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Abstract. In this paper, we study the behavior of solutions of the ODE associated to Nesterov acceleration.
It is well-known since the pioneering work of Nesterov that the rate of convergence O(t2) is optimal for the class
of convex functions. In this work, we show that better convergence rates can be obtained with some additional
geometrical conditions, such as  Lojasiewicz property. More precisely, we prove the optimal convergence rates that
can be obtained depending on the geometry of the function F to minimize. The convergence rates are new, and
they shed new light on the behavior of Nesterov acceleration schemes. We prove in particular that the classical
Nesterov scheme may provide convergence rates that are worse than the classical gradient descent scheme on
sharp functions: for instance, the convergence rate for strongly convex functions is not geometric for the classical
Nesterov scheme (while it is the case for the gradient descent algorithm). This shows that applying the classical
Nesterov acceleration on convex functions without looking more at the geometrical properties of the objective
functions may lead to sub-optimal algorithms.

Key-words. Lyapunov functions, rate of convergence, ODEs, optimization,  Lojasiewicz prop-
erty.

1. Introduction. The motivation of this paper lies in the minimization of a differentiable
function F with at least one minimizer. Inspired by Nesterov pioneering work [23], we study the
following ODE

(1.1) ẍ(t) +
α

t
ẋ(t) + ∇F (x(t)) = 0

where α > 0, with t0 > 0, x(t0) = x0 and ẋ(t0) = v0. This ODE is associated to FISTA [10] or
Accelerated Gradient Method [23] :

(1.2) xn+1 = yn − h∇F (yn) and yn = xn +
n

n + α
(xn − xn−1)

with h and α positive parameters. This equation, including or not a perturbation term, has
been widely studied in the literature [5, 25, 15, 9, 22]. This equation belongs to a set of similar
equations with various viscosity terms. It is impossible to mention all works related to the
heavy ball equation or other viscosity terms. We refer the reader to the following recent works
[11, 19, 22, 16, 2, 24] and the references that can be found in these articles.

It was proved in [6] that if F is convex with Lipschitz gradient and if α > 3, the trajectory
F (x(t)), where x is the solution of (1.1), converges to the minimum F ∗ of F . It is also known
that for α > 3 and F convex we have

(1.3) F (x(t)) − F ∗ = O

(

1

t2

)

Extending to the continuous setting the proof of Chambolle et al. [17] of the convergence of
iterates of FISTA, Attouch et al. [6] proved that for α > 3 the trajectory x weakly converges
to a minimizer of F . Su et al. [25] proposed some new results, proving the integrability of
t 7→ t(F (x(t)) − F ∗) when α > 3, and they gave more accurate bounds on F (x(t)) − F ∗ in the
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case of strong convexity. More recently several studies including a perturbation term [6, 7, 8, 26]
have been proposed but always in the setting when α > 3.

In this work, we focus on the decay of F (x(t)) − F ∗ depending on the local geometry of
the function F around its set of minimizers. Our aim is to show the optimal convergence rates
that can be obtained depending on this local geometry. The paper is organized as follows. In
Section 2, we introduce the geometrical hypotheses we consider for the function F , and their
relation with  Lojasiewicz property. We then recap the state of the art results on the ODE
(1.1) in Section 3. We present the contributions of the paper in Section 4: depending on the
geometry of the function F and the value of the damping parameter α, we give optimal rates
of convergence. The proofs of the theorems are given in Section 5. Some technical proofs are
postponed to Appendix A.

2. Local geometry of convex functions. In this section we introduce two notions de-
scribing the geometry of a convex function around its minimizers.

Definition 2.1. Let F : Rn → R be a convex differentiable function with X∗ := argminF 6=
∅. Let: F ∗ := inf F .

(i) Let γ > 1. The function F satisfies the hypothesis H1(γ) if, for any critical point
x∗ ∈ X∗, there exists η > 0 such that:

∀x ∈ B(x∗, η), 0 6 F (x) − F ∗
6

1

γ
〈∇F (x), x − x∗〉.

(ii) Let r > 1. The function F satisfies the growth condition H2(r) if for any critical point
x∗ ∈ X∗, there exists K > 0 and ε > 0, such that:

∀x ∈ B(x∗, ε), Kd(x,X∗)r 6 F (x) − F ∗.

Note that any convex function automatically satisfies H1(1), and that any convex function
satisfying H1(γ) for some γ > 1, satisfies H1(γ′) for any γ′ ∈ [1, γ]. The same way, any function
satisfying H2(r) for some r > 1, satisfies H2(r′) for any r′ > r.

The hypothesis H1(γ) is a mild assumption, requesting slightly more than the convexity of
F in the neighborhood of its minimizers. In particular, we observe that any function F ensuring

that (F − F ∗)
1
γ is convex for some γ > 1, satisfies H1(γ).

The hypothesis H2(r), r > 1, is a growth condition on the function F around any critical
point. It is sometimes also called r-conditioning [18] or Hölderian error bounds [14]. This
assumption is motivated by the fact that, when F is convex, H2(r) is equivalent to the famous
 Lojasievicz inequality [20, 21], a key tool in the mathematical analysis of continuous (or discrete)
dynamical systems, with exponent θ = 1 − 1

r
[12, 13]:

Definition 2.2. A proper differentiable function F : Rn → R is said to have the  Lojasiewicz
property with exponent θ ∈ [0, 1) if, for any critical point x∗, there exist c > 0 and ε > 0 such
that:

(2.1) ∀x ∈ B(x∗, ε), ‖∇F (x)‖ > c|F (x) − F ∗|θ.

where: 00 = 0 when θ = 0 by convention.

Observe that the inequality (2.1) is automatically satisfied at any non-critical point, so that
the  Lojasiewicz property is in fact a geometrical condition on the function F around any critical
points. Moreover, when the set X∗ of the minimizers is a connected compact set, the  Lojasiewicz
inequality turns into a geometrical condition on F around X∗ as stated in [1, Lemma 1] whose
proof can be adapted to establish the following result:
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Lemma 2.3. Let F : R
n → R be a convex differentiable function satisfying the growth

condition H2(r) for some r > 1. Assume that the set X∗ = argminF is compact. Then there
exist K > 0 and ε > 0 such that, for all x ∈ R

n:

d(x,X∗) 6 ε ⇒ Kd(x,X∗)r 6 F (x) − F ∗.

Typical examples of functions having the  Lojasiewicz property are real-analytic functions
and C1 subanalytic functions [20], or semialgebraic functions [1]. Strongly convex functions
satisfy a global  Lojasiewicz property with exponent θ = 1

2
[1], or equivalently a global version of

the hypothesis H2(2), namely:

∀x ∈ R
n, F (x) − F ∗

>
µ

2
d(x,X∗)2,

where µ > 0 denotes the parameter of strong convexity. By extension, uniformly convex functions
of order p > 2 satisfy the global version of the hypothesis H2(p) [18].

Let us now present some examples of convex differentiable functions to illustrate situations
where the hypothesis H1 and H2 are satisfied.

We start with the simple example of the function F : x ∈ R 7→ |x|γ for some γ > 1 as
illustrated on Figure 1 with γ = 3

2
. We now introduce the family of straight lines passing

through the point (x, F (x)) and defined by:

(2.2) Tγ′(y, x) = F (x) +
1

γ′
〈∇F (x), y − x〉.

as represented in blue in Figure 1. Note that T1(·, x) is exactly the tangent to F at the point
(x, F (x)). The function F : x 7→ |x|γ satisfies the hypothesis H1(γ′) for some γ′ ≥ 1 if, by
definition, at any point x in a neighborhood of the unique minimizer x∗ = 0, we have:

F (x) − F ∗
6

1

γ′
(F (x) − T1(x

∗, x)),

or equivalently:

F (x) − F ∗
6 F (x) − Tγ′(x∗, x).

In other words, as illustrated in Figure 1, the hypothesis H1(γ′) is satisfied for some γ′ ≥ 1 if
the distance between F (x) and F ∗ remains less than a constant fraction of the distance between
F (x) and T1(x∗) (in blue in Figure 1), or equivalently if:

Tγ′(x∗, x) 6 F ∗

in the neighborhood of x∗ = 0. Thus, F : x ∈ R 7→ |x|γ satisfies H1(γ′) as long as Tγ′(x∗) 6 F ∗.
Here we easily check that F : x ∈ R 7→ |x|γ satisfies H1(γ′) if and only if γ′ ∈ [1, γ].

The growth condition H2(r) applied to F implies that, in the neighborhood of its minimizer
x∗, F should behave at least as x 7→ |x|r. By definition of F , F naturally satisfies H2(r) if and
only if r > γ.

In the same way, consider now for example the function:

(2.3) F (x) =

{

|x− 1|γ if |x| > 1,
0 otherwise,
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Fig. 1. The function F : x 7→ |x|
3
2 satisfies H1(γ′) and H2(r) if and only if 1 ≤ γ′ ≤ γ = 3

2
and r ≥ 3

2
.

whose set of minimizers is: X∗ = [−1, 1] as represented in red in Figure 2 with γ = 3. Introducing
the family of straight lines parameterized by γ′ > 1 and defined by (2.2), the hypothesis H1(γ′)
can be rewritten as follows:

∀x∗ ∈ X∗, F (x) − F ∗
6

1

γ′
(F (x) − T1(x∗, x)),

or equivalently:

∀x∗ ∈ X∗, Tγ′(x∗, x) ≤ F ∗,

for any x in some neighborhood of X∗. As illustrated on Figure 2, the extremal points (x∗ = 1
and x∗ = −1 in this example) of X∗ are the most restrictive points x∗ in the previous condition
in the sense that F has the H1(γ′) property if the associated inequality is satisfied just for
x∗ = ±1. A straightforward computation shows that, in this example, F satisfies H1(γ′) if and
only if γ′ ∈ [1, γ̄].

In the same way, the growth condition H2(r) only makes sense in the neighborhood of
the set of minimizers X∗ as expressed by Lemma 2.3: F should behave at least as |x|r in the
neighborhood of the extremal points x∗ = −1 and x∗ = 1 of X∗. Hence the function F defined
by (2.3) satisfies H2(r) if and only if r > γ.

Finally, consider a convex differentiable function F with a L-Lipschitz continuous gradient
for some L > 0. Such a function automatically satisfies the hypothesis H1(γ) with γ ∈]1, 2]
provided that it has the  Lojasiewicz property with exponent θ = 1

2
, or equivalently satisfies the

growth condition H2(2). Indeed, since F is convex with Lipschitz continuous gradient, we have:

∀(x, y) ∈ R
n, F (y) − F (x) − 〈∇F (x), y − x〉 >

1

2L
‖∇F (y) −∇F (x)‖2,

hence:

∀x ∈ R
n, F (x) − F ∗

6 〈∇F (x), x − x∗〉 −
1

2L
‖∇F (x)‖2.

Assuming in addition that F has the  Lojasiewicz property with exponent θ = 1
2
, or equivalently

that F satisfies H2(2), we get:
(

1 +
c2

2L

)

|F (x) − F ∗| 6 〈∇F (x), x − x∗〉,
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Fig. 2. The function F defined by (2.3) with γ = 3 satisfies H1(γ′) and H2(r) iff γ′ ∈ [1, γ] and r > 3.

in the neighborhood of its minimizers. In other words, F satisfies the hypothesis H1(γ) with

γ = 1 + c2

2L
> 1.

Remark 1. If a convex differentiable function F has both a L-Lipschitz continuous gradient
and the  Lojasiewicz property with exponent θ and constant c > 0, then necessarily: θ ∈ [ 1

2
, 1]. In

addition, if θ = 1
2

, then: 2L > c2.

3. Related results. In this section, we recall some classical state of the art results related
to the ODE (1.1).

Let us first recall that as soon as α > 0, then F (x(t)) converges to F ∗ [7, 4]. As recalled
in Section 1, a larger value of α is required to show the convergence of the trajectory x(t).
Nevertheless, the convergence result on F (x(t)) will prove to be useful in several proofs of this
paper.

The H1(γ) hypothesis was first introduced in [7]. If F satisfies H1(γ) and α > 1 + 2
γ

then

(3.1) F (x(t)) − F ∗ = o

(

1

t2

)

,

and the trajectory x(t) (weakly in an infinite dimensional space) converges to a minimizer x∗ of
F [25, 7, 4]. This means that thanks to the additional hypothesis H1(γ), the damping parameter
α can be chosen smaller.

Now, if F satisfies H1(γ) and α 6 1 + 2
γ

, then we can no longer prove the convergence of the

trajectory x(t) but we still have the following convergence rate for F (x(t)):

(3.2) F (x(t)) − F ∗ = O

(

1

t
2γα
2+γ

)

.

Moreover, this decay is optimal and reached for F (x) = |x|γ if γ > 1 (see [4] for the case γ = 1 in
R and [7] for the general case and the optimality of the rate). Notice that for convex functions,

the decay is O
(

1

t
2α
3

)

. We can also notice that the bound hidden in the big O is explicit and

available also for γ < 1, that is for non convex functions (for example for functions whose square
is convex).
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If F is the function F (x) = |x|γ , where x ∈ R, with γ > 2 and α >
γ+2

γ−2
, then the ODE (1.1)

admits an explicit solution of the form x(t) = K

t
2

γ−2

[4]. This simple calculation will show the

optimality of the convergence rate we obtain in Theorem 4.3.
Moreover, if F is strongly convex, then for any α > 0 we have [25]

(3.3) F (x(t)) − F ∗ = 0

(

1

t
2α
3

)

.

This shows that by assuming more on the geometry of the function F (in this case, strong
convexity), better rates of convergence can be achieved.

Enventually several results about the convergence rate of the solutions of ODE associated
to the classical gradient descent :

(3.4) ẋ(t) + ∇F (x(t)) = 0

or the ODE associated to the heavy ball method

(3.5) ẍ + αẋ(t) + ∇F (x(t)) = 0

under geometrical conditions such that Lojasiewicz properties have been proposed, see for exam-
ple Polyak et al. [24]. The authors prove that if the function F satisfies H2(2) and some other
conditions, the decay of F (x(t))−F ∗ is exponential for the solutions of both previous equations.
These rates are the continuous counterparts of the exponential decay rate of the classical gradient
descent algorithm and the heavyball method algorithm for strongly convex functions.

In the next section we will prove that this geometric rate is not true for solutions of (1.1)
even for quadratic functions, and we will prove that from an optimization point of view, the
classical Nesterov acceleration may be less efficient than the classical gradient descent.

4. Contributions. In this section, we state the optimal convergence rates that can be
achieved when F satisfies hypotheses such as H1(γ) and/or H2(r). The first result gives optimal
control for functions whose geometry is sharp :

Theorem 4.1. Let γ > 1 and α > 0.
1. If F satisfies the hypothesis H1(γ) and if α 6 1 + 2

γ
, then

(4.1) F (x(t)) − F ∗ = O

(

1

t
2γα
γ+2

)

2. If F satisfies the hypotheses H1(γ) and H2(2) and if F has a unique minimizer, if
α > 1 + 2

γ
then

(4.2) F (x(t)) − F ∗ = O

(

1

t
2γα
γ+2

)

Moreover this decay is optimal in the sense that for any γ ∈ (1, 2] this rate is achieved for the
function F (x) = |x|γ .

Note that the first point of Theorem 4.1 is already proven in [7]. The optimality of conver-
gence rate result is precisely stated in the next Proposition:

Proposition 4.2. Let γ ∈ (1, 2]. Let us assume that α > 1 + 2
γ

. Let x be a solution of

(1.1) with F (x) = |x|γ with t0 >

√

| ξ
2
|, |x(t0)| < 1 and v0 = 0. There exists K > 0 such that for

any T > 0, there exists t > T such that

(4.3) F (x(t)) − F ∗
>

K

t
2γα
γ+2

.
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Let us make several observations: first, to apply the second point of Theorem 4.1, more
conditions are needed than for the first point: the hypothesis H2(2) and the uniqueness of the
minimizer are needed (only for the second point) to prove a decay faster than O( 1

t2
), which is

the uniform rate than can be achieved with α > 3 for convex functions [25]. The uniqueness of
the minimizer in the second point is crucial in the proof, but it is still an open problem to know
if this uniqueness is a necessary condition.

Note that the second point of Theorem 4.1 mostly applies for γ 6 2, since we did not find
any function satisfying both conditions H1(γ) with γ > 2 and H2(2).

We can remark that if F is a quadratic function in the neighborhood of x∗, Theorem 4.1
applies with γ = 2 and thus

(4.4) F (x(t)) − F ∗ = O

(

1

tα

)

which is better than O
(

1

t
2α
3

)

that is proposed for strongly convex functions by Su et al. [25]

and Attouch et al. [6].
Finally, we can remark that the decay for quadratic or strongly convex functions is not

geometric, while it is the case for the classical gradient descent scheme (see e.g. [18]). This shows
that applying the classical Nesterov acceleration on convex functions without looking more at
the geometrical properties of the objective functions may lead to sub-optimal algorithms.

The second result deals with geometries associated to γ > 2.
Theorem 4.3. Let γ1 > 2 and γ2 > 2, if F is coercive and satisfies H1(γ1) and H2(γ2):
1. If γ1 6 γ2 and α >

γ1+2

γ1−2
then we have

(4.5) F (x(t)) − F ∗ = O

(

1

t
2γ2

γ2−2

)

.

2. If γ2 6 γ1 then for any γ ∈ [γ2, γ1], if α >
γ+2

γ−2
then we have

(4.6) F (x(t)) − F ∗ = O

(

1

t
2γ

γ−2

)

.

One can notice that in Theorem 4.3 the uniqueness of the minimizer is not needed anymore.
In the case when γ1 = γ2, we have furthermore the convergence of the trajectory:
Corollary 4.4. Let γ > 2, if F is coercive and satisfies H1(γ) and H2(γ) and if α >

γ+2

γ−2

then we have

(4.7) F (x(t)) − F ∗ = O

(

1

t
2γ

γ−2

)

and

(4.8) ‖ẋ(t)‖ = O

(

1

t
γ

γ−2

)

.

Moreover the trajectory x(t) is finite and it converges to a minimizer x∗ of F .
This decay is optimal since Attouch et al. proved that it is achieved for the function

F (x) = |x|γ in [3].
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Comments on the hypotheses H1 and H2. From these two theorems we can make the fol-
lowing comments:

1. If the function F behaves like ‖x− x∗‖γ in the neighborhood of its unique minimizer x∗,
then the decay of F (x(t)) − F ∗ depends directly on α if γ 6 2, but it does not depend
on α, for large α if γ > 2.

2. For such functions the best decay rate of F (x(t)) − F ∗ is achieved for γ = 2, that is
for quadratic like functions around the minimizer, which is O

(

1
tα

)

. If γ < 2, it seems
that the oscillations of the solution x(t) prevent us to get an optimal decay rate. The
inertia seems to be too large for such functions. If γ > 2, for large α, the decay is not
as fast because the gradient of the functions decays too fast in the neighborhood of the
minimizer. For these functions a larger inertia could be more efficient.

3. In the second point of Theorem 4.1 and in Theorem 4.3 both conditions H1 and H2 are
used to get a decay rate. It turns out that these two conditions are important. Condition
H1(γ) ensures that the function is not too sharp and it may prevent from bad oscillations
of the solution, while condition H2(γ) ensures that the magnitude of the gradient of the
function is not too low in the neighborhood of the minimizers.

4. With the sole condition H1(γ) on F for any γ > 1, it is impossible to get a bound on the
decay rate like O( 1

tδ
) with δ > 2. Indeed, for any η > 2 and for a large friction parameter

α, the solution x of the ODE associated to F (x) = |x|η satisfies F (x(t))−F ∗ = Kt−
2η

η−2

and the power 2η
η−2

can be chosen arbitrary close to 2.

5. With the sole hypothesis H2(γ), it seems difficult to establish optimal rate. Indeed the
function F (x) = |x|3 satisfies H2(3). Applying Theorem 4.3 with γ1 = γ2 = 3, we know
that for this function with α = γ1+2

γ1−2
= 5, we have F (x(t)) − F ∗ = O

(

1
t6

)

.

Nevertheless, with the sole hypothesis H2(3), such a decay cannot be achieved. Indeed,
the function F (x) = |x|2 satisfies H2(3), but from the optimality part of Theorem 4.1
we know that we cannot achieve a decay better than 1

t
2αγ
γ+2

= 1
t5

for α = 5.

6. It seems that the use of both hypotheses is a simple way to provide optimal decay rates.

5. Proofs. Both proofs rely on Lyapunov functions E and H introduced by Su et al. [25]
Attouch et al. [6] and Aujol et al. [7] :

(5.1) Eλ,ξ(t) = t2(F (x(t)) − F ∗) +
1

2
‖λ(x(t) − x∗) + tẋ(t)‖2 +

ξ

2
‖x(t) − x∗‖2 .

where x∗ is a minimizer of F and λ and ξ are two real numbers. The function H is defined from
E and it depends on another real parameter p :

(5.2) H(t) = tpE(t)

Using the following notations

a(t) = t(F (x(t)) − F ∗)(5.3)

b(t) =
1

2t
‖λ(x(t) − x∗) + tẋ(t)‖2(5.4)

c(t) =
1

2t
‖x(t) − x∗‖2(5.5)

we have

(5.6) E(t) = t(a(t) + b(t) + ξc(t))
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From now on we will choose

(5.7) ξ = λ(λ + 1 − α)

and we will use the following Lemma whose proof is postponed to Appendix A:
Lemma 5.1. If F satisfies the hypothesis H1(γ), for any γ > 0 and if ξ = λ(λ−α+ 1) then

(5.8) H′(t) 6 tp ((2 − γλ + p)a(t) + (2λ + 2 − 2α + p)b(t) + λ(λ + 1 − α)(−2λ + p)c(t))

One can remark that this inequality is actually an equality for the specific choice F (x) = |x|γ .

5.1. Proof of Theorem 4.1. In this section we prove the second point of the Theorem
and we refer to [7] for a complete proof of the first point, including the optimality of the rate.
The proof of this first point is actually similar to the following one but simpler. The choice of p
and λ are the same, but due to the value of α, the function H is non increasing and sum of non
negative terms, which simplifies the analysis and necessitates less hypotheses to conclude.

Proof. We choose here p = 2γα
γ+2

− 2 and λ = 2α
γ+2

and thus

(5.9) ξ =
2α

(γ + 2)2
(2 + γ(1 − α))

Since we consider the case when α > 1 + 2
γ

, we have ξ < 0 and thus H is not defined as a sum
of positive functions.

Moreover, from Lemma 5.1 it appears that

(5.10) H′(t) 6 K1t
pc(t) with K1 = λ(λ + 1 − α)(−2λ + p).

Let us compute explicitely the value of K1. We have p = 2γα
γ+2

− 2 and λ = 2α
γ+2

, so that:

K1 =
2α

γ + 2

(

2α

γ + 2
+ 1 − α

)(

−2
2α

γ + 2
+

2γα

γ + 2
− 2

)

=
4α

(γ + 2)3
(2α + γ + 2 − αγ − 2α) (−2α + γα− γ − 2)

=
4α

(γ + 2)3
(γ + 2 − αγ) (α(−2 + γ) − γ − 2)

Hence

(5.11) K1 =
4α(γ(1 − α) + 2)(α(γ − 2) − (γ + 2))

(γ + 2)3

Since α > 1 + 2
γ

, we have γ(1 − α) + 2 < 0. Hence the sign of K1 is the opposit of the sign of

α(γ − 2) − (γ + 2). More precisely, if γ 6 2, then α(γ − 2) − (γ + 2) < 0 and thus K1 > 0. If
γ > 2, then α(γ − 2) − (γ + 2) > 0 iff α > γ+2

γ−2
. Hence K1 > 0 iff α < γ+2

γ−2
.

Using Hypothesis H2(2) and the uniqueness of the minimizer, there exists K > 0 such that

(5.12) Kt ‖x(t) − x∗‖2 6 t(F (x(t)) − F ∗) = a(t),

and thus

(5.13) c(t) 6
1

2Kt2
a(t).
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Since ξ < 0 with our choice of parameters, we get:

H(t) > tp+1(a(t) + ξc(t)) > tp+1(1 +
ξ

2Kt2
)a(t).

It follows that it exists t1 such that for all t > t1, H(t) > 0 and

(5.14) H(t) >
1

2
tp+1a(t).

From (5.10), (5.13) and (5.14), we get

(5.15) H′(t) 6
K1

K

H(t)

t3

From the Gronwall Lemma it exists A > 0 such that ∀t > t1 H(t) 6 A. According to (5.14), we
then conclude that tp+2(F (x(t)) − F ∗) = tp+1a(t) is bounded which concludes the proof of the
point 2. of Theorem 4.1.

5.2. Proof of Proposition 4.2 (Optimality of the convergence rates). Before proving
the optimality of the convergence rate stated in Proposition 4.2, we need the following technical
lemma:

Lemma 5.2. Let y a continuously differentiable function with values in R. Let T > 0 and
ǫ > 0. If y is bounded, then there exists t1 > T such that:

(5.16) |ẏ(t1)| 6
ǫ

t1

Proof. We split the proof into two cases.
1. There exists t1 > T such that ẏ(t1) = 0.
2. ẏ(t) is of constant sign for t > T . For instance we assume ẏ(t) > 0. By contradiction, let

us assume that ẏ(t) > ǫ
t
∀t > T . Then y(t) cannot be a bounded function as assumed.

Let us now prove the Proposition 4.2: the idea of the proof is the following: we first show
that H is bounded from below. Since H is a sum of 3 terms including the term F −F ∗, we then
show that given t1 ≥ t0, there always exists a time t ≥ t1 such that the value of H is concentrated
on the term F − F ∗.

We start the proof by using the fact that, for the function F (x) = |x|γ , the inequality of
Lemma 5.1 is actually an equality, and using the values p = 2γα

γ+2
−2 and λ = 2α

γ+2
of the previous

Theorem, we have a closed form for the derivative of function H:

(5.17) H′(t) = K1t
pc(t) =

K1

2
tp−1|x(t)|2

where K1 is a positive constant. This implies in particular that H is non-decreasing.
From the previous Theorem, H is bounded above. Observing that under the hypothesis of

the Proposition 4.2, we have: H(t0) > 0, it follows that it exists ℓ > 0 such that H(t) → ℓ when
t → +∞. In particular, we have that for t large enough,

(5.18) H(t) >
ℓ

2

i.e.

(5.19) a(t) + b(t) + ξc(t) >
ℓ

2tp+1
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Moreover, since ξ < 0, we then have:

(5.20) a(t) + b(t) >
ℓ

2tp+1

Let T > 0 and ǫ > 0. We set:

(5.21) y(t) := tλx(t)

where: λ = 2α
γ+2

. From the previous Theorem, we know that y(t) is bounded. Hence, from
Lemma 5.2 , there exists t1 > T such that

(5.22) |ẏ(t1)| 6
ǫ

t1

But

(5.23) ẏ(t) = tλ−1 (λx(t) + tẋ(t))

Hence using (5.22):

(5.24) tλ1 |λx(t1) + t1ẋ(t1)| 6 ǫ

We remind the reader that b(t) = 1
2t
‖λ(x(t) − x∗) + tẋ(t)‖2. We thus have:

(5.25) b(t1) 6
ǫ2

2t2λ+1
1

Since γ 6 2, λ = 2α
γ+2

and p = 2γα
γ+2

− 2, we have 2λ + 1 ≥ p + 1, and thus

(5.26) b(t1) 6
ǫ2

2tp+1
1

.

For ǫ =
√

l
2

for example, there exists thus some t1 > T such that b(t1) 6
ℓ

4t
p+1

1

. Then

a(t1) > ℓ

4t
p+1

1

, i.e. F (x(t1)) − F ∗ >
ℓ

4t
p+2

1

. Since p + 2 = 2γα
γ+2

, this concludes the proof.

5.3. Proof of Theorem 4.3. We detail here the proof of Theorem 4.3. We split the proof
into two parts, depending on the sign of (γ1 − γ2).

Case γ1 6 γ2. Let us consider γ1 > 2, γ2 > 2, and α >
γ1+2
γ1−2

.
We consider here functions H for all x∗ in the set X∗ of minimizers of F and prove that these
functions are uniformely bounded. More precisely for any x∗ ∈ X∗ we define H(t) with p = 4

γ1−2

and λ = 2
γ1−2

. With this choice of λ and p, using Hypothesis H1(γ1) we have from Lemma 5.1:

(5.27) H′(t) 6 2t
4

γ1−2

(

γ1 + 2

γ1 − 2
− α

)

b(t).

which is non positive when α >
γ1+2

γ1−2
, which implies that the function H is bounded above.

Hence for any choice of x∗ in the set of minimizers X∗, the function H is bounded above and
since the set of minimizers is bounded (F is coercive), there exists A > 0 and t0 such that for all
choices of x∗ in X∗,

(5.28) H(t0) 6 A,
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which implies that for all x∗ ∈ X∗ and for all t > t0

(5.29) H(t) 6 A.

Hence for all t > t0 and for all x∗ ∈ X∗

(5.30) t
4

γ1−2 t2(F (x(t)) − F ∗) 6
|ξ|

2
t

4
γ1−2 ‖x(t) − x∗‖2 + A,

which implies that

(5.31) t
4

γ1−2 t2(F (x(t)) − F ∗) 6
|ξ|

2
t

4
γ1−2 d(x(t), X∗)2 + A.

We now set:

(5.32) v(t) := t
4

γ2−2 d(x(t), X∗)2

where d denotes the euclidean distance. Using (5.31) we have:

(5.33) t
2γ1

γ1−2 (F (x(t)) − F ∗) 6
|ξ|

2
t

4
γ1−2

− 4
γ2−2 v(t) + A.

Using the hypothesis H2(γ2) applied under the form given by Lemma 2.3 (since X∗ is compact),
there exists K > 0 such that

(5.34) K
(

t
− 4

γ2−2 v(t)
)

γ2
2

6 F (x(t)) − F ∗,

which is equivalent to

(5.35) Kv(t)
γ2
2 t

−2γ2
γ2−2 6 F (x(t)) − F ∗.

Hence:

(5.36) Kt
2γ1

γ1−2 t
−2γ2
γ2−2 v(t)

γ2
2 6 t

2γ1
γ1−2 (F (x(t)) − F ∗).

Using (5.33), we obtain:

(5.37) Kt
2γ1

γ1−2
−

2γ2
γ2−2 v(t)

γ2
2 6

|ξ|

2
t

4
γ1−2

− 4
γ2−2 v(t) + A,

i.e.:

(5.38) Kv(t)
γ2
2 6

|ξ|

2
v(t) + At

4
γ2−2

− 4
γ1−2 .

Since γ1 6 γ2, we deduce that v is bounded. Hence, using (5.33) there exists some positive
constant B such that:

(5.39) F (x(t)) − F ∗
6 Bt

−2γ2
γ2−2 + At

−2γ1
γ1−2 .

Since γ1 6 γ2, we have −2γ2

γ2−2
>

−2γ1

γ1−2
. Hence we deduce that F (x(t)) − F ∗ = O

(

t
−2γ2
γ2−2

)

.
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Case γ2 6 γ1. Since F satisfies H1(γ1) and H2(γ2), with γ2 6 γ1, then for any γ ∈ [γ2, γ1]
we also have that F satisfies H2(γ) and H1(γ). We can thus only consider the case when
γ1 = γ2 = γ, as done in the previous case.

5.3.1. Proof of Corollary 4.4. We are now in position to prove Corollary 4.4.
Proof. The first point of Corollary 4.4 is just a particular instance of Theorem 4.3. In the

sequel, we prove the second point of Corollary 4.4.
Let t > t0 and x̃ ∈ X∗ such that

(5.40) d(x(t), x̃) = d(x(t), X∗)

We previously proved that it exists A > 0 such that for any t > t0 and any x∗ ∈ X∗

(5.41) H(t) 6 A.

For the choice x∗ = x̃ this inequality ensures that

(5.42)
t

4
γ−2

2
‖λ(x(t) − x̃) + tẋ(t)‖2 + t

4
γ−2

ξ

2
d(x(t), x̃)2 6 A

which is equivalent to

(5.43)
t

4
γ−2

2
‖λ(x(t) − x̃) + tẋ(t)‖2 6

|ξ|

2
v(t) + A

where v(t) is defined in (5.32) with γ = γ2. Using the fact that the function v is bounded (a
consequence of (5.38)) we deduce that it exists a real number A1 > 0 such that

(5.44) ‖λ(x(t) − x̃) + tẋ(t)‖ 6
A1

t
2

γ−2

.

Thus:

(5.45) t ‖ẋ(t)‖ 6
A1

t
2

γ−2

+ |λ|d(x(t), x̃) =
A1 + |λ|

√

v(t)

t
2

γ−2

.

Using once again the fact that the function v is bounded we deduce that it exists a real number
A2 such that

(5.46) ‖ẋ(t)‖ 6
A2

t
γ

γ−2

which implies that ‖ẋ(t)‖ is an integrable function. As a consequence, we deduce that the
trajectory x(t) is finite.
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Appendix A. Proof of Lemma 5.1. We prove here Lemma 5.1. Notice that the compu-
tations are standard (see e.g. [7]).

We will make use of the following results:

Lemma A.1. Let γ > 0, if g(x) = (F (x) − F (x∗))
1
γ is convex then

(A.1) γ(F (x(t)) − F (x∗)) 6 〈∇F (x(t)), x(t) − x∗〉
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Proof. Since g is convex we have

(A.2) g(x(t)) 6 〈∇g(x(t)), x(t) − x∗〉

and ∇g(x(t)) = 1
γ

(F (x(t) − F (x∗))
1
γ
−1∇F (x(t)). Replacing g(x(t)) by (F (x(t)) − F (x∗))

1
γ we

get the result.

Lemma A.2.

E ′
λ,ξ(t) =2a(t) + t(λ + 1 − α) ‖ẋ(t)‖2(A.3)

+ λt〈−∇F (x(t)), x(t) − x∗〉 + (λ(λ + 1) − αλ + ξ)〈ẋ(t), x(t) − x∗〉(A.4)

Proof.
We differentiate :

E ′
λ,ξ(t) =2a(t) + t2〈∇F (x(t)), ẋ(t)〉(A.5)

+ 〈λẋ(t) + tẍ(t) + ẋ(t), λ(x(t) − x∗) + tẋ(t)〉 + ξ〈ẋ(t), x(t) − x∗〉(A.6)

E ′
λ,ξ(t) =2a(t) + t2〈∇F (x(t)) + ẍ(t), ẋ(t)〉(A.7)

+ (λ + 1)t ‖ẋ(t)‖2 + λt〈ẍ(t), x(t) − x∗〉 + (λ(λ + 1) + ξ)〈ẋ(t), x(t) − x∗〉(A.8)

E ′
λ,ξ(t) =2a(t) + t2〈−

α

t
˙x(t), ẋ(t)〉(A.9)

+ (λ + 1)t ‖ẋ(t)‖2 + λt〈ẍ(t), x(t) − x∗〉 + (λ(λ + 1) + ξ)〈ẋ(t), x(t) − x∗〉(A.10)

E ′
λ,ξ(t) =2a(t) + t(λ + 1 − α) ‖ẋ(t)‖2(A.11)

+ λt〈ẍ(t), x(t) − x∗〉 + (λ(λ + 1) + ξ)〈ẋ(t), x(t) − x∗〉(A.12)

And now, using (1.1), we get:

E ′
λ,ξ(t) =2a(t) + t(λ + 1 − α) ‖ẋ(t)‖2(A.13)

+ λt〈−∇F (x(t)) −
α

t
˙x(t), x(t) − x∗〉 + (λ(λ + 1) + ξ)〈ẋ(t), x(t) − x∗〉(A.14)

E ′
λ,ξ(t) =2a(t) + t(λ + 1 − α) ‖ẋ(t)‖2(A.15)

+ λt〈−∇F (x(t)), x(t) − x∗〉 + (λ(λ + 1) − αλ + ξ)〈ẋ(t), x(t) − x∗〉(A.16)

Lemma A.3.

E ′
λ,ξ(t) =2a(t) + λt〈−∇F (x(t)), x(t) − x∗〉(A.17)

+ (ξ − λ(λ + 1 − α))〈ẋ(t), x(t) − x∗〉(A.18)

+ 2(λ + 1 − α)b(t) − 2λ2(λ + 1 − α)c(t)(A.19)
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Proof.
We start from the result of Lemma A.2. Observing that

(A.20)
1

t
‖λ(x(t) − x∗) + tẋ(t)‖2 = t ‖ẋ(t)‖2 + 2λ〈ẋ(t), x(t) − x∗〉 +

λ2

t
‖x(t) − x∗‖2

we can write

E ′
λ,ξ(t) =2a(t) + λt〈−∇F (x(t)), x(t) − x∗〉(A.21)

+ (ξ − λ(λ + 1 − α))〈ẋ(t), x(t) − x∗〉(A.22)

+ (λ + 1 − α)
1

t
‖λ(x(t) − x∗) + tẋ(t)‖2 −

λ2(λ + 1 − α)

t
‖x(t) − x∗‖2(A.23)

Lemma A.4. If ξ = λ(λ + 1 − α), then

E ′
λ,ξ(t) =2a(t) + λt〈−∇F (x(t)), x(t) − x∗〉 + 2(λ + 1 − α)b(t) − 2λ2(λ + 1 − α)c(t)(A.24)

Lemma A.5.

If F satisfies the hypothesis H1(γ) and ξ = λ(λ + 1 − α), then:

E ′
λ,ξ(t) 6(2 − γλ)a(t) + 2(λ + 1 − α)b(t) − 2λ2(λ + 1 − α)c(t)(A.25)

Proof. To prove Lemma A.5, we only apply the inequality of Lemma A.1 in the equality of
Lemma A.4.

One can notice that if F (x) = |x|γ the inequality of Lemma A.4 is actually an equality,
which ensures that for this specific function F the inequality in Lemma 5.1 is an equality.

Lemma A.6. If ξ = λ(λ + 1 − α), then

H′(t) =tp ((2 + p)a(t) + λt〈−∇F (x(t)), x(t) − x∗〉 + (2λ + 2 − 2α + p)b(t)(A.26)

+λ(λ + 1 − α)(−2λ + p)c(t))(A.27)

Proof.
We have H(t) = tpE(t).
Hence H′(t) = tpE ′(t) +ptp−1E(t) = tp−1(tE ′(t) +pE(t)). We conclude by using Lemma A.4.

Proof. [Proof of Lemma 5.1] We only apply the inequality of Lemma A.1 in the equality of
Lemma A.6.
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