only if α < γ+2
γ−2 .

Using Hypothesis H2(2) and the uniqueness of the minimizer, there exists K > 0 such that

(5.12) Kt ‖x(t) − x∗‖2 6 t(F (x(t)) − F ∗) = a(t),

and thus

(5.13) c(t) 6
1

2Kt2
a(t).

Since ξ < 0 with our choice of parameters, we get:

H(t) > tp+1(a(t) + ξc(t)) > tp+1(1 +
ξ

2Kt2
)a(t).

It follows that it exists t1 such that for all t > t1, H(t) > 0 and

(5.14) H(t) >
1

2
tp+1a(t).

From (5.10), (5.13) and (5.14), we get

(5.15) H′(t) 6
K1

K

H(t)

t3

From the Gronwall Lemma it exists A > 0 such that ∀t > t1 H(t) 6 A. According to (5.14), we
then conclude that tp+2(F (x(t)) − F ∗) = tp+1a(t) is bounded which concludes the proof of the
point 2. of Theorem 4.1.

5.2. Proof of Proposition 4.2 (Optimality of the convergence rates). Before proving
the optimality of the convergence rate stated in Proposition 4.2, we need the following technical
lemma:

Lemma 5.2. Let y a continuously differentiable function with values in R. Let T > 0 and
ǫ > 0. If y is bounded, then there exists t1 > T such that:

(5.16) |ẏ(t1)| 6 ǫ

t1

Proof. We split the proof into two cases.
1. There exists t1 > T such that ẏ(t1) = 0.
2. ẏ(t) is of constant sign for t > T . For instance we assume ẏ(t) > 0. By contradiction, let

us assume that ẏ(t) > ǫ
t
∀t > T . Then y(t) cannot be a bounded function as assumed.

Let us now prove the Proposition 4.2: the idea of the proof is the following: we first show
that H is bounded from below. Since H is a sum of 3 terms including the term F −F ∗, we then
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show that given t1 ≥ t0, there always exists a time t ≥ t1 such that the value of H is concentrated
on the term F − F ∗.

We start the proof by using the fact that, for the function F (x) = |x|γ , the inequality of
Lemma 5.1 is actually an equality, and using the values p = 2γα

γ+2 −2 and λ = 2α
γ+2 of the previous

Theorem, we have a closed form for the derivative of function H:

(5.17) H′(t) = K1t
pc(t) =

K1

2
tp−1|x(t)|2

where K1 is a positive constant. This implies in particular that H is non-decreasing.

From the previous Theorem, H is bounded above. Observing that since t0 >
√

α(γ+2−αγ)
(γ+2)2 ,

we have: H(t0) > 0, it follows that it exists ℓ > 0 such that H(t) → ℓ when t → +∞. In
particular, we have that for t large enough,

(5.18) H(t) >
ℓ

2

i.e.

(5.19) a(t) + b(t) + ξc(t) >
ℓ

2tp+1

Moreover, since ξ < 0, we then have:

(5.20) a(t) + b(t) >
ℓ

2tp+1

Let T > 0 and ǫ > 0. We set:

(5.21) y(t) := tλx(t)

where: λ = 2α
γ+2 . From the previous Theorem, we know that y(t) is bounded. Hence, from

Lemma 5.2 , there exists t1 > T such that

(5.22) |ẏ(t1)| 6 ǫ

t1

But

(5.23) ẏ(t) = tλ−1 (λx(t) + tẋ(t))

Hence using (5.22):

(5.24) tλ1 |λx(t1) + t1ẋ(t1)| 6 ǫ

We remind the reader that b(t) = 1
2t ‖λ(x(t) − x∗) + tẋ(t)‖2. We thus have:

(5.25) b(t1) 6
ǫ2

2t2λ+1
1

Since γ 6 2, λ = 2α
γ+2 and p = 2γα

γ+2 − 2, we have 2λ + 1 ≥ p + 1, and thus

(5.26) b(t1) 6
ǫ2

2tp+1
1

.

For ǫ =
√

l
2 for example, there exists thus some t1 > T such that b(t1) 6

ℓ

4tp+1

1

. Then

a(t1) > ℓ

4tp+1

1

, i.e. F (x(t1)) − F ∗ > ℓ

4tp+2

1

. Since p + 2 = 2γα
γ+2 , this concludes the proof.
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5.3. Proof of Theorem 4.3. We detail here the proof of Theorem 4.3.
Let us consider γ1 > 2, γ2 > 2, and α >

γ1+2
γ1−2 .

We consider here functions H for all x∗ in the set X∗ of minimizers of F and prove that these
functions are uniformely bounded. More precisely for any x∗ ∈ X∗ we define H(t) with p = 4

γ1−2

and λ = 2
γ1−2 . With this choice of λ and p, using Hypothesis H1(γ1) we have from Lemma 5.1:

(5.27) H′(t) 6 2t
4

γ1−2

(

γ1 + 2

γ1 − 2
− α

)

b(t).

which is non positive when α >
γ1+2
γ1−2 , which implies that the function H is bounded above.

Hence for any choice of x∗ in the set of minimizers X∗, the function H is bounded above and
since the set of minimizers is bounded (F is coercive), there exists A > 0 and t0 such that for all
choices of x∗ in X∗,

(5.28) H(t0) 6 A,

which implies that for all x∗ ∈ X∗ and for all t > t0

(5.29) H(t) 6 A.

Hence for all t > t0 and for all x∗ ∈ X∗

(5.30) t
4

γ1−2 t2(F (x(t)) − F ∗) 6
|ξ|
2
t

4
γ1−2 ‖x(t) − x∗‖2 + A,

which implies that

(5.31) t
4

γ1−2 t2(F (x(t)) − F ∗) 6
|ξ|
2
t

4
γ1−2 d(x(t), X∗)2 + A.

We now set:

(5.32) v(t) := t
4

γ2−2 d(x(t), X∗)2

where d denotes the euclidean distance. Using (5.31) we have:

(5.33) t
2γ1

γ1−2 (F (x(t)) − F ∗) 6
|ξ|
2
t

4
γ1−2

− 4
γ2−2 v(t) + A.

Using the hypothesis H2(γ2) applied under the form given by Lemma 2.4 (since X∗ is compact),
there exists K > 0 such that

(5.34) K
(

t
− 4

γ2−2 v(t)
)

γ2
2

6 F (x(t)) − F ∗,

which is equivalent to

(5.35) Kv(t)
γ2
2 t

−2γ2
γ2−2 6 F (x(t)) − F ∗.

Hence:

(5.36) Kt
2γ1

γ1−2 t
−2γ2
γ2−2 v(t)

γ2
2 6 t

2γ1
γ1−2 (F (x(t)) − F ∗).
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Using (5.33), we obtain:

(5.37) Kt
2γ1

γ1−2
−

2γ2
γ2−2 v(t)

γ2
2 6

|ξ|
2
t

4
γ1−2

− 4
γ2−2 v(t) + A,

i.e.:

(5.38) Kv(t)
γ2
2 6

|ξ|
2
v(t) + At

4
γ2−2

− 4
γ1−2 .

Since γ1 6 γ2, we deduce that v is bounded. Hence, using (5.33) there exists some positive
constant B such that:

(5.39) F (x(t)) − F ∗
6 Bt

−2γ2
γ2−2 + At

−2γ1
γ1−2 .

Since γ1 6 γ2, we have −2γ2

γ2−2 >
−2γ1

γ1−2 . Hence we deduce that F (x(t)) − F ∗ = O
(

t
−2γ2
γ2−2

)

.

5.3.1. Proof of Corollary 4.4. We are now in position to prove Corollary 4.4.
Proof. The first point of Corollary 4.4 is just a particular instance of Theorem 4.3. In the

sequel, we prove the second point of Corollary 4.4.
Let t > t0 and x̃ ∈ X∗ such that

(5.40) d(x(t), x̃) = d(x(t), X∗)

We previously proved that it exists A > 0 such that for any t > t0 and any x∗ ∈ X∗

(5.41) H(t) 6 A.

For the choice x∗ = x̃ this inequality ensures that

(5.42)
t

4
γ−2

2
‖λ(x(t) − x̃) + tẋ(t)‖2 + t

4
γ−2

ξ

2
d(x(t), x̃)2 6 A

which is equivalent to

(5.43)
t

4
γ−2

2
‖λ(x(t) − x̃) + tẋ(t)‖2 6

|ξ|
2
v(t) + A

where v(t) is defined in (5.32) with γ = γ2. Using the fact that the function v is bounded (a
consequence of (5.38)) we deduce that it exists a real number A1 > 0 such that

(5.44) ‖λ(x(t) − x̃) + tẋ(t)‖ 6
A1

t
2

γ−2

.

Thus:

(5.45) t ‖ẋ(t)‖ 6
A1

t
2

γ−2

+ |λ|d(x(t), x̃) =
A1 + |λ|

√

v(t)

t
2

γ−2

.

Using once again the fact that the function v is bounded we deduce that it exists a real number
A2 such that

(5.46) ‖ẋ(t)‖ 6
A2

t
γ

γ−2

which implies that ‖ẋ(t)‖ is an integrable function. As a consequence, we deduce that the
trajectory x(t) is finite.
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Appendix A. Proof of Lemma 5.1. We prove here Lemma 5.1. Notice that the compu-
tations are standard (see e.g. [10]).

We will make use of the following results:

Lemma A.1. Let γ > 0, if g(x) = (F (x) − F (x∗))
1
γ is convex then

(A.1) γ(F (x(t)) − F (x∗)) 6 〈∇F (x(t)), x(t) − x∗〉

Proof. Since g is convex we have

(A.2) g(x(t)) 6 〈∇g(x(t)), x(t) − x∗〉

and ∇g(x(t)) = 1
γ

(F (x(t) − F (x∗))
1
γ
−1∇F (x(t)). Replacing g(x(t)) by (F (x(t)) − F (x∗))

1
γ we

get the result.

Lemma A.2.

E ′
λ,ξ(t) =2a(t) + t(λ + 1 − α) ‖ẋ(t)‖2(A.3)

+ λt〈−∇F (x(t)), x(t) − x∗〉 + (λ(λ + 1) − αλ + ξ)〈ẋ(t), x(t) − x∗〉(A.4)

Proof.
We differentiate :

E ′
λ,ξ(t) =2a(t) + t2〈∇F (x(t)), ẋ(t)〉(A.5)

+ 〈λẋ(t) + tẍ(t) + ẋ(t), λ(x(t) − x∗) + tẋ(t)〉 + ξ〈ẋ(t), x(t) − x∗〉(A.6)

E ′
λ,ξ(t) =2a(t) + t2〈∇F (x(t)) + ẍ(t), ẋ(t)〉(A.7)

+ (λ + 1)t ‖ẋ(t)‖2 + λt〈ẍ(t), x(t) − x∗〉 + (λ(λ + 1) + ξ)〈ẋ(t), x(t) − x∗〉(A.8)

E ′
λ,ξ(t) =2a(t) + t2〈−α

t
˙x(t), ẋ(t)〉(A.9)

+ (λ + 1)t ‖ẋ(t)‖2 + λt〈ẍ(t), x(t) − x∗〉 + (λ(λ + 1) + ξ)〈ẋ(t), x(t) − x∗〉(A.10)

E ′
λ,ξ(t) =2a(t) + t(λ + 1 − α) ‖ẋ(t)‖2(A.11)

+ λt〈ẍ(t), x(t) − x∗〉 + (λ(λ + 1) + ξ)〈ẋ(t), x(t) − x∗〉(A.12)

And now, using (1.1), we get:

E ′
λ,ξ(t) =2a(t) + t(λ + 1 − α) ‖ẋ(t)‖2(A.13)

+ λt〈−∇F (x(t)) − α

t
˙x(t), x(t) − x∗〉 + (λ(λ + 1) + ξ)〈ẋ(t), x(t) − x∗〉(A.14)
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E ′
λ,ξ(t) =2a(t) + t(λ + 1 − α) ‖ẋ(t)‖2(A.15)

+ λt〈−∇F (x(t)), x(t) − x∗〉 + (λ(λ + 1) − αλ + ξ)〈ẋ(t), x(t) − x∗〉(A.16)

Lemma A.3.

E ′
λ,ξ(t) =2a(t) + λt〈−∇F (x(t)), x(t) − x∗〉(A.17)

+ (ξ − λ(λ + 1 − α))〈ẋ(t), x(t) − x∗〉(A.18)

+ 2(λ + 1 − α)b(t) − 2λ2(λ + 1 − α)c(t)(A.19)

Proof.
We start from the result of Lemma A.2. Observing that

(A.20)
1

t
‖λ(x(t) − x∗) + tẋ(t)‖2 = t ‖ẋ(t)‖2 + 2λ〈ẋ(t), x(t) − x∗〉 +

λ2

t
‖x(t) − x∗‖2

we can write

E ′
λ,ξ(t) =2a(t) + λt〈−∇F (x(t)), x(t) − x∗〉(A.21)

+ (ξ − λ(λ + 1 − α))〈ẋ(t), x(t) − x∗〉(A.22)

+ (λ + 1 − α)
1

t
‖λ(x(t) − x∗) + tẋ(t)‖2 − λ2(λ + 1 − α)

t
‖x(t) − x∗‖2(A.23)

Lemma A.4. If ξ = λ(λ + 1 − α), then

E ′
λ,ξ(t) =2a(t) + λt〈−∇F (x(t)), x(t) − x∗〉 + 2(λ + 1 − α)b(t) − 2λ2(λ + 1 − α)c(t)(A.24)

Lemma A.5.
If F satisfies the hypothesis H1(γ) and ξ = λ(λ + 1 − α), then:

E ′
λ,ξ(t) 6(2 − γλ)a(t) + 2(λ + 1 − α)b(t) − 2λ2(λ + 1 − α)c(t)(A.25)

Proof. To prove Lemma A.5, we only apply the inequality of Lemma A.1 in the equality of
Lemma A.4.

One can notice that if F (x) = |x|γ the inequality of Lemma A.4 is actually an equality,
which ensures that for this specific function F the inequality in Lemma 5.1 is an equality.

Lemma A.6. If ξ = λ(λ + 1 − α), then

H′(t) =tp ((2 + p)a(t) + λt〈−∇F (x(t)), x(t) − x∗〉 + (2λ + 2 − 2α + p)b(t)(A.26)

+λ(λ + 1 − α)(−2λ + p)c(t))(A.27)

Proof.
We have H(t) = tpE(t).
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Hence H′(t) = tpE ′(t) +ptp−1E(t) = tp−1(tE ′(t) +pE(t)). We conclude by using Lemma A.4.

Proof. [Proof of Lemma 5.1] We only apply the inequality of Lemma A.1 in the equality of
Lemma A.6.
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