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In most of the hazardous material transportation problems, risk factors are assumed to be constant, which ignores the fact that
they can vary with time throughout the day. In this paper, we deal with a novel time-dependent hazardous material transportation
problem via lane reservation, in which the dynamic nature of transportation risk in the real-life traffic environment is taken into
account. We first develop a multiobjective mixed integer programming (MIP) model with two conflicting objectives: minimizing
the impact on the normal traffic resulting from lane reservation and minimizing the total transportation risk. We then present
a cut-and-solve based 𝜀-constraint method to solve this model. Computational results indicate that our method outperforms the
𝜀-constraint method based on optimization software package CPLEX.

1. Introduction

Hazardousmaterials are a kind of goods with physical, chem-
ical, and biological properties, which could cause lots of acci-
dents, such as flame, explosion, and leak, in the course of pro-
duction, storage, and transportation. With the development
of industry, more and more hazardous substances, including
raw materials, intermediate, final products, and wastes, are
produced and moved daily through the transportation net-
work in different transportation modes, such as road, rail,
water, air, and pipeline.Their transportation risk imposed on
environment and human is widening and deepening year by
year.Hazardousmaterial transportation has become a serious
problem worldwide and attracts many researchers’ attentions
in the related field.

It has been pointed out inmuch relevant literature that the
essential objective of hazardous material transportation is to
minimize the transportation risk due to the nature of this
problem. As we know, the selection of routes in a network
for hazardous material transportation can affect its risk
factors, such as the probability of hazardous material acci-
dents and the risk exposure to the surrounding population

and environment. Therefore, appropriate routing decisions
are very important for hazardous material transportation
management. In the last couple of decades, various applica-
tions of operations research models to hazardous material
transportation have focused on risk reduction and fruitful
achievements in this area have been published; please see [1]
for details. However, in almost all of the hazardous material
transportation problems, the transportation risk is consid-
ered to be time-invariant. That is to say, the risk of a road
segment in a transportation network is assumed to be con-
stant, which fails to capture the dynamic nature of the real-
life traffic environment. In real life, risk on road segments
is time-dependent on population density subject to time-of-
day variation, peak and off-peak periods, various weather
conditions, and so on. The time-dependent risk is one of the
important features of hazardous material transportation.The
time-dependent transportation problem is to decide the path
for each shipment and its starting time so as to minimize the
transportation risk.

An important branch of the time-dependent transporta-
tion concerns hazardous materials. Time-dependent trans-
portation problems can be distinguished into deterministic

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 832814, 11 pages
http://dx.doi.org/10.1155/2014/832814



2 Mathematical Problems in Engineering

and stochastic settings. The dynamic characteristic of trans-
portation networks usually depends on one or more traffic
quantities [2], such as travel time, link volume, and queue len-
gth. For deterministic time-dependent transportation prob-
lems, part or all of the traffic quantities are assumed to be
variant but all of the traffic quantities are known for a road
segment. For stochastic time-dependent transportation prob-
lems, the traffic quantities are considered as random variables
with time-dependent distribution functions, such as in [2–8].
For time-dependent hazardous material transportation, traf-
fic quantities are usually travel time and transportation risk.
According to optimization criteria, time-dependent transpo-
rtation problems can be divided into single-objective ones
and multiobjective ones.

For the hazardous material transportation routing prob-
lem, a lot of works have concentrated on time-invariant risk
and travel time. However, time-dependent hazardous mate-
rial transportation problems have not been widely studied
and only a few related publications can be found in the
literature. Jia et al. [9] investigated a hazardousmaterial trans-
portation problem with deterministic time-dependent risk
for minimizing the transportation risk. The proposed model
guaranteed the minimum distance between hazardous mate-
rial shipments at any time. They transformed the considered
problem into a number of time-dependent shortest path
problems for each truck and proposed an iterative heuristic.
Erkut and Alp [10] proposed an integrated routing and sche-
duling problem for hazardous material transportation in a
networkwith stochastic time-dependent accident probability,
population exposure, and travel time. The model aimed to
minimize transportation risk while imposing a constraint
on the total travel time of the shipment. Meng et al. [11]
examined a similar problem with multiple objectives. They
transformed it into a time-dependent multiobjective shortest
path problem subject to three types of time constraints. A
dynamic programming approach was constructed to solve
the problem. Both of the methods of references [10, 11] were
pseudopolynomial. Nozick et al. [12] developed an approach
for a hazardous material routing and scheduling problem
with deterministic time-dependent risk. But their approach
could not guarantee generating all Pareto-optimal paths.
Chang et al. [13] proposed an effective algorithm for finding a
path in stochastic time-dependent networks that could add-
ress multiple optimization criteria. In their work, travel time,
transportation risk, and other traffic quantities along paths
were random variables. However, the performance of the
algorithm was sensitive to some parameters and the com-
putational burden increased with the number of the dom-
inated paths. Miller-Hooks and Mahmassani [14] proposed
an optimal routing algorithm for a single hazardous material
shipment in a stochastic time-dependent network, where
the travel time and risk followed time-dependent normal
distribution functions.They presented several procedures for
determining the best compromise path to minimize the total
travel time and risk (population exposure).

Lane reservation is considered as a flexible and economic
strategy for special events or situations, like sport games and
emergencies. As stated in [15], it has been successfully applied
to the Olympic Games in 2000 in Sydney [16] and in 2004

in Athens [17]. The principle of lane reservation is to reserve
lanes on some road segments and/or in some specific time
periods in a transportation network. Only special transporta-
tion tasks are allowed to pass through them. A probable
consequence of this strategy is that it may worsen traffic con-
gestions on general lanes, which is also an important feature
of the lane reservation problem. Research works about lane
reservation involving simulation tools and statisticalmethods
can be found in the literature [18–20]. Some recent works
focused on minimizing the traffic impact by linear program-
ming models and optimal methods for various applications,
such as automated truck, large sportive events, and hazardous
material transportation [15, 21–24]. Our previous work [15]
investigated a hazardous material transportation problem via
lane reservation, in which the risk along a road segment
was assumed to be constant. The goal was to minimize the
transportation risk and the impact on normal traffic due to
lane reservation. Remarkably, it has been shown in [15] that
the lane reservation strategy can greatly reduce the transpor-
tation risk at a reasonable cost of its traffic impact. The pro-
blem proposed in this paper, in which the transportation
risk is considered to be deterministic and time-dependent, is
more realistic. To the best of our knowledge, this is the first
work for time-dependent hazardous material transportation
via lane reservation.

In this paper, we investigate a novel multiobjective haz-
ardous material transportation problem via lane reservation
with a deterministic time-dependent transportation risk. As
we know, the factors of the transportation risk generally
include the hazardous material accident probability and the
population exposure to the accidents. The accident probabil-
ity estimation is influenced by the nature of roads, character-
istics of the trucks, transportation environment, driver con-
ditions [25], and so forth. Estimating the accident probability
is a complicated and difficult work. For simplification, the
probability of an accident is regarded to be time-invariant in
this paper. Population exposure is determined by population
density and area. In real life, the population density along
a road segment strongly depends on time and space. As we
know, the population density in hospitals, schools, factories,
and so on in day time is greater than that at night, and
the opposite happens in residential areas. In this work, the
accident probability on reserved lanes is assumed to be
constant and the population exposure is assumed to be time-
dependent.Therefore, the transportation risk varieswith time
and space. This work is motivated by the dynamic character-
istic of risk and it is a natural extension of our previous work.

The contributions of this work can be summarized as
follows. Firstly, we propose a novelmultiobjectiveMIPmodel
for the time-dependent hazardous material transportation
problem via lane reservation. Secondly, we develop a cut-and-
solve based 𝜀-constraint method for the considered problem.
Computational results show the effectiveness of the method.

The remainder of this paper is organized as follows.
Section 2 describes the time-dependent hazardous material
transportation problem via lane reservation and a newmulti-
objectivemodel is formulatedwith the objectives ofminimiz-
ing the total impact on the normal traffic and the total trans-
portation risk. In Section 3, some properties are analyzed to
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reduce the search space of solutions and a cut-and-solve
based 𝜀-constraintmethod is developed. Section 4 reports the
computational results of experiments. Section 5 concludes
the paper and discusses future research directions.

2. Problem Formulation

2.1. Problem Description. Consider a bidirectional graph 𝐺 =

(𝑉,𝐴), where 𝑉 is the set of nodes and 𝐴 is the set of arcs.
The graph represents the transportation network inwhich the
vehicles carrying hazardous materials are allowed to move.
Arc (𝑖, 𝑗) denotes a road segment from node 𝑖 to node 𝑗. 𝑊
kinds of hazardous materials will be transported from origin
nodes 𝑂 ⊂ 𝑉 to destination nodes𝐷 ⊂ 𝑉.

Before formulation of the problem,wemake the following
nonrestrictive assumptions. (1)There are at least two lanes on
a road segment such that one lane is allowed to be reserved.
(2) From the point of view of transport safety, any path
for hazardous material shipments consists of only reserved
lanes. (3) Vehicles with hazardous materials travel on the
reserved lanes without congestion. Consequently, travel time
on reserved lanes is time-invariant. (4) Any two hazardous
material shipments on the same road segment must maintain
a minimum time interval, called safety time interval. (5)
The accident probability on a reserved lane is constant and
hazardous material accidents happen independently.

In the network, nonreserved lanes are called general
lanes, as shown in Figure 1. From assumption (3), the travel
time on a reserved lane is time-invariant throughout the day.
Nevertheless, the risk on a road segment should be time-
dependent because the population exposure varies with time
in nature. The population exposure on each arc (𝑖, 𝑗) at time
period [𝐼𝑘, 𝐼𝑘+1), denoted as 𝐸𝑖𝑗𝑘, depends on the departure
time from node 𝑖. Without loss of generality, set 𝐼1 = 0 as the
beginning time of the first period. In a day, there are usually
only several time periods [26]. So travel time 𝑇𝑖𝑗 on the
reserved lane is far less than the length of a time period; that
is,𝑇𝑖𝑗 ≪ 𝐼𝑘+1−𝐼𝑘.Theproblem is to choose lanes on the exist-
ing network to be reserved, select the path for each hazardous
material shipment, and decide the travel time period for each
shipment on its selected path. The objective of the problem
is to seek the best trade-off for minimizing the total traffic
impact on the normal traffic and the total transportation risk.

2.2. ProblemDefinition. Tomodel our problem, we introduce
the following notation.

Sets and Parameters

𝑊{1, 2, . . . , |𝑊|}: The set of hazardous material ship-
ments
𝑂{𝑜1, 𝑜2, . . . , 𝑜|𝑊|}: The set of origin nodes
𝐷{𝑑1, 𝑑2, . . . , 𝑑|𝑊|}: The set of destination nodes
𝐾{1, . . . , |𝐾|}: The set of time periods
𝑇int: The safety time interval between any two ship-
ments which pass the same arc
𝑇𝑖𝑗: The travel time on the reserved lane on arc (𝑖, 𝑗)

𝐶𝑖𝑗: The impact on the normal traffic due to the reser-
ved lane on arc (𝑖, 𝑗)

𝑃
𝑤

𝑖𝑗
: The accident probability of hazardous material 𝑤

on a reserved lane on arc (𝑖, 𝑗)

𝐸𝑖𝑗𝑘: The population exposure along arc (𝑖, 𝑗) at time
period 𝑘.

Decision Variables

𝑡
𝑤

𝑖
is the arrival or departure time of shipment 𝑤 at

node 𝑖. Note that 𝑡𝑤
𝑖
= 0 if shipment 𝑤 does not pass

node 𝑖, ∀𝑤 ∈ 𝑊, ∀𝑖 ∈ 𝑁,

𝑥
𝑤

𝑖𝑗𝑘
=

{
{
{
{

{
{
{
{

{

1 if shipment𝑤 passes the reserved lane on
arc (𝑖, 𝑗) when time 𝑡𝑤

𝑖
occurs at time

period 𝑘

0 otherwise

𝑦𝑖𝑗 = {

1 if there is a reserved lane on arc (𝑖, 𝑗)
0 otherwise

𝛽
𝑤

𝑖𝑘
= {

1 if time 𝑡𝑤
𝑖
occurs at time period 𝑘

0 otherwise

𝑧𝑖𝑤𝑤 = {
1 if 𝑡𝑤

𝑖
< 𝑡
𝑤


𝑖
, 𝑤 < 𝑤



0 otherwise.

2.3. Mathematical Model. The mathematical model for the
hazardous material transportation problem via lane reserva-
tion in a time-dependent network is presented by constraints
(3)–(17). Consider the following:

𝑃:

Minimize 𝑓1 = ∑

(𝑖,𝑗)∈𝐴

𝐶𝑖𝑗𝑦𝑖𝑗, (1)

Minimize 𝑓2 = ∑

𝑤∈𝑊

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐾

𝑃
𝑤

𝑖𝑗
𝐸𝑖𝑗𝑘𝑥
𝑤

𝑖𝑗𝑘
, (2)

subject to

∑

𝑗:(𝑜
𝑤
,𝑗)∈𝐴

𝐾

∑

𝑘=1

𝑥
𝑤

𝑜
𝑤
𝑗𝑘
= 1, ∀𝑤 ∈ 𝑊, (3)

∑

𝑖:(𝑖,𝑑
𝑤
)∈𝐴

𝐾

∑

𝑘=1

𝑥
𝑤

𝑖𝑑
𝑤
𝑘
= 1, ∀𝑤 ∈ 𝑊, (4)

∑

𝑗:(𝑖,𝑗)∈𝐴

𝐾

∑

𝑘=1

𝑥
𝑤

𝑖𝑗𝑘
= ∑

𝑗:(𝑗,𝑖)∈𝐴

𝐾

∑

𝑘=1

𝑥
𝑤

𝑗𝑖𝑘
,

∀𝑤 ∈ 𝑊, ∀𝑖 ∈ 𝑉 \ {𝑜𝑤, 𝑑𝑤} ,

(5)

𝐾

∑

𝑘=1

𝑥
𝑤

𝑖𝑗𝑘
≤ 𝑦𝑖𝑗, ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑤 ∈ 𝑊, (6)
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Figure 1: Sketch of a road segment with reserved lanes.

𝑡
𝑤

𝑗
− 𝑡
𝑤

𝑖
≤ 𝑇𝑖𝑗 +𝑀(1 −

𝐾

∑

𝑘=1

𝑥
𝑤

𝑖𝑗𝑘
) ,

∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑤 ∈ 𝑊, ∀𝑖 ̸= 𝑑𝑤,

∀𝑗 ̸= 𝑜𝑤,

(7)

𝑡
𝑤

𝑗
− 𝑡
𝑤

𝑖
≥ 𝑇𝑖𝑗 +𝑀(

𝐾

∑

𝑘=1

𝑥
𝑤

𝑖𝑗𝑘
− 1) ,

∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑤 ∈ 𝑊, ∀𝑖 ̸= 𝑑𝑤,

∀𝑗 ̸= 𝑜𝑤,

(8)

𝐾

∑

𝑘=1

𝛽
𝑤

𝑖𝑘
= 1, ∀𝑤 ∈ 𝑊, ∀𝑖 ̸= 𝑑𝑤, (9)

𝐾

∑

𝑘=1

𝛽
𝑤

𝑖𝑘
𝐼𝑘 ≤ 𝑡

𝑤

𝑖
<

𝐾

∑

𝑘=1

𝛽
𝑤

𝑖𝑘
𝐼𝑘+1, ∀𝑤 ∈ 𝑊, ∀𝑖 ̸= 𝑑𝑤, (10)

𝑡
𝑤


𝑖
− 𝑡
𝑤

𝑖
≥ 𝑇int(

𝐾

∑

𝑘=1

𝑥
𝑤

𝑖𝑗𝑘
+

𝐾

∑

𝑘=1

𝑥
𝑤


𝑖𝑗𝑘
− 1)

−𝑀(1 − 𝑧𝑖𝑤𝑤) ,

∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑖 ̸= 𝑜𝑤, 𝑜𝑤 , 𝑑𝑤, 𝑑𝑤 ,

∀𝑤, 𝑤

∈ 𝑊, 𝑤 < 𝑤


, (11)

𝑡
𝑤

𝑖
− 𝑡
𝑤


𝑖
≥ 𝑇int(

𝐾

∑

𝑘=1

𝑥
𝑤

𝑖𝑗𝑘
+

𝐾

∑

𝑘=1

𝑥
𝑤


𝑖𝑗𝑘
− 1) −𝑀𝑧𝑖𝑤𝑤 ,

∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑖 ̸= 𝑜𝑤, 𝑜𝑤 , 𝑑𝑤, 𝑑𝑤 ,

∀𝑤, 𝑤

∈ 𝑊, 𝑤 < 𝑤


,

(12)

𝑡
𝑤

𝑖
≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑤 ∈ 𝑊, (13)

𝑦𝑖𝑗 ∈ {0, 1} , ∀ (𝑖, 𝑗) ∈ 𝐴, (14)

𝑥
𝑤

𝑖𝑗𝑘
∈ {0, 1} , ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑤 ∈ 𝑊, ∀𝑘 ∈ 𝐾, (15)

𝑧𝑖𝑤𝑤 ∈ {0, 1} , ∀𝑖 ∈ 𝑁, ∀𝑤,𝑤

∈ 𝑊, 𝑤 < 𝑤


, (16)

𝛽
𝑤

𝑖𝑘
∈ {0, 1} , ∀𝑖 ∈ 𝑁, ∀𝑤 ∈ 𝑊, ∀𝑘 ∈ 𝐾, (17)

where𝑀 is a very large positive number.
Objective (1) is to minimize the total impact on the nor-

mal traffic. The impact can be considered as the increase in
travel time on the general lane(s) because of the lane reser-
vation strategy, which is proportional to the travel time on
the general lane(s) of arc (𝑖, 𝑗) before lane reservation and
inversely proportional to the total number of lanes on arc (𝑖, 𝑗)
[13]. We use the same formula in [21] to evaluate the impact
𝐶𝑖𝑗 = 𝜏𝑖𝑗/(𝑀𝑖𝑗 − 1), where 𝜏𝑖𝑗 is the travel time on the general
lane(s) of arc (𝑖, 𝑗) and 𝑀𝑖𝑗 is the total number of lanes in
the road segment. Statistical results from [27] revealed that
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the travel time on the general lanes increased by about 53%
after reserving one of three lanes on A1 highway in Paris.This
figure is very close to the theoretical test result (50%) obtained
by the computational experiment done in [22] using the
above formula to estimate the impact. If no lane is reserved,
then𝐶𝑖𝑗 = 0. Objective (2) is tominimize the total transporta-
tion risk. In this paper, the risk is measured in a traditional
way, and it is measured by multiplying the probability of
the hazardous material accident by its consequence. See [1]
for more details. Constraint (3) (resp., (4)) means that, for
shipment 𝑤, there is one and only one path departing from
the source node 𝑜𝑤 (resp., arriving at the destination node𝑑𝑤)
during one and only one time period. Constraint (5) ensures
the flow conservation constraint for node 𝑖 in 𝑉 \ {𝑜𝑤, 𝑑𝑤} on
space and time. It represents that if shipment 𝑤 arrives at a
node 𝑖 (𝑖 ̸= 𝑜𝑤, 𝑑𝑤) via a reserved lane during time period 𝑘, it
must also depart from 𝑖 via a reserved lane during time period
𝑘. Constraints (3), (4), and (5) together ensure that there is
one and only one path for each shipment from its origin to
its corresponding destination during one and only one time
period. Constraint (6) guarantees that no shipment would
pass through arc (𝑖, 𝑗) during any time period if no lane on
the arc has been reserved. Constraints (7) and (8)mean that if
shipment𝑤passes through the reserved lane on arc (𝑖, 𝑗), then
its travel time is 𝑇𝑖𝑗. Constraint (9) means that there is exactly
one time period 𝑘 for 𝑡𝑤

𝑖
on any node 𝑖. In a feasible solution,

shipment 𝑤 passes through arc (𝑖, 𝑗) if and only if two
conditions are satisfied: 𝑡𝑤

𝑖
> 0 and∑𝐾

𝑘=1
𝑥
𝑤

𝑖𝑗𝑘
= 1. Constraints

(9) and (10) imply that departure time 𝑡𝑤
𝑖
should be located

within one and only one time period and on exactly one arc.
Constraints (11) and (12) guarantee that if two or more ship-
ments pass the same reserved lane, then the safety time inter-
val between any two shipments must be satisfied. Constraints
(13)–(17) specify the restriction on the decision variables.

3. Solution Algorithm

In this section, an improved algorithm, called the cut-and-
solve based 𝜀-constraint method, is developed for solving
the multiobjective model. There are several techniques to
solve a multiobjective problem in the literature, such as the
weighted-summethod, the 𝜀-constraint method, the goal att-
ainment approach, and metaheuristics [28]. With the 𝜀-con-
straint method, a multiobjective problem can be converted
into a series of single-objective problems to obtain Pareto-
optimal solutions. Moreover, this method can alleviate the
difficulties in setting up an appropriate weight vector faced by
the weighted summethod and the goal attainment approach.
Therefore, in this paper, the 𝜀-constraint method is used to
solve the considered problem.

3.1. 𝜀-Constraint Method. Introduced by Haimes et al. [29],
the 𝜀-constraint method is based on a scalarization where
only one objective function 𝑛 (commonly, it may be the most
preferred or primary one) is minimized while the others are
bounded by some allowable values 𝜀𝑖, 𝑖 ∈ {1, . . . , 𝑚} \ {𝑛}, and

added to the original model as constraints. The original mul-
tiobjective optimization problem is converted into a series of
single-objective optimization problems as given below:

𝑃𝜀:

Minimize 𝑓𝑛 (𝑥) (18)

subject to

𝑓𝑖 (𝑥) ≤ 𝜀𝑖, ∀𝑖 ∈ {1, . . . , 𝑚} \ {𝑛}

𝑥 ∈ Ω,

(19)

whereΩ is the feasible solution space.
According to [30], for a given vector of 𝜀 = (𝜀1, . . . , 𝜀𝑛−1,

𝜀𝑛+1, . . . , 𝜀𝑚), optimal solutions of 𝑃𝜀 are weakly Pareto-
optimal solutions. For solving problem 𝑃𝜀, it is necessary to
determine the range of 𝜀𝑖 that can be defined by ideal and
nadir points of the original problem [31]. The ideal and nadir
points can be obtained from the solutions of subproblems
using the procedure described below.

The proposed mathematical model in Section 2 has con-
flicting objective functions (1) and (2) subject to constraints
(3)–(17). From assumption (2), any path for hazardous mate-
rial shipments contains only exclusive reserved lanes. There-
fore, in this paper, the objective of minimizing the traffic
impact is considered as the main objective function. In this
way, the originalmultiobjectivemodel can be converted into a
single-objective one, inwhich the traffic impact isminimized,
while the transportation risk subject to 𝜀 forms a new con-
straint and is added to the original model.

The procedure of the 𝜀-constraint method is described as
follows [15, 29].

Step 1. Transform problem 𝑃 into problem 𝑃0, which aims at
minimizing objective function (1) subject to constraints (3)–
(17) and

∑

𝑤∈𝑊

∑

(𝑖,𝑗)∈𝐴

∑

𝑘∈𝐾

𝑃
𝑤

𝑖𝑗
𝐸𝑖𝑗𝑘𝛿
𝑤

𝑖𝑗𝑘
≤ 𝜀. (20)

Step 2. Determine the ideal point (𝑓𝐼
1
, 𝑓
𝐼

2
) and the nadir point

(𝑓𝑁
1
, 𝑓
𝑁

2
).

The ideal point corresponds to lower limits of𝑓𝑙 (𝑙 = 1, 2),
where 𝑓𝐼

𝑙
= min𝑓𝑙 subject to constraints (3)–(17). The nadir

point indicates upper limits of 𝑓1 and 𝑓2, respectively, where
𝑓
𝑁

1
= min𝑓1 subject to constraints (3)–(17) and𝑓2 = 𝑓

𝐼

2
. And

𝑓
𝑁

2
= min𝑓2 subject to constraints (3)–(17) and 𝑓1 = 𝑓

𝐼

1
.

That is, the values of the objective function 𝑓2 are bounded
by [𝑓𝐼
2
, 𝑓
𝑁

2
].

Step 3. Fix the values of 𝜀.
Determine the range of 𝜀:

range
2
= 𝑓
𝑁

2
− 𝑓
𝐼

2
. (21)

The range is divided into 𝑆 equal intervals with 𝑆 + 1

points, called equidistant grid points. The value of 𝜀 in con-
straint (20) is defined by these grid points with the following
formula:

𝜀
𝑠
= 𝑓
𝑁

2
−

range
2

𝑆

∗ 𝑠, 𝑠 = 0, 1, . . . , 𝑆. (22)
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Step 4. Repeat to solve problem 𝑃0 with 𝜀 and obtain 𝑆 + 1

Pareto-optimal solutions.

3.2. Cut-and-Solve Method. With the 𝜀-constraint method,
the considered problem is transformed into a series of single-
objective MIP problems 𝑃0. In this section, we propose an
exact and iterative approach, called cut-and-solve (CS), to
solve 𝑃0. The CS method was first presented by Climer and
Zhang and was proved to be efficient for the traveling sales-
man problem [32]. It is a special branch-and-bound search
strategy but can avoid making wrong choices in depth-first
branch-and-bound. Given an integer programming problem
(IP) with the minimization of an objective function, at the
𝑟th iteration of the branching tree of CS, there are only two
nodes, corresponding to sparse problem (SP𝑟) and remaining
problem (RP𝑟), respectively [33]. The SP𝑟 can be optimally
solved in a reasonable amount of computation time because
it is relatively small. The optimal solution of SP𝑟, if it exists,
provides an upper bound of the IP, denoted as UB𝑟. And if
it is “good” enough, then the best upper bound of the IP
found so far, denoted as UB𝑏, is updated. Meanwhile, a lower
bound of the IP, denoted as LB𝑟, can be obtained by solving
the linearly relaxed RP𝑟. When the best upper bound found
so far is smaller than or equal to LB𝑟, a global optimal solution
is obtained and the CS iteration stops. Otherwise, the current
RP𝑟 is further divided into a new SP𝑟+1 and a new RP𝑟+1 by
adding a piercing cut for the next iteration. The process con-
tinues until an optimal solution to the original IP is obtained.

(1) Preprocessing. Before using the cut-and-solve method, we
analyze properties of the model in order to reduce the search
space. If some variables can be fixed in advance, the reduction
in the number of decision variables will possibly speed up the
CS process.

As defined in Section 2, 𝑥𝑤
𝑖𝑗𝑘

= 1 means that shipment 𝑤
passes through the reserved lane on arc (𝑖, 𝑗) when time 𝑡𝑤

𝑖

occurs at time period 𝑘; 𝛽𝑤
𝑖𝑘
= 1means that the arriving time

of shipment𝑤 at node 𝑖 occurs at time period 𝑘 and otherwise
𝛽
𝑤

𝑖𝑘
= 0. We have the following property.

Property 1. If 𝑥𝑤
𝑖𝑗𝑘
= 1, then 𝛽𝑤

𝑗𝑘
+𝛽
𝑤

𝑗(𝑘+1)
= 1, ∀𝑘 ∈ 𝐾,𝑤 ∈ 𝑊,

∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ̸= 𝑑𝑤.

Proof. Note that if 𝑥𝑤
𝑖𝑗𝑘

= 1, then 𝛽𝑤
𝑖𝑘
= 1. It implies that 𝑡𝑤

𝑖
∈

[𝐼𝑘, 𝐼𝑘+1). That is, 𝐼𝑘 ≤ 𝑡
𝑤

𝑖
< 𝐼𝑘+1. For arc (𝑖, 𝑗), we can deduce

that 𝐼𝑘+𝑇𝑖𝑗 ≤ 𝑡
𝑤

𝑗
= 𝑡
𝑤

𝑖
+𝑇𝑖𝑗 < 𝐼𝑘+1+𝑇𝑖𝑗. Note that𝑇𝑖𝑗 ≪ 𝐼𝑘+1−𝐼𝑘.

We thus have 𝐼𝑘 ≤ 𝐼𝑘 + 𝑇𝑖𝑗 ≤ 𝑡
𝑤

𝑗
< 𝐼𝑘+1 + 𝑇𝑖𝑗 ≤ 𝐼𝑘+2, which

implies two cases. In one case, 𝐼𝑘 ≤ 𝐼𝑘 + 𝑇𝑖𝑗 ≤ 𝑡
𝑤

𝑗
< 𝐼𝑘+1, and,

in the other case, 𝐼𝑘+1 ≤ 𝑡
𝑤

𝑗
< 𝐼𝑘+1 + 𝑇𝑖𝑗 ≤ 𝐼𝑘+2. That is to say,

either 𝑡𝑤
𝑗
∈ [𝐼𝑘, 𝐼𝑘+1) or 𝑡

𝑤

𝑗
∈ [𝐼𝑘+1, 𝐼𝑘+2). It follows that 𝛽

𝑤

𝑗𝑘
+

𝛽
𝑤

𝑗(𝑘+1)
= 1.

FromProperty 1, constraint (23) will be added to problem
𝑃0 to obtain problem 𝑃1, which aims at minimizing objective
function (1) subject to constraints (3)–(17), (20) and

𝛽
𝑤

𝑖𝑘
+ 𝛽
𝑤

𝑖(𝑘+1)
≥ 𝑥
𝑤

𝑖𝑗𝑘
, ∀ (𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑤 ∈ 𝑊. (23)

(2) Definition of Piercing Cut, Remaining Problem, and Sparse
Problem. A key issue for the cut-and-solve method is to find
an appropriate piercing cut that separates the current remain-
ing problem into a new sparse problem and a new remaining
problem. The reasons are the following. If the solution space
of SP𝑟 is too small, the optimal solution is not “good” enough
to update the upper bound; if the solution space of SP𝑟 is too
large, it will take toomuch time to obtain an optimal solution.
Another important factor which influences the efficiency of
the cut-and-solvemethod is that tight LB𝑟 should be provided
in each iteration. For an integer programming model, LB𝑟
is usually obtained by solving a linear relaxation problem of
RP𝑟. Note that𝑥

𝑤

𝑖𝑗𝑘
= 1means that shipment𝑤passes through

the reserved lane on arc (𝑖, 𝑗) during time period 𝑘 and,
otherwise, 𝑥𝑤

𝑖𝑗𝑘
= 0. If 𝑥𝑤

𝑖𝑗𝑘
are not relaxed, our preliminary

simulation experiments show that most of them take the
values of zero, which means that very few reserved lanes are
passed by the shipments at any time period.The LB𝑟 obtained
in this case is usually very “bad.” Therefore, 𝑥𝑤

𝑖𝑗𝑘
should be

relaxed to obtain more subpaths. Similar observation can
be also found for 𝛽𝑤

𝑖𝑘
. Another important decision variable

𝑦𝑖𝑗 means whether there is a reserved lane on arc (𝑖, 𝑗).
Our preliminary simulation experiments show that if 𝑦𝑖𝑗 are
relaxed the same as 𝑥𝑤

𝑖𝑗𝑘
, a considerable number of 𝑦𝑖𝑗 take

the values greater than zero. It means that there may exist a
reserved lane on the corresponding arc. However, the experi-
ments also show that if 𝑦𝑖𝑗 are not relaxed, a better LB𝑟 can be
obtained.Therefore, 𝑦𝑖𝑗 are not relaxed as continous variables
in this paper. Similar observation can be also found for 𝑧𝑖𝑤𝑤 .
In a word, in order to obtain an improved LB𝑟, we apply the
partial integrality strategy for RP𝑟, in which only 𝑥𝑤

𝑖𝑗𝑘
and 𝛽𝑤

𝑖𝑘

are relaxed as continuous variables while the integrality of 𝑦𝑖𝑗
and 𝑧𝑖𝑤𝑤 is maintained.

Climer and Zhang introduced a general procedure for
generating piercing cuts based on reduced cost from an
optimal solution of linear relaxation problem [32]. In their
work, PC𝑟was defined as a set including the decision variables
with large reduced cost. But the general procedure is not
appropriate to MIP because it has been shown by our pre-
liminary experimental results that the lower bound of the
proposed problem obtained by the linearly relaxed RP𝑟 is not
good enough and the reduced costs of decision variables are
often missing. Reference [24] proposed a new piercing cut
technique for MIP using the number of “critical links.” Since
the value of 𝑥𝑤

𝑖𝑗𝑘
may be fractional in an optimal solution of

the relaxed RP𝑟, (𝑡
𝑤

𝑖
, 𝑥
𝑤

𝑖𝑗𝑘
, 𝑦
𝑖𝑗
, 𝑧𝑖𝑤𝑤), there may be multiple

paths for some shipments. The link with the greatest value
of ∑𝐾
𝑘=1

𝑥
𝑤

𝑖𝑗𝑘
is called “critical link.” For more details of the

piercing cut based on “critical link,” please see [24]. The con-
sidered problem in this paper is different from that in [24].
The piercing cut in [24] cannot be used directly for our
problem. A new piercing cut based on “critical link” is pro-
posed as follows.

Let𝐿𝑟 represent the set of shipmentswhich containsmore
than one path in the fractional solution and let 𝑖V represent the
first node where multipath appears for shipment V. Define 𝑎𝑟
as the set of the most potential arcs for all shipments in 𝐿𝑟,
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which implies that the arcs in 𝑎𝑟 are very likely to be selected
in the final optimal solution of 𝑃1. We have

𝑎𝑟 = {(𝑖
∗
, 𝑗
∗
) | (𝑖
∗
, 𝑗
∗
) = arg max

(𝑖V ,𝑗V)∈𝐴

𝐾

∑

𝑘=1

𝑥
V
𝑖V𝑗V𝑘

, V ∈ 𝐿𝑟} ,

(24)

where (𝑖V, 𝑗V) refers to the arc with the largest value among all
the arcs outgoing from node 𝑖V.

In [32], the piercing cut is considered as a combination
of some decision variables in a certain set, called 𝑈𝑟. In this
paper, 𝑈𝑟 refers to the set of these decision variables 𝑥V

𝑖V𝑗V𝑘
,

where V is a shipment which has multiple paths in the frac-
tional solution and (𝑖V, 𝑗V) is the most potential arcs for ship-
ment V. Set 𝑈𝑟 is defined as follows:

𝑈𝑟 = {𝑥
V
𝑖V𝑗V𝑘

| (𝑖V, 𝑗V) ∈ 𝑎𝑟} . (25)

The piercing cut (PC𝑟) is defined as follows:

∑

𝑥V
𝑖V𝑗V𝑘
∈𝑈
𝑟

𝐾

∑

𝑘=1

𝑥
V
𝑖V𝑗V𝑘

≥ ℎ𝑟, (26)

where ℎ𝑟 is a given integer in [1, |𝐿𝑟|].
Accordingly, the additional constraint associated with

RP𝑟 can be written as follows:

∑

𝑥V
𝑖V𝑗V𝑘
∈𝑈
𝑟

𝐾

∑

𝑘=1

𝑥
V
𝑖V𝑗V𝑘

≤ ℎ𝑟 − 1. (27)

Asmentioned above, SP𝑟 andRP𝑟 are generated by adding
constraints (26) and (27) to CP𝑟, respectively, that is,

SP𝑟: objective function (1) subject to constraints (3)–
(17), (20), (23), (26), and

∑

𝑥V
𝑖V𝑗V𝑘
∈𝑈
𝑙

𝐾

∑

𝑘=1

𝑥
V
𝑖V𝑗V𝑘

≤ ℎ𝑙 − 1, 𝑙 = 1, . . . , 𝑟 − 1, (28)

RP𝑟: objective function (1) subject to constraints (3)–
(17), (20), (23), (27), and (28).

It is worth pointing out thatwhen 𝑟 = 1, the original prob-
lem 𝑃1 is considered as CP1. Hence, constraint (28) should be
removed for RP1 and SP1.

The process of the proposed 𝜀-constraint is illustrated in
Figure 2.

4. Computational Results

To evaluate the efficiency of the proposed method, 155 insta-
nces (31 sets × 5 instances) are randomly generated. The
proposed algorithm is coded in 𝐶. The computational exper-
iments are carried out on an HP PC with 3.10GHz Intel Core
processor and 4GB RAM under Windows 7 environment.
TheCPLEXMIP solver (version 12.5) under default settings is
used to solve𝑃1. It is allowed to run until problem𝑃1 is solved
to optimality.

Table 1: Computational results with𝑁 = 3, |𝑊| = 5, and |𝐾| = 3.

Set |𝑉| 𝑇1 𝑇2 𝑇1/𝑇2

1 20 42.492 33.689 1.261
2 30 159.133 101.038 1.575
3 40 229.150 155.282 1.476
4 50 328.191 174.990 1.875
5 60 319.409 200.318 1.593
6 70 865.940 252.524 3.429
7 80 1375.141 465.900 2.956
8 90 2089.713 830.784 2.515
9 100 2353.960 1058.735 2.223

The transportation network 𝐺(𝑉,𝐴) in this work is gen-
erated according to the random network topology generator
proposed by Waxman [34]. The nodes are randomly and
uniformly generated in the plane [0, 100] × [0, 100], while
arc (𝑖, 𝑗) is generated by a probability function 𝑝(𝑖,𝑗) =

𝛽 exp(−𝑑(𝑖, 𝑗)/𝛼𝐿), where 𝑑(𝑖, 𝑗) and 𝐿 are the Euclidean
distance between 𝑖 and 𝑗 and the maximum distance between
any two nodes in the graph, respectively, and 0 < 𝛼, 𝛽 ≤ 1.
The origin and destination pairs are randomly selected from
the set of nodes. Parameter 𝐾 is set from 1 to 5 because in
real life the number of time periods is not very large [26].
Let 𝜋𝑤
𝑖𝑗
be the accident probability of hazardous material 𝑤

happening on the general lane(s) of arc (𝑖, 𝑗). Note that 𝜋𝑤
𝑖𝑗
>

𝑃
𝑤

𝑖𝑗
. Our preliminary experimental results also show that the

values of the input parameters 𝜋𝑤
𝑖𝑗
, 𝑃𝑤
𝑖𝑗
, 𝑇𝑖𝑗, 𝜏𝑖𝑗, 𝐸𝑖𝑗𝑘, 𝑇int, and

𝑀𝑖𝑗 have little effect on the performance of the proposed
algorithm for a considerable number of instances and they
are generated according to the following ways. The data of
parameters are set with the similar way of [15]: 𝜏𝑖𝑗 = 𝑑(𝑖, 𝑗)

and 𝑇𝑖𝑗 = 𝜏𝑖𝑗 ∗ 𝑈(0.6, 0.9), where 𝑈 is a uniform distribution;
𝜋
𝑤

𝑖𝑗
= 𝑑(𝑖, 𝑗) ∗ 𝑈(8, 20); 𝑃𝑤

𝑖𝑗
= 𝜋
𝑤

𝑖𝑗
∗ 𝑈(0.6, 0.9), whose unit is

10−7; 𝐸𝑖𝑗𝑘 is generated by 𝑈(10, 80), whose unit is 104; 𝑇int =
10; and𝑀𝑖𝑗 is generated by 𝑈(2, 5). The number of iterations
of 𝜀-constraint method, 𝑆, is set to 20.

In this paper, 𝑁 = |𝐴|/|𝑉| represents the average degree
of graph 𝐺, where |𝑉| and |𝐴| are its number of nodes and
arcs, respectively [35, 36]. The average degree of graph 𝐺 is
defined as its number of arcs per node, which implies the
density of the graph.

Table 1 summarizes the computational results on the ran-
domly generated instances with 𝑁 = 3, |𝑊| = 5, and
|𝐾| = 3.The total computation time for an instance represents
its total running time for obtaining 21 solutions in the 𝜀-
constraintmethod. Columns𝑇1 and𝑇2 represent the average
computation time (in CPU seconds) of five instances for each
set by the proposed 𝜀-constraint method, in which single-
objective problem 𝑃1 is solved by the optimization software
package CPLEX and the CS based method, respectively.
We can observe from Table 1 that the proposed CS based
method is more efficient than CPLEX and both of the total
computation times moderately increase with the number of
nodes. It is worth pointing out that the trends of two curves
of 𝑇1 and 𝑇2 are almost the same. But 𝑇2 increases with
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For each 𝜀, set r := 0, UBb = +∞, and CP1 = P1

Relax P1 with partial integrality strategy and

Define set Ur and PCr, and then obtain SPr and RPr

Solve SPr

Set UBb := UBr

Relax RPr with partial integrality strategy, solve the relaxed
problem, and obtain a lower bound LBr for RPr

Obtain S + 1 Pareto-optimal solutions

Obtain the global optimal solution UBb of P1

UBr <UBb

UBb ≤LBr

Set r := r + 1. Define CPr as RPr−1

Figure 2: Flow chart of the cut-and-solve based 𝜀-constraint method.

the number of nodes more slightly than 𝑇1 in Figure 3. For
example, for set 1 with |𝑉| = 20, 𝑇1 is only 1.261 times as
much as𝑇2, whereas, for set 9 with |𝑉| = 100, the ratio𝑇1/𝑇2
is 2.223 times.

Table 2 summarizes the computational results on the
randomly generated instances with 𝑁 = 3, |𝑊| = 10, and
|𝐾| = 3. It can be observed from Table 2 that the computa-
tion times of CPLEX and the proposed method drastically
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Figure 3: Comparison of 𝑇1 and 𝑇2.

Table 2: Computational results with𝑁 = 3, |𝑊| = 10, and |𝐾| = 3.

Set 𝑉 𝑇1 𝑇2 𝑇1/𝑇2 GAP
10 20 529.566 385.258 1.375 0
11 30 3514.437 1710.633 2.055 0
12 40 11489.591 3215.313 3.573 0
13 50 28094.791 6698.321 4.194 0
14 60 >36000.000 5703.657 — 5.309%
15 70 >36000.000 7568.321 — 3.217%
16 80 >36000.000 35434.740 — 3.949%

increase with the number of nodes, but the latter increases
more slightly than the former. Take sets 10 and 11 for example;
given the number of shipments and time periods, the
computation times 𝑇1 and 𝑇2 for set 11 are 6.636 and 4.440
times as much as those for set 10, respectively. From Tables 1
and 2, we can also observe that the CS based method is more
efficient for the sets with |𝑊| = 10 than for the sets with
|𝑊| = 5. For example, given the number of nodes and time
periods, 𝑇1/𝑇2 for set 3 is only 1.476, while it increases to
3.573 for set 12. When the number of nodes increases to 60 in
Table 2, CPLEX cannot find 21 optimal solutions of 𝑃0 within
36000 s, but the proposed method can do it well for sets with
up to 80 nodes. We set a threshold for the computation time
for each problem 𝑃0 to 36000 s/21. When the threshold is
reached and a problem is not solved to optimality, CPLEX
is terminated. For sets 14–16, although CPLEX fails to find
all optimal solutions, it can provide lower bounds and upper
bounds of 𝑃0(𝑠) which are not solved to optimality when
CPLEX is terminated. The gap between the lower bound
and upper bound is denoted by (upper bound − lower
bound)/upper bound and it implies the extent of optimality.
GAP in Table 2 denotes the average gap for problems 𝑃0(𝑠)
that are not solved to optimality. The average gaps of sets
14–16 are 5.309%, 3.217%, and 3.949%.The gaps are relatively
small, which means that the obtained solutions might be
relatively close to optimality for sets 14–16. In Table 2, given
that |𝑊| = 10, the computation time for set 16 is nearly up to
36000 s so that this set can be considered as one of the largest-
scale problems which can be solved in reasonable time.

Table 3: Computational results with𝑁 = 4, |𝑊| = 5, and |𝐾| = 1–5.

Set |𝑉| 𝐾 𝑇1 𝑇2 𝑇1/𝑇2

17
20

1 26.923 23.804 1.131
18 3 63.177 41.690 1.515
19 5 160.727 141.198 1.138
20

40
1 45.259 31.647 1.430

21 3 202.990 165.206 1.229
22 5 311.470 251.380 1.239
23

60
1 53.883 37.412 1.440

24 3 625.306 529.896 1.180
25 5 1289.057 1141.264 1.129
26

80
1 83.724 51.417 1.628

27 3 2920.514 831.624 3.512
28 5 4002.699 1575.911 2.540
29

100
1 149.272 101.348 1.473

30 3 3885.786 1148.121 3.384
31 5 9610.322 2456.343 3.912

Table 3 shows the total computation times of the pro-
posed method with 𝑁 = 4, |𝑊| = 5, and different |𝐾|. We
can observe from Table 3 that, for a given number of |𝑉|, the
computation time increases quickly with the value of |𝐾|. For
example, the computation times for 100 nodes with |𝐾| = 3

(set 30) and |𝐾| = 5 (set 31) are 11.329 and 24.237 times as
much as that with |𝐾| = 1 (set 29), respectively. As shown in
Tables 1 and 3, the computation time also increases with the
average degree of network. When |𝐾| = 3, given the number
of nodes and shipments, the computation time with 𝑁 = 4

is more than that with𝑁 = 3. For example, the computation
time for set 24 is 2.645 times as much as that for set 5.

5. Conclusion

This paper investigated the time-dependent lane reservation
problem for hazardous material transportation, in which the
transportation risk varies with time throughout the day. A
new multiobjective mixed integer programming model was
first proposed for the considered problem. Then a cut-and-
solve method based 𝜀-constraint method was developed. For
improving the cut-and-solve method, a specific property of
the considered problem was explored. Computational results
showed that our method outperforms the optimization soft-
ware package CPLEX.

For the considered problem, one of the future research
directions is to study properties of the model and attempt to
reduce the search space of solution. Exploiting efficient pierc-
ing cuts is another way to improve the efficiency of the cut-
and-solve method. Finally, developing high quality heuristics
is a future direction for large-scale time-dependent hazardous
material transportation problems via lane reservation.
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