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Introduction
To model the propagation of large water waves and associated loads applied to offshore struc-
tures, scientists and engineers have a need of fast and accurate models. A wide range of models
have been developped in order to predict wave-fields and hydrodynamic loads at small scale,
from the linear potential boundary element method to complete CFD codes, based on the
Navier-Stokes equations.
Although the latters are well adapted to solve the wave-structure interaction at small scale,
their use is limited due to the computational cost of such models and numerical diffusion.
Alternative approaches, capturing the nonlinear effects, are thus needed. Shao and Faltinsen
[5] proposed an innovative technique, called ”harmonic polynomial cell” (HPC) method to
tackle this problem. This approach is implemented and tested in 2 dimensions (x, z), first on a
standing wave problem and then to evaluate the nonlinear forces acting on a fixed submerged
cylinder.

Overview of the harmonic polynomial cell method (HPC)
This method is based on the potential hypothesis, which assumes the irrotationality of the flow.
Viscous effects are also neglected. The complete description of the velocity field can thus be
reduced to the knowledge of the potential scalar field v = ∇(φ), where φ satisfies the Laplace
equation:

∇2φ = 0, −h(x) ≤ z ≤ η(x, t) (1)

To solve the potential problem, we use the HPC method introduced by Shao and Faltinsen [5].
The fluid volume is discretized into overlapping cells. In each cell, composed of 9 points, the
potential is approximated as a weighted sum of the first harmonic polynomials, each of them
being solution of (Eq. 1). The method can be extended to 3D cases considering cubic-like cells
with 27 nodes.

In a given cell the potential is thus locally ap-
proximated as a linear combination of the 8
first harmonic polynomials (fj), which are ex-
plicitely known (1, x, z, xz, x2 − z2...).

φ(x = (x, z)) =
8∑
j=1

bjfj(x) (2)

Thus, applying this equation to each node of
the cell, except the center, gives φi = φ(xi) =
bjfj(xi) for i = 1..8.
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This local matrix (size 8x8 with Cij = fj(xi)) can be inverted, such that the bj coefficients are
obtained for the given local cell as bj = C−1

ji φi. Then injecting this result into the interpolation
equation (Eq. 2), a relation is obtained providing an approximation for the potential inside the
cell using the potentials of the eight surrounding nodes:

φ(x) =
8∑
i=1

[(
8∑
j=1

C−1
ji fj(x)

)
φi

]
(3)
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Still, the potential at the center of the cell (node 9) has not been used to obtain (Eq. 3). Thus,
applying (Eq. 3) at this node where x = (0, 0), a relation is found between the nine potentials
of each cell. For each cell in the fluid domain, this equation is set in a global matrix. Thus this
matrix contains at most 9 non-zero values in each row. For the boundary conditions, either
a Dirichlet condition can be imposed or a Neumann condition is found by deriving the local
expression (Eq. 3). Following Zakharov [7], the kinematic and dynamic free surface nonlinear
boundary conditions are formulated as:

ηt = −∇η · ∇φ̃+ w̃(1 +∇η · ∇η) (4)

φ̃t = −gη − 1

2
∇φ̃ · ∇φ̃+

1

2
w̃2(1 +∇η · ∇η), (5)

where φ̃(x, t) = φ(x, η(x, t), t), and w̃(x, t) = ∂φ
∂z

∣∣
z=η

is the vertical velocity at the free surface.

The gradient of η is computed by finite difference of arbitrary order. Others spatial derivatives
can be computed locally by deriving the local expression for φ (Eq. 3). Moreover the Runge-
Kutta method at order 4 with constant time-step is used to integrate (Eq. 4-5) in time.

Immersed boundary method (IBM) on a fixed grid
In a first step of this study, the HPC method was implemented using deforming boundary fitted
grids, but a lack of stability was denoted. The results were found to be highly dependent on
the mesh deformation method used, due to the difficulty to invert the local geometry matrix at
some time-steps and for particular lay-outs of the cell. Recently, Ma et al. [4] pointed out that
the method HPC is much more efficient when using fixed perfectly-squared cell. In order to
work with regular fixed grids, an IBM strategy is implemented, following Hanssen et al. [3]. In
this method, the free surface is discretized with markers, evenly spaced and positionned at each
vertical intersection with the background fixed grid (See schematic representation Fig. 1). In
order to close the system, each point above the free surface - denoted ghost-points - must have
a dedicated equation in the global matrix. Those equations are the local expressions (Eq. 3)
applied at the marker position in a given cell (given Cij). A choice must be made when two
ghost-points appear to be linked to the same maker in the same cell. The second closest cell
whose center is inside the fluid domain is thus chosen to prevent singularity, see arrow in Fig. 1.

Ghost Points

Centers of cells used for ghost points

Markers on the free surface

Interpolation points from other mesh

Inactive points

Neumann BC points

Figure 1: Schematic representation of the immersed free surface and immersed body

To allow the background mesh to be composed of square cells, and still have the possibility to
include fixed or moving objects, a boundary fitted overlapping grid is also added following Ma
et al. [4]. In this method an immersed boundary-fitted mesh is constructed. Local expressions
are also solved on this complementary mesh and added to the global matrix to solve both
problems (on the background and immersed mesh) simultaneously. Communication is set and
solved in the global matrix through interpolations using (Eq. 3) at the extreme points of both
the background mesh and the immersed mesh, ensuring the continuity of the solution and the
boundary condition on the body.
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Results on two selected test cases
Standing wave freely evolving in a closed square domain
This first test case is compared to the results from the method of Tsai and Jeng [6]. It consists
in a standing wave of wavelength λ = 64m, steepness H/λ = 0.1 in a square domain with water
depth h = λ. The initial conditions for η are set according to the results of [6] with a phase
such that the velocity field is null. The wave is freely evolving for 9 periods, and the error
on η is computed at each time step with an L2 norm, and normalized with the wave height:

err =

√∑
p(ηp−ηth)2

H
.

Figure 2: Normalized L2 error on η - Standing wave

(a) convergence in mesh refinement (b) convergence in time refinement

Figure 3: Convergence in time and space

This normalized L2-error is plotted at four different times in Fig. 2 as a function of the number
of nodes per wavelength (Nx) and the Courant Friedrich Levy (CFL) number, defined as the
radio of the number of time-steps per period divided by Nx. Results are promising, with errors
down to 10−6. Convergence properties with mesh and time-step refinement are also investigated
and both are found to be with an order close to 4 as expected (Fig. 3).
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Fixed horizontal immersed cylinder
The second test case is based on the work of Chaplin [1],which consists in a fixed horizontal
cylinder, slightly immersed, in regular waves of period T = 1s. The depth of the cylinder
center is dc = 0.101m, for a radius r = 1/2dc, and a total depth of d = 0.85m. This problem
is numerically difficult to solve as the cylinder is close to the free surface, involving a small
water gap to be meshed, of height ≈ λ/30. The incident waves are generated using the stream
function theory. The mean value and the amplitudes of the first 3 harmonics of the vertical load
on the body are compared to numerical results from Guerber [2], computed with a non-linear
boundary element method for different Keulegan-Carpenter numbers (Kc).

Figure 4: Different harmonics of the vertical load on the cylinder. Current results (dots) compared to
numerical simulations from [2] (lines with crosses).

As presented in Fig. 4, results are in quite good agreement with Guerber [2], thought some
differences are observed. For smaller wave heights (ie, smaller Kc), the results found with a
more classical HPC boundary fitted mesh approach were in good agreement with the litterature
due to the small deformation of the mesh. Results from the two approaches will be compared
and discussed during the workshop.
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