
HAL Id: hal-01786079
https://hal.science/hal-01786079

Submitted on 4 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Algorithms for Brownian Matrices
Bernard Picinbono

To cite this version:
Bernard Picinbono. Fast Algorithms for Brownian Matrices. IEEE transactions on acoustics, speech,
and signal processing, 1983, pp.512 - 514. �hal-01786079�

https://hal.science/hal-01786079
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING 1

Fast Algorithms for Brownian Matrices
Bernard Picinbono, Senior Member, IEEE

Laboratoire des Signaux et Systèmes (L2S), Division Signaux
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Abstract

Brownian motion is one of the most common models used to represent nonstationary signals. The

covariance matrix of a discrete-time Brownian motion has a very particular structure, and is called a

Brownian matrix. This note presents a number of results concerning linear problems appearing in digital

signal processing with Brownian matrices. In particular, it is shown that fast algorithms used for Toeplitz

matrices are simpler and faster for Brownian matrices. Examples are given to illustrate the different

results presented in the note.

I. INTRODUCTION

In recent years, many papers have been published Toeplitz matrices (T matrices) and their applications

to digital signal processing. This interest in Toeplitz matrices is mainly due to the fact that when they are
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symmetric and positive definite, such matrices can be considered as the covariance matrices of discrete-

time stationary random signals.

It is well known that many signals of practical interest are not stationary, in which case the Toeplitz

property of the covariance matrix disappears.

As Brownian motion is a very common model for nonstationary signals, we shall consider the matrices

introduced as covariance matrices of such signals. By analogy, such matrices are called Brownian matrices

(B matrices). We shall show that most of the problems considered in the Toeplitz case have a simpler

and faster solution in the Brownian case. This is particularly true for the solution of linear equations

and for matrix inversion. It should be mentioned that similar results in a slightly different context were

independently derived in [1], which appeared while this note was still under review.

II. BROWNIAN MOTION I SIGNAL PROCESSING

Brownian motion is an important tool for modeling continuous- time random signals. It is the simplest

and most rigorous way to introduce the classical white noise, which is very often used in signal theory

[2] . But as we are most interested in discrete-time signals, we shall use discrete-time Brownian motion,

sometimes called the random walk stochastic process. This signal can be written

b(n) =
n∑

k=0

u(k), (1)

where the random variables u(k), increments of b(n), are zero mean, independent, and with variance

c(k). Then the covariance of b(n) becomes

R(m,n)
4
= E[b(m)b(n)] =

m∧n∑
j=0

c(j)
4
= r(m ∧ n) (2)

Moreover, the covariance of the signal x(n) sum of a discrete-time Brownian motion and an independent

white noise w(n) is

R(m,n) = r(m ∧ n) + σ2nδmn, (3)

where σ2n is the variance of w(n). The extraction of a signal s(n) from a noise modeled by x(n) requires

signal processing techniques such as detection and estimation. For these techniques, it is in general

convenient to represent the signals in vectorial form [3], and then to solve the systems involving the

covariance matrices associated with (3).

III. BROWNIAN MATRICES

Let us consider the random vector x with components [x(0), x(1), . . . , x(N−1)]. Its covariance matrix

R is an N × N matrix, and we assume that its elements are given by (3). In all of the following, we
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shall call this matrix a Brownian matrix (B matrix). Such a matrix is defined by the 2N coefficients ri

and σi, 0 ≤ i ≤ N − 1 where ri = r(i) is defined in (2). By introducing

vi
4
= ri + σ2i , (4)

where the vi are the diagonal elements of the B matrix, we can write such a matrix in the form

B({vi}, {ri}) =



v0 r0 r0 . . . r0 r0

r0 v1 r1 . . . r1 r1

r0 r1 v2 . . . r2 r2
...

...
...

r0 r1 r2 . . . rN−2 vN−1


(5)

It is interesting to compare this structure to that obtained for a symmetric Toeplitz matrix (T matrix),

which is defined by its first row:

T1({ri}) = [r0, r1, r2, . . . , rN−2, vN−1]. (6)

Let us examine some cases of particular interest. If there is no white noise component w(n) in (3),

then σi = 0 and vi = ri. In this case, we say that B is a pure B matrix, which is obviously determined

only by the ri, and may be written B({ri}) . Moreover, we can write any B matrix in the form

B({vi}, {ri}) = B({ri}) + diag({vi − ri}), (7)

where diag({λi}) means a diagonal matrix with elements λi.

For the solution of linear problems, it is very important to know conditions on the matrix elements

which secure that the covariance matrix is positive definite. In the case of a Toeplitz matrix defined by

(6), the conditions on the ri are very complex. That is not the case for B matrices.

Proposition 1: A pure B matrix B({ri}) is positive definite if and only if the sequence ri is increasing

(0 < ri < ri+1 ).

Proof: We consider first the if part. If the sequence is increasing, the numbers c(i) = ri − ri−1,

c(0) = r0, are positive. Then they can be considered as the variance of a sequence of N uncorrelated

random variables y(0), y(1), . . . , y(N −1) which are the components of a vector y. Its covariance matrix

is, of course, diag({ci}). Let us introduce the vector b with components

b(i) =
i∑

j=0

y(j), 0 ≤ i ≤ N − 1. (8)

The covariance matrix of b is B({ri}), which shows that this matrix is positive definite.
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For the ”only if” part, we assume that B({ri}) is a pure B matrix which is also positive definite. Then

it is the covariance matrix of a random vector b (see [2, p. 121) with components b((i). From the B

matrix structure, we have

E[b(i)2] = ri; E[b(i+ 1)2] = ri+1; E[b(i)b(i+ 1)] = ri. (9)

Then from the Schwarz inequality, we obtain r2i < riri+1, and as ri > 0, we have ri < ri+1, which

means that the sequence is increasing.

Proposition 2: If ri < ri+1 and vi > ri, then the B matrix B({vi}, {ri}) is positive definite.

The proof follows immediately from (7) and Proposition 1. The converse is obviously not true because

B({vi}, {ri}) can be positive definite even if B({ri}) or diag({vi − ri} do not have this property.

For the following discussion, it is also important to notice that the B and T matrices have a very

similar structural property called the accumulation property which is at the root of fast algorithms. By

this property, we mean that two successive columns of the triangular part of such matrices have only two

different elements, After transposition, two such columns for a B matrix given by (7) are

r0, r1, r2, . . . , rk−1, vk

r0, r1, r2, . . . , rk−1, rk, vk+1

and the new elements are rk and vk+1. For T matrices, such columns are

rk, rk−1, rk−2, . . . , r0

rk+1, rk, rk−1, . . . , r1 r0

and the accumulation property appears in the reversed order and with only one different element, rk+1.

This accumulation property, which is the origin of the fast algorithms presented in the next section, has

been presented in another way in [1], and the B matrices studied here in connection with Brownian

motion are called diagonal innovation matrices in this paper.

IV. RECURSIVE SOLUTION OF THE LINEAR EQUATIONS

In this section we shall study the solution of the linear equation Ra = b, where R is a positive definite

(p.d.) B matrix and b is a given vector. This problem is fundamental in many aspects of digital signal

processing. Indeed, as R is p.d., it can be considered to be the covariance matrix of a random vector,

and Ra = b is a basic equation in detection and estimation problems. Our aim is to calculate the vector

a by a method recursive on the order, as in the Levinson algorithm. Let us assume that R is given by

(5) and that the components of b are b1, b2, . . . , bN .
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From the accumulation property, it is clear that the matrix obtained from R by taking only the n+ 1

first rows and column is still a positive definite B matrix Rn+1 = B[v0, v1, . . . , vn; r0, r1, . . . , rn+1].

Thus, it can be partitioned in the form

Rn+1 =

 Rn un

uT
n vn

 ; uT
n = [r0, r1, . . . , rn+1]. (10)

Let us call an+1 the solution of the linear equation

Rn+1an+1 = bn+1 (11)

where bn+1 is the vector with components (b1, b2, . . . , bn+1).

For the following discussion, it is convenient to partition the vectors an+1 and bn+1 in a form similar

to (10), i.e.,

an+1 =

 an+1
n

an+1
n+1

 ; bn+1 =

 bn

bn+1

 . (12)

Note that while the vector bn has, by definition, the accumulation property, this is not true of the

vector an that is, an+1
n 6= an, as we shall verify shortly.

By using (10) and (12), (11) can easily be written in the form

Rna
n+1
n + an+1

n+1un = bn (13)

uT
na

n+1
n + an+1

n+1vn = bn+1. (14)

As Rn is positive definite, we can calculate R−1n and introduce the vector

wn
4
= R−1n un. (15)

Since from (11) an = R−1n bvn, we can write (13) and (14) in the form

an+1
n = an − an+1

n+1wn (16)

an+1
n+1 = βn(a)/αn (17)

βn(a) = bn+1 − uT
nan ; αn = vn − uT

nwn. (18)

The previous relations show that it is now necessary to calculate the vector wn to obtain the vector an.

In general, this calculation requires the solution of (15), which gives a new sequence of linear equations.

But in our case, as the un are deduced from a B matrix [see (10)] , they possess the accumulation

property as do vectors b. Therefore, we can apply the same method to solve (15) and (11) as well, and

we then obtain the following recursion for wn+1 partitioned as an+1 in (12):

wn+1
n = wn − wn+1

n+1wn = (1− wn+1
n+1)wn (19)
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wn+1
n+1 = βn(w)/αn (20)

βn(w) = rn − uT
nwn. (21)

This yields a reccusrion from (an,wn) to (an+1,wn+1). In this recursion, the only calculations necessary

are those for the coefficients αn, βn which require the computation of the scalar products uT
nan and uT

nwn.

We thus require 2n operations (multiplication-addition) to calculate such products; however, we shall now

show that this number can be reduced. (This is not possible for T matrices.) For this purpose, we shall

show that the coefficients αn and βn can be obtained recursively without any scalar product. To simplify

the discussion, let us define

βn = βn(w). ; δn = βn(a). (22)

From (18) and (20), we obtain βn = αn + rn − vn. Moreover, we can write

αn+1 = vn+1 − (un+1w
n+1
n+1 + uT

nw
n+1
n ), (23)

and by using (19) and (20l), we obtaine asily

αn+1 = αn + vn+1 − vn − β2n/αn. (24)

The same procedure used for δn yields

δn+1 = δn(1− βn/αn) + bn+2 − bn+1. (25)

Then we can calculate (αn+1, βn+1, δn+1) from (αn, βn, δn) without any scalar product. It is easy to

find that a complete recursive step needs n + 9 additions and 2n + 6 multiplications, while the same

operation needs in the Toeplitz case 4n+1 additions and 4n+6 multiplications. Consequently, we see that

for situations that warrant its use, a Brownian model is less “expensive” than a corresponding Toeplitz

model. Moreover, it is well known that the speed of an algorithm is not only a function of the number of

operations, but also of the structure of operations, e.g., whether the computations are done in sequence

(as scalar operation) or in parallel (as in vector processor). For a sequential operation, it will usually be

less complex to calculate an+1
n+ wn as in (16), than uT

nan as in (18), even if the number of multiplications

is the same because of the reduced number of memory access. We have seen that for B matrices, there

is no scalar product to calculate, and this advantage does not appear for T matrices.

Finally, we can notice that the same procedure can be applied for the inversion of B matrices, and

some examples and extensions will be presented in another paper.
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