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Abstract 

Freeze-casting, the templating of porous structure by the solidification of a solvent, have seen 

a great deal of efforts during the last few years. Of particular interest are the unique structure 

and properties exhibited by porous freeze-casted ceramics, which opened new opportunities in 

the field of cellular ceramics. The objective of this review is to provide a first understanding 

of the process as of today, with particular attention being paid on the underlying principles of 

the structure formation mechanisms and the influence of processing parameters on the 

structure. This analysis highlights the current limits of both the understanding and the control 

of the process. A few perspectives are given, with regards of the current achievements, 

interests and identified issues. 

1. Introduction 

Although porosity in technical ceramics has been considered as problematic for a long 

time, the potentialities offered by porous ceramics are drawing considerably more attention 

today than just a few years ago. Cellular ceramics can be engineered to combine several 

advantages inherent from their architecture [1]: they are lightweight, can have open or closed 

porosity making them useful as insulators or filters, can withstand high temperatures and 

exhibit high specific strength, in particular in compression [2]. Typical processing methods 

include foam or wood replication [3-6], direct foaming [7] or extrusion. The full potential of 

cellular ceramics will only be achieved once a proper control of the size, shape and amount of 

porosity will be available. Although the control over the structure and functional properties of 

cellular ceramics is continuously improving, all processing routes suffer from an inherent 

limitation: every processing route is intrinsically limited to a narrow range of pores 

characteristics. In addition, removal of the pore forming agent can be a considerable problem, 

and efforts have been in put in developing processing routes with environmental friendly pore 

forming agents, yielding techniques such as gel casting [8, 9], direct foaming [7] or recent 

developments with particles-stabilized wet foams [10]. In the pursuit of such processing routes, 

mailto:sylvain.deville@saint-gobain.com
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freeze-casting has attracted considerably more focus in the last few years (Fig. 1). The 

technique consists of freezing a liquid suspension (aqueous or not), followed by sublimation 

of the solidified phase from the solid to the gas state under reduced pressure, and subsequent 

sintering to consolidate and densify the walls. A porous structure is obtained, with 

unidirectional channels in the case of unidirectional freezing, where pores are a replica of the 

solvent crystals. The technique seems to be rather versatile and the use of a liquid solvent 

(water most of the time) as a pore forming agent is a strong asset. Freeze-casting has also 

been developed as a near net shape forming route, yielding dense ceramics [11, 12]. This 

approach will not be discussed here, as our primary goal is to discuss the potentialities offered 

for porous ceramics. 

 

 

Figure 1: Evolution of papers published on freeze-casting of porous ceramics per year. For 

2007, only papers published until November were taken into account. 

 

The objective of this paper is to provide a first review of the results obtained up to date 

and to offer insights on the potentialities and limits of the technique. The current 

understanding and control over the processing route and final structure are described and 

discussed. The review is organized as follow. In a first part, the processing principles of 

freeze-casting are briefly described, before the materials processed to date are summarized. 

We then describe in details the structure and porosity characteristics of such materials, and 

provide the current understanding of the mechanisms controlling the formation of the porous 

structure. This understanding also defines the actual limitations of the technique, and provides 
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perspectives for the future of freeze-casting, in terms of refinement of the process, control 

over the structure and tailoring of the functional properties. 

2. Processing principles 

Freeze-casting has first been developed as a near net shape forming technique [11, 12], 

yielding dense ceramics parts with fine replicate of the mould details. Any ice crystal being 

converted into porosity later on in the process, introducing large size defects largely 

unwelcome in ceramic applications, a great deal of efforts has been put in controlling and 

avoiding the formation of ice crystals. Only later on was it realized that the formation and 

growth of ice crystals could be a substantial benefit if properly controlled, yielding porous 

ceramics with a very specific porosity. The early work of Fukasawa on alumina [13] revealed 

the potentialities offered for porous ceramics, and a great deal of efforts has been 

subsequently put. 

The technique consists of freezing a liquid suspension (aqueous or not), followed by 

sublimation of the solidified phase from the solid to the gas state under reduced pressure, and 

subsequent sintering to consolidate and densify the walls, leading to a porous structure with 

unidirectional channels in the case of unidirectional freezing, where pores are a replica of the 

solvent crystals. 

In freeze-casting, the particles in suspension in the slurry are rejected from the moving 

solidification front and piled up between the growing cellular solvent crystals, in a similar 

way to salt and biological organisms entrapped in brine channels in sea ice [14]. The variety of 

materials processed by freeze-casting suggests that the underlying principles of the technique 

are not strongly dependent on the materials but rely more on physical rather than chemical 

interactions. The phenomenon is very similar to that of unidirectional solidification of cast 

materials and binary alloys, in particular when powders with small (submicronic) particles 

size are used, with the solvent playing the role of a fugitive second phase. 

The processing can be divided in four steps (Fig. 2), and the corresponding experimental 

conditions will strongly depend on the chosen solvent. 

1. Preparation of the slurry. This step is very similar to the preparation of slurries for 

conventional processing routes such as slip casting. The ceramic powder must be 

correctly dispersed in the liquid medium (the solvent), so that dispersant and 

plasticizer are often used. The temperature of the slurry must fall in the range were 

the solvent is liquid, room temperature in the case of water, but different temperature 

(60°C and 8°C) is necessary for respectively camphene-based and tert-butyl alcohol 
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slurries. Moderate solid loading is used (10-40 vol.%), depending of the desired 

amount of total porosity. The stability of the suspension must be carefully controlled 

to avoid any segregation phenomenon taking place in the second stage, yielding 

gradients of density and porosity in the final materials. This can be particularly 

problematic for low solid loading. Finally, the presence of a binder is necessary, to 

provide green strength after sublimation. Though the solvent is playing the role of 

the structuring agent, binder and pore forming agent, it is nevertheless removed 

during the sublimation stage, so that green bodies collapse in absence of an organic 

binder. The role of additional additives will be discussed in the section devoted to 

the control of the structure. 

2. Controlled solidification of the slurry. This is the critical stage where the structure 

is formed and the characteristics of the future porosity are determined. During this 

stage, continuous crystals of solvent are formed, under certain conditions, and grow 

into the slurry. Ceramic particles in suspension in the slurry are rejected by the 

moving solidification front, concentrated and entrapped in-between the crystals. To 

induce this natural segregation phenomenon, the slurry is poured in a mould, which 

undergoes isotropic or anisotropic cooling to induce homogeneous or directional 

solidification. Several devices, also used to process porous polymers by freeze-

casting, have been designed to provide a more or less elaborated control of the 

solidification conditions [13, 15-20]. The solidification conditions are dictated by the 

initial choice of the solvent. Low temperatures (<0°C) are required when using 

water, while room temperature are sufficient when using camphene, its solidification 

point being around 44-48°C. The device should also accommodate the solidification 

shrinkage; negative (shrinkage) in the case of camphene (-3.1%) and positive 

(expansion) in the case of water (+9%). The cooling conditions will largely dictate 

the characteristics of the growing solvent crystals and hence the final characteristics 

of the porosity. 

3. Sublimation of the solvent. Once complete solidification of the sample is achieved, 

the sample is kept at conditions of low temperature and reduced pressure, conditions 

dictated by the physical properties of the solvent. Under these sublimation 

conditions, the solidified solvent is converted into the gas state. Porosity is created 

where the solvent crystals were, so that a green porous structure is obtained; the 

porosity is a direct replica of the solidified solvent structure. When using water, a 

conventional freeze-dryer can be used. In the case of camphene, the vapor pressure 
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of 1.3 kPa (just below the melting temperature) is high enough to allow sublimation 

at room temperature, so that no specific equipment is required.  

4. Sintering or densification of the green body. Once the solvent has been totally 

removed, the obtained green body can be sintered with conventional sintering 

technique. The low strength of the green body prevents any use of pressure assisted 

sintering. The low amount of organic binder (usually <5%) does not require the 

presence of a special and often problematic binder burnout process. During the 

sintering stage, microporosity can be removed from the ceramic walls, but the 

macroporosity created by the solvent crystals is retained. 

 

 

Figure 2: The four processing steps of freeze-casting: slurry preparation, solidification, 

sublimation and sintering. 

3. Materials  

A wide variety of ceramic materials have already been tested, including alumina [13, 17, 21-

28], hydroxyapatite and tricalcium phosphate [29-36], NiO-YSZ [20], Ni-YSZ [37], yttria-stabilised 

zirconia [16, 38], titanium dioxide [39], silicon nitride [40, 41], PZT-PZN [42], mullite[34] (from 

alumina gel with ultrafine silica) [43], glass [44, 45], silica [18, 46, 47], silica-alumina [48], clay [49], 

LSCF-CGO [19], MgO (from magnesium sulfate) and silicon carbide [50]. Porous polymer-

ceramic composites have also been processed [51] using the technique. The variety of materials 

processed by the technique suggests that the underlying principles dictating the structure 

formation mechanisms rely on physical interactions, making the process a versatile one. 
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An interesting variation was reported by Yoon et al. [52]. Highly porous silicon carbide with 

unidirectional porosity was processed at low temperature, starting from freeze-casted green 

bodies of silicon carbide precursor (or a mix of powder and precursor[53]), polycarbosilane in 

that case, and using camphene as a solvent. The green bodies were pyrolyzed at 1400°C under 

argon, a consolidation temperature much lower than that used for the recrystallization of 

silicon carbide (typically 2200°C). 
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Study Materials 

Powder 

particle 

size 

Solvent Cooling Setup 
Cooling 

conditions 

Cooling 

Directionality 

Pore size 

range* (short 

axis) 

Sintering 

temperature 
Comments Reference 

Fukasawa et al, 

2001. 
Alumina  Water 

Mould with bottom 

part immersed in 

freezing bath 

-20°C to -80°C Yes 40 m 1400-1600°C  [21] 

Fukasawa et al, 

2001. 
Alumina  Water 

Mould with bottom 

part immersed in 

freezing bath 

-50°C Yes 30 m 1400-1550°C  [13] 

Donchev et al., 

2005 
Alumina 700 nm Silica sol Cold plate -30°C Yes 80 m No sintering  [22] 

Koch et al., 2003 Alumina 700 nm Silica sol 

Metallic mould 

cooled from one 

side 

Ramp down to 

-40°C 
Yes 50 m 1100-1500°C  [23] 

Araki et al., 2005 Alumina 400 nm Camphene 

Mould with bottom 

part immersed in 

freezing bath 

Cooling from 

55°C down to 

RT 

Yes 5-20 m 1600°C  [24] 

Deville et al., 

2006, 2007 
Alumina 400 nm Water 

Temperature 

gradient 

Cooling from 

RT to -100°C 
Yes 2-200 m 1500°C  [17, 25] 

Koh et al., 2006 Alumina 300 nm Camphene 
Cold water bath, 

20°C 

Cooling from 

60°C 
No 5-40 m 1400°C Polystyrene addition [26] 

Nakata et al., 2005 Alumina 300 nm Water 

Isotropic and 

anisotropic 

cooling, fixed 

temperature 

-20°C Yes/No 2-200 m 1500°C  [27] 

Araki et al., 2004 Alumina 400 nm 
Camphene-

naphthalene 
Mould at RT 

Cooling from 

60°C 
No 0-10 m 1600°C  [28] 

Chen et al., 2007 Alumina 200 nm 
Tert-butyl 

alcohol 

Mould with bottom 

part immersed in 

freezing bath 

0°C and -15°C Yes 50 m 1500°C 
Additional gelation 

step 
[54] 

Shanti et al., 2006 Alumina 400 nm Camphene Mould at RT RT Yes 3-20 m 1600°C  [55] 

Fukasawa et al., 

2002 
Si3N4 550 nm Water 

Mould with bottom 

part immersed in 

freezing bath 

-25°C and -

80°C 
Yes 50 m 1700-1850°C 

Filtering properties 

tested 
[40] 

Fukasawa et al., 

2002 
Si3N4 550 nm Water 

Mould with bottom 

part immersed in 

freezing bath 

-50°C and -

80°C 
Yes 30 m 1700-1850°C  [41] 

Ding et al., in 

press 
Mullite  

Alumina and 

silica sol 
Cooling from RT? -20°C ?  100 m 1400-1600°C  [43] 

Lee et al., in press PZT-PZN  Camphene Mould at RT 
Cooling from 

60°C 
No 10-50 m 1200°C 

Piezoelectric 

properties tested 
[42] 

Koh et al., 2007 Ni-YSZ 300 nm Camphene 
Mould at fixed 

temperature 
20°C No 30 m 1100-1400°C  [37] 
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Moon et al., 2003 NiO-YSZ  Water 
Mould at fixed 

temperature 
-30°C Yes 10 m 1400°C Radial porosity [20] 

Moon et al., 2002 
LSCF-

CGO 
 Water 

Mould with bottom 

part immersed in 

freezing bath 

-80°C Yes 10 m 1350°C Thin film [19] 

Tang et al., 2005 SiC 16 m Water 

Mould with bottom 

part immersed in 

freezing bath 

-40°C Yes 300 m? No sintering  [50] 

Yoon et al., 2007 SiC 

Precursor, 

precursor+

powder 

(300 nm) 

Camphene 
Mould at fixed 

temperature 
20 to -40°C Yes 2-30 m 1400°C 

Starting from 

polycarbosilanes 
[52, 53] 

Hwang et al., 2006 Clay  Water 

Mould with bottom 

part immersed in 

freezing bath 

-70°C Yes 20 m? 800°C 
Extremely high 

porosity (>94%) 
[49] 

Kisa et al., 2003 Silica 20 nm Silica sol 

Single crystal 

wafer at fixed 

temperature 

-196°C Yes 3-10 m 600-1000°C  [46] 

Mukai et al., 2004 Silica  Silica gel 
Dipping of mould 

in liquid N2 
-196°C Yes 10 m 

No sintering 

necessary 
 [18] 

Sofie et al., in 

press 
8YSZ 300 nm Camphene 

Cold support, -

25°C 

Cooling from 

55°C 
Yes 2-25 m 1400°C 

Freeze-tape casting 

with porosity gradient 
[16] 

Ren et al., in press TiO2 150 nm Water 
Cold support, -

18°C 
-18°C Yes 15 m 1000°C 

Freeze-tape casting 

with porosity gradient 
[39] 

Bettge et al., 2005 YSZ  Water 

Mould with bottom 

part immersed in 

freezing bath 

-40°C Yes 15-30 m ?  [38] 

Koh et al., 2006 8YSZ  Camphene Mould at RT RT Yes Gradient 1400°C Dense/porous bilayer [56] 

Nishihara et al., 

2005 
Silica  Silica sol 

Dipping in cold 

bath at fixed 

temperature 

-196°C and -

60°C 
Yes 3-40 m 605 and 905°C  [47] 

Nishihara et al., 

2006 

Silica-

alumina 
 Silica sol 

Dipping in cold 

bath at fixed 

temperature 

-196°C Yes 20 m 550°C  [48] 

Deng et al., in 

press 
Glass 6.5 m Water 

Mould at fixed 

temperature 
-55°C Yes 100-150 m 620°C 

Nano TiO2 thin film 

coating 
[44] 

Song et al., 2006 Bioglass  Camphene Mould at 20°C 
Cooling from 

60°C 
No 20-40 m 700-1100°C  [45] 

Deville et al., 2006 HAP 2 m Water 
Temperature 

gradient 

Cooling from 

RT 
Yes 15-40 m 1250-1350°C  [30, 34, 35] 

Lee et al., 2007 HAP 10 m? Camphene 
Mould at fixed 

temperature, 20°C 

Cooling from 

60°C 
No 20-40 m 1250°C  [31] 
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Yoon et al., 2007 HAP 10 m? Camphene 

Mould at fixed 

temperature, 0 to 

35°C 

Cooling from 

60°C 
No 80-220 m 1250°C  [29, 32] 

Moritz et al., in 

press 
HAP 2 m Water 

Dipping in cold 

bath 
-19°C No 20-100 m 1350°C  [33] 

Suestsaga et al., 

2007 
HAP 100 nm Water 

Mould with bottom 

part immersed in 

freezing bath 

-196°C Yes 50 m 1200°C  [36] 

Table 1: Summary of materials, processing conditions and porosity. * in the case of water-based slurries, the porosity in lamellar, and the pore 

dimensions in plane can be defined by a long and a short axis. The highest number indicated here corresponds to the dimension of the short axis. 

See reference [30] for details.
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4. Structure and Properties  

4.1 Structure  

Macroporosity 

The porosity of the sintered materials is a replica of the original solvent crystals. A variety of 

pores morphology can be obtained, depending on the choice of the solvent, slurries formulation and 

the solidification conditions (Fig. 3). Since the solidification is often directional, the porous channels 

run from the bottom to the top of the samples. Homogeneous freezing (i.e., cooling of the fingers at 

constant rate starting from room temperature) results in a more homogeneous ice nucleation [15] 

leading to a lamellar porous architecture (Fig. 3b), with long range order, both in the parallel and 

perpendicular directions of the ice front.  After sintering, the ceramics walls can be completely dense 

with no residual porosity, depending on the sintering conditions. 

 

 

Figure 3 : Typical microstructures obtained by freeze-casting (a) porous alumina using an 

hypoeutectic camphor/naphthalene as a solvent [28] (after K. Araki, Room-Temperature Freer-Casting 

for Ceramics with Nonaqueous Sublimable Solvent Vehicles, Journal of the American Ceramic 

Society, Blackwell Publishing, with permission) (b) porous alumina using water as a solvent [25] (c) 

porous silicon carbide using polycarbosilane as a precursor and camphene as a solvent [52] (after B. 

H. Yoon, Highly Aligned Porous Silicon Carbide Ceramics by Freezing Polycarbosilane/Camphene 

Solution, Journal of the American Ceramic Society, Blackwell Publishing, with permission) and (d) 
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porous alumina using camphene as a solvent [24] (after K. Araki, Porous Ceramic Bodies with 

Interconnected Pore Channels by a Novel Freeze-Casting Technique, Journal of the American 

Ceramic Society, Blackwell Publishing, with permission). 

 

In the particular case of water being used as a solvent, the microstructure is lamellar, with 

lamellar channels between the ceramics walls. This particular morphology can be understood with 

reference to the basic crystallographic (Fig. 4a) and crystal growth characteristics of ice. The ice 

front velocity parallel to the crystallographic c axis is 102 to 103 times lower than perpendicular to 

this axis (Fig. 4b).  After the transition to columnar ice occurred, ice platelets with a very large 

anisotropy can then be formed very fast with ice growing along the a-axes, while the thickness 

(along the c-axis) remains small. The freezing process is easier for crystals whose c-axes are 

perpendicular to the temperature gradient, such that growth along the gradient can occur in the a- or 

b-direction. The crystals with horizontal c-axes will therefore grow at the expense of the others and 

continue to grow upward, in an architecture composed of long vertical lamellar crystals with 

horizontal c-axes. In the final structures, the direction perpendicular to the lamellae corresponds thus 

to the original c-axis of ice crystals (Fig. 4c). 

Similar explanations can be invoked to explain the morphology of the porosity in the sintered 

ceramics. In the case of camphene, the solidification of liquid camphene leads to the formation of 

clearly defined dendrites (Fig. 5), which are reflected in the final structures. Prismatic channels were 

obtained using tert-butyl alcohol as a solvent [54]. Using other solvents will likely provide different 

types of morphologies.  

 

 

Figure 4: Crystal structure of ice (a) and anisotropy of crystal growth kinetics (b), leading to lamellar 

ice crystals. The anisotropy of the growth kinetics is reflected in the final porous structures (c) 

obtained after sublimation and sintering. The direction perpendicular to the ceramic platelets 

corresponds to the limited growth direction of ice crystals.  
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Figure 5: Solidified camphene dendrites [52], leading to the formation of a dendritic porous structure. 

After B. H. Yoon, Highly Aligned Porous Silicon Carbide Ceramics by Freezing 

Polycarbosilane/Camphene Solution, Journal of the American Ceramic Society, Blackwell 

Publishing, with permission. 

 

Orientation of macroporosity 

The pore channels can be oriented, depending on the solidification conditions. In most of the 

cases, the mould in which the slurry is initially poured is left with its bottom in part in contact with a 

cold surface. The solvent crystals are therefore solicited to grow vertically, along the direction of the 

imposed thermal gradient. However, different thermal gradients can be imposed, to induce a 

different anisotropy in the structure. A neat example of such control can be found in the study of 

Moon et al. [20]. Ice was stimulated to grow in the radial direction of the setup, from the inner surface 

of the metal cylinder to its centre region where a Teflon rod was placed. The final tubular structure 

exhibits a radially oriented porosity (Fig. 6), extending from the inside towards the outside of the 

tube. This type of structure could ideally be used for SOFC. 
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.  

Figure 6: Radial porosity in a tubular structure [20]. Reprinted from Materials Letters, 7, Ji-Woong 

Moon, Hae-Jin Hwang, Masanobu Awano and Kunihiro Maeda, Preparation of NiO–YSZ tubular 

support with radially aligned pore channels, 1428-1434, Copyright (2003), with permission from 

Elsevier. 

 

Surface roughness of walls 

The surface of the lamellae exhibits a particular topography, with dendritic-like features, 

running in the solidification direction (Fig. 7a-b). These features are homogeneous in size and 

distribution, but their relative size varies with the freezing conditions, the nature of the solvent, the 

characteristics of the starting powders and the sintering conditions (atmosphere). In the particular 

case of silicon nitride (Fig. 7c), the microstructure reveals the presence of elongated fibrous grains 

protruding from the walls. This particular feature is not related to the freezing conditions, but only 

appears after sintering at rather high temperatures, and is believed to result from a vapor-solid 

transformation taking place during sintering [41]. A different roughness is obtained when camphene is 

used instead of water (Fig. 7d). In general, since the roughness is directly related to the morphology 

of the solvent crystal, every solvent will yield a different roughness. 
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Figure 7: Dendritic surface of (a) alumina using water as a solvent [25] (b) silicon nitride using water 

as a solvent [41] (after T. Fukasawa, Synthesis Of Porous Silicon Nitride With Unidirectionally 

Aligned Channels Using Freeze-Drying Process, Journal of the American Ceramic Society, 

Blackwell Publishing, with permission) and hydroxyapatite using camphene as a solvent [32] (after B. 

H. Yoon, Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene-Based 

Freeze Casting, Journal of the American Ceramic Society, Blackwell Publishing, with permission). 

 

Ceramic bridges 

Other features of these structures are the trans-lamellar ceramic bridges, of two types. The first 

type just corresponds to overgrown dendrites that eventually bridge the gap between two adjacent 

lamellae (Fig. 8). The second type is found in samples made from concentrated slurries. These 

numerous fine features with often-tortuous morphologies are locally bridging the gap between two 

adjacent lamellae. The morphology of these features is sometime quite different to that of the 

dendrites covering the ceramics lamellae, suggesting another formation mechanism. It has been 

proposed that they might be formed because of the specific conditions encountered during the slow 

freezing of highly concentrated solutions. The interaction of inert particles and a moving 

solidification front has been investigated for suspensions with low particles content. In such a case, 

the interaction between particles is not taken into account, which considerably simplifies the 

associated formalism. In the case of highly concentrated solutions, the particle-particle interactions 

cannot be ignored anymore. Eventually, it might considerably affect the pattern formation 

mechanisms. It has previously been shown that the particles themselves may induce morphological 

transitions, such as dendrites tip splitting or healing during growth before being captured [57]. 

Ceramic bridges between lamellae may arise from local ice crystal tip splitting and engulfment of 

particle agglomerates created by particles repelled from the ice-water interface and subsequent tip 

healing. Depending on the magnitude of tip splitting/healing, the entrapped ceramic particles might 

not bridge completely the gap. The phenomenon appears to be dependent on the nature of the solvent 

and will largely depend on the morphology of the growing dendrites. 
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Figure 8: Ceramic bridges in porous lamellar alumina. 

4.2 Properties 

Few properties of freeze-casted ceramics have been measured so far, as most of the attention 

was paid to the control of the structure and the processing conditions. Preliminary reports can 

nonetheless be found on one of the most critical property of cellular ceramics: the compressive 

strength. The strength is of particular importance in the case of intrinsically weak ceramics such as 

calcium phosphate, being considered as potential candidates for bone replacement applications. 

Dramatic improvements of compressive strength of hydroxyapatite (HAP) were reported [17], using 

water as a solvent (i.e., lamellar architecture). Although for high porosity content (typically >60 

vol%) the strength (16 MPa) is comparable to that reported in the literature, it increases rapidly when 

the porosity decreases, reaching 65 MPa at 56% porosity and 145 MPa at 47% porosity. Values 

obtained for these samples are well above those reported so far in the literature. In fact, the strength 

of the porous lamellar HAP is close to that of compact bone. Such high values allow considering the 

potential of these materials for some load-bearing applications. Porous hydroxyapatite was also 

processed by freeze-casting [29, 31, 32] using camphene as a solvent, resulting in very different pores 

morphologies. Interestingly, the trend followed by the compressive strength (Fig. 9) seems to be 

highly dependent on the morphology of the pores. With camphene, the pores are dendritic and the 

structure somewhat close to usual cellular ceramics. With water, the pores are lamellar, and the 

compressive strength reaches much greater values, in particular for lower porosity values, with 

dramatic improvements observed. A possible explanation could be the strong anisotropy of the 

structure in the loading direction and the presence of inorganic bridges between the ceramic layers, 

which might prevent Euler buckling of the ceramic layers. Further investigations are nonetheless 

needed to rationalize these observations and confirm these trends. 
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Figure 9: Compressive strength vs. total porosity, data from references [17, 31, 32, 36, 43, 44, 54]. The 

compressive strength seems to be highly dependent of the morphology of the pores, with much 

higher values measured for freeze-casted ceramics with lamellar and prismatic morphologies, as 

previously reported in reference [17]. 

5. Formation and control of the structure 

Parameters affecting the final structure can be found in all the processing stages: slurry 

formulation and preparation (including the characteristics and properties of the starting powders), 

solidification and sintering. A few parameters are very specific and related to the core of the process: 

the freezing of the slurry. The solidification stage is the most critical with regards of the final porous 

structure; most of the features of the porosity will be created during this stage. 

The formation of regular patterns is a common feature of many solidification processes, such as 

eutectic growth or unidirectional solidification of two-phases systems [17, 58]. Control of the regularity 

and size of the patterns is often a key issue with regards to the final properties of the materials. Many 

of the features of the freeze-casted porous ceramics can be understood by applying generic principles 

of solidification processes. In particular, the physics of water freezing has drawn the attention of 

scientists for a long time, for implications in fields as diverse as cryopreservation [59], cleaning of 

pollutants [60] or even polar ice formation [14, 61]. 

5.1 Formation of the structure: the interaction between the solidification front and the ceramic 

particles 

In order to obtain ceramic samples with a porous structure, two requirements must be satisfied: 
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(1) The ceramic particles in suspension in the slurry must be rejected from the advancing 

solidification front and entrapped between the growing ice crystals. This aspect can be understood 

considering the interaction between the solvent solidification front and the particles in suspensions. 

A simple thermodynamic criterion can be used in a first approach. The thermodynamic condition for 

a particle to be rejected by the solidification front is that there is an overall increase in surface energy 

if the particle is engulfed by the solid, i.e.,  

 (Eq. 1) 

where σsp, σlp and σsl are the interfacial free energies associated with the solid-particle, liquid-particle 

and solid-liquid interface respectively. When this criterion is satisfied and the particles rejected by 

the front, a liquid film should exist between the solidification front and the particle in order to 

maintain the transport of molecules towards the growing crystal. When the velocity of the front 

increases, the thickness of the film decreases. There is a critical velocity, vc, for which this thickness 

is not enough to allow the necessary flow of molecules to keep the crystal growing behind the 

particle, that becomes then encapsulated by the solid. A large amount of theoretical and experimental 

work has been addressing this problem, and several expressions derived for the critical velocity. A 

few examples can be found in the references [62-64]. The main physical parameters to be taken into 

account includes the viscosity of the liquid, the particle size, the thickness of the film and the 

variation of free energy defined in equation 1. Although the complexity of the system leaves enough 

room for discussing the relevance of the various models, they are nonetheless useful to understand 

the influence of the physical parameters on the behavior of the systems and the morphology of the 

materials resulting from these interactions. These aspects are discussed in the next part. 

 

(2) The ice front must have a non-planar morphology. Indeed, if the front is planar and the particles 

rejected, all the particles are collected on one side of the sample once solidification is achieved. This 

effect is being used in the purification of pollutants [60]. However, to form porous structures, particles 

redistribution must occur; the particles must be rejected from the solidification front and collected 

between the arms of the solidification front. The morphology of the front will then dictate the 

architecture of the final materials. At the very beginning of solidification (Fig. 10a), the interface 

(the front) is planar, and must somehow undergo a transition towards an irregular morphology, i.e., 

cellular, lamellar, or even more complex dendritic morphologies. This transition can be triggered by 

different mechanisms. One mechanism is the inherent thermodynamic instability of the interface 

(Fig. 10b), also known as a Mullins-Sekerka instability [65]. The development of the instability is 

based on supercooling effects, building up with solute rejection ahead of the interface. Another 



 19 

mechanism is related to the presence of the particles. In that case, the instability is due to the reversal 

of the thermal gradient in the liquid ahead of the interface and behind the particle (Fig. 10c) [66, 67]. It 

is not clear at this point which of these mechanisms is dominating. Further discussion can be found 

in the reference [25]. 

 

 

Figure 10: Destabilization of the interface and possible mechanisms triggering this morphological 

transition. 

5.2 Influence of processing and physical parameters 

Solvent – The choice of the solvent will be crucial both in regards of the processing conditions and 

on the characteristics of the structure that is desired. If freeze-casting was originally developed using 

water as a solvent, alternative solutions are considered today. Requirements for such alternative 

includes solidification temperature, viscosity of the liquid, limited volume change associated to the 

solidification, high vapor pressure in solid state to allow sublimation under reasonable conditions of 

temperature and pressure, and, of course, environmental issues and price considerations. The 

relevant characteristics of the currently tested solvent are summarized in table 2. Among the other 

potential candidates, preliminary investigations [68] with polymer systems have revealed liquid 

carbon dioxide (CO2) as a suitable solvent. The structures obtained using carbon dioxide are 

somewhat similar to those obtained with camphene, with a complex dendritic structure. 

 

Solvent Water Camphene 
Naphthalene-

Camphor 
Tert-butyl alcohol 

Solidification 

temperature 

0°C or lower, 

depending on slurry 

composition 

44-48°C 

Naphthalene: 80°C 

Camphor: 180°C 

Eutectic: 31°C 

25.3°C  

8°C for the slurry 

Typical slurry 

preparation 
RT 60°C 60°C RT 
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temperature 

Viscosity 1.78 mPa.s at 0°C 
1,4 mPa.s at 

47°C 

Naphthalene: 0,91 

mPa.s at 80°C 

Camphor: 0,63 mPa.s 

at 180°C 

 

Volume change 

associated to 

solidification 

9% -3.1% 
Negative. Depends 

on the composition. 
2% 

Vapor pressure in 

solid state 
0,1 kPa at -20°C 2 kPa at 55°C 

Naphthalene: 0,13 

kPa at 52°C 

Camphor: 0,13 kPa at 

41°C 

6.4 kPa at 40°C 

Usual sublimation 

conditions 

Freeze-dryer, trap at -

50°C or -85°C, 

pressure ? 

Room 

temperature and 

atmospheric 

pressure 

Room temperature 

and atmospheric 

pressure 

85°C, atmospheric 

pressure 

Pores morphology Lamellar channels 
Dendritic 

channels 

Dendritic channels or 

dense, depending on 

the composition 

Prismatic channels 

Environmental 

friendliness (Hazard 

Codes) 

- 
Highly 

flammable (F) 

Highly flammable 

(F), harmfull (Xn), 

dangerous for the 

environment (N) 

Highly flammable 

(F), harmfull (Xn) 

Price - >100€/kg >40€/kg >300€/kg 

Comments 

Very strong 

anisotropy of surface 

tension, leading to 

the formation of 

lamellar ice crystals 

 

Inhibition of particles 

rejection with the 

eutectic composition 

(no residual porosity) 

Freeze-gelcasting 

with acrylamide. 

High strength of 

green body. 

Table 2: Main characteristics of the solvents used for freeze-casting and resulting characteristics of 

the porosity. 

 

Ceramic powder – The properties of the starting powder might have a major effect on the 

characteristics of the final materials, although little results have been reported so far. The core of the 

process being based on the interaction between the particles and the solidification front, a number of 

parameters are susceptible to modify these interactions, including the size of the particles, their size 

distribution, their shape, surface roughness, and surface tension. The only influence reported so far is 

that of the particle size [25], affecting the relationship between the solidification kinetics and the 
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structure wavelength. Further investigations are needed to clarify these effects. The limits acceptable 

for the particle size are discussed in the final part. 

Slurry formulation – As in any ceramic process, the formulation of the slurry must be carefully 

optimized. To ensure a homogeneous structure in the sintered materials, any segregation effects must 

be avoided. Slurries must be stable during the entire duration of the freezing stage. The 

microstructure can also be modified by varying the concentration of the starting slurry. Since the 

solvent initially present in the slurry is converted first into solid that is later eliminated to form the 

porosity, the pore content can be adjusted by tuning the slurry characteristics. The final porosity of 

the material is directly related to the volume of solvent in the suspension. From the data plotted in 

Fig. 11, it appears that a wide range of porosity content can be achieved through freeze-casting, 

approximately from 25 to 90%. The reasons for these limits are described in the final part of this 

review. The formulation has also been modified through additives, like polystyrene [26] or glycerol 

[12], to achieve certain effects. These additives are likely to affect the viscosity, surface tension and 

modify the supercooling effects. Additives can be desirable to modify the morphology of the 

porosity (through the shape of the solvent crystals) or modify the interaction between the particles 

and the solidification front. Glycerol, for example, well-known for its anti-freeze effects in other 

applications, was found to disrupt the morphology of the solidification front [12], and the resulting 

structures were dense. 
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Figure 11: Total porosity vs. slurry solid loading (see Table 1 for references). No interconnected 

porosity was found in the studies of Sofie [12] (addition of glycerol) and Moritz [69, 70]. 

 

Solidification conditions – The directionality of the solidification is critical in regards of the desired 

directionality of the porosity. When the slurries are solidified without any temperature gradient 

applied, the crystals can nucleate at any place and have no preferred growth direction. This results in 

structures with a random orientation of the porosity. However, when the experimental setup allows 

imposing a defined temperature gradient, the solvent crystals are forced to grow along the 

temperature gradient. Provided the temperature field is carefully controlled, crystals and hence 

resulting pore channels can run through the entire samples, reaching dimensions of a few 

centimeters. The tortuosity of the porosity in such cases is close to 1. Besides the directionality, the 

nucleation conditions can be important. If the slurry is partially quenched, i.e., poured over a cold 

finger maintained at a constant and negative temperature, the initial freezing is not steady. Although 

lamellae and channels are observed all over the sample, their orientation over the cross-section 

parallel to the ice front is completely random. Colonies of locally aligned pores are observed, but no 

long-range order is found (see Fig. 4 of reference [25]). Homogeneous freezing (i.e., cooling of the 

fingers at constant rate starting from room temperature) results in a more homogeneous ice 

nucleation leading to an oriented and continuous lamellar porous architecture, with long range order, 

both in the parallel and perpendicular directions of the ice front. Solidification kinetics was also 

found to have a dramatic influence on the structure. When the freezing kinetics is increased, i.e., the 

solidification front speed increases, the width of the channels and of the lamellae is drastically 

affected (Fig. 12). The faster the freezing rate, the finer is the microstructure. The empirical 

dependence between the wavelength λ (or the lamellae thickness) and the speed of the ice front in the 

direction parallel to the temperature gradient (v) can be described with a simple power law (λ = A.v-

n). 
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Figure 12 : Lamellae thickness vs. ice front velocity, porous lamellar alumina (after reference [17]). 

 

Sintering – As with any other ceramic process, the sintering stage can be optimized to control the 

porosity/density of the final piece [21]. Besides the densification of the walls, the effect of sintering on 

the structure and macroporosity characteristics has not been tackled yet, and the mechanisms 

controlling the shrinkage have not been identified. The only modification reported is the formation of 

elongated fibrous grains during the sintering of freeze-casted porous silicon nitride, which was 

believed to be due to some vapor-solid phase transformation. 

6. Limits 

6.1 Solid content in slurry and green body density 

If the particles are rejected by the solidification front, the particle concentration in the 

remaining melt areas will become larger. Dendrites of the solidified solvent grow into the liquid, 

pushing the ceramic particles into the interdendritic spaces. Eventually, the particle redistribution 

ceases, and the solid/liquid interface moves into the interparticles spaces (Fig. 13). This 

phenomenon has been called a ‘‘breakthrough’’ [55] as the solid/liquid interface breaks into the 

suspension. A simple yet efficient model has been developed by Shanti et al. [55], taking into 

account the capillary force pushing the particles with the interface and the countering force, i.e., 

the resultant of the osmotic pressure of the suspension. The particle volume fraction at 

breakthrough was found to be determined by the maximum packing of particles at the point of 

jamming, modified by a small term dependent upon particle size and surface tension. The 

predictions agreed with observation for the alumina–camphene system within about 4%, which is 
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quite satisfying considering the simplicity of the model used. As a consequence, the density of 

the green body after sublimation is always the same, providing the formulation of the slurry is 

kept constant. Little influence of the nature of the solvent and characteristics of the particles was 

found. Another consequence of this analysis is the existence of a maximum solid content in the 

formulation of the slurry. If the solid content already exceeds the breakthrough concentration, the 

solid/liquid interface moves into the interparticles space before any particle redistribution can 

occur. Particles distribution in the frozen samples is homogeneous, and the green body obtained 

after sublimation will not exhibit any continuous porosity resulting from particles-free dendrites. 

 

 

Figure 13: Particles redistribution during solidification. Particles are concentrated between the 

solidified dendrites (a-b) until the capillary pressure exceeds the osmotic pressure (c), at which 

point the solid/liquid interface moves into the interparticles space (d). 

6.2 Directionality of the porosity 

The directionality of the porosity can be controlled by the solidification conditions, 

unidirectional solidification yielding similarly oriented structures. Refinements have nonetheless be 

developed, such as solidification in a radial direction [20], to process ceramic tubes with a radial 

porosity, a feature making them useful as filters (Fig. 6). Inducing a complex orientation of the 

porosity will directly depend on the ability to properly and homogeneously control the direction of 

propagation of the solidification front, becoming thus an experimental setup issue. Inspiration can 

also be taken from investigations of porous polymers obtained through the same approach, for 

example where complex interpenetrating materials were obtained. This was done by freezing in the 
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same direction as the original aligned channels or perpendicular to it. Rather unique structures were 

obtained with grid-like morphologies [62]. Some of these concepts could likely be extended to porous 

ceramics. 

6.3 Walls thickness, pore size and solidification kinetics 

A number of studies [17, 23, 25, 30, 32, 47, 55] have revealed the relationships between the 

solidification kinetics (i.e., the solidification front speed) and the size of the porosity (or the 

structure) of the freeze-casted ceramics. Such relationships are commonly found in processing 

techniques based on directional solidification, including metallic and polymeric [62] materials. 

Criteria were developed to predict the dendritic spacing as a function of the solidification kinetics, 

and several experimental parameters have been identified. The faster the freezing rate, the finer the 

resulting structure, as shown before. Limits are nevertheless encountered in the case of porous 

ceramics, due to the underlying phenomena: the solidification of the solvent and the interaction 

between the solidification front and the ceramic particles. Preliminary results can be found in 

reference [25], although a lot of work is still necessary to investigate these limits. One limit is related 

to the critical velocity for entrapment [71]. Above this critical velocity, particles are entrapped by the 

moving interface and porosity is disappearing from the final structure. Upgrading the experimental 

setup to increase the freezing kinetics will be helpless with this issue beyond a certain point, and 

obtaining cooling rate in the range of these obtained during the solidification of metallic alloys will 

be useless. Several parameters seem nonetheless to affect this critical velocity, the most important 

being probably the solid content in the slurry, the particle size and the properties of the solvent. 

These limits are schematically summarized in Fig. 14. 
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Figure 14 : Strategies and limits for controlling the structure: schematic plot of wavelength vs. ice 

front velocity [25]. The exponent n of the empirical law is dependent on the particle size d, though the 

function n = f(d) is not monotonic; an optimum of d is encountered where the exponent n is 

maximum.  Very fast cooling rates, region (a), will result in the ice front trapping the particles and 

the formation of a dense material. When the velocity is decreased below the critical value for particle 

entrapment, vc, the particles are expelled from the growing ice but if the speeds are fast enough the 

ice will grow with a columnar microstructure, region (b). Slower velocities will result in the 

formation of lamellar ice. However, if the velocity is still fast or, equivalently, the gradient in 

temperature small enough, the balance between the preferential growth direction and the gradient 

direction will result in the growth of lamellae tilted with respect to the later, region (c).  As the 

velocity decreases (or the gradient increases) the lamellae will align with the direction of the 

temperature gradient, region (d). 

6.4 Pores morphology 

The morphology and characteristics of the pores are influenced by several independent or 

interconnected parameters, as shown previously. Any modification of these parameters will have a 

direct repercussion on the structure of the materials. Three main parameters have nevertheless been 

identified as being critical with regards to this issue: 

Nature of the solvent – This one is probably the most critical one. The crystallographic properties of 

the solvent in its solid state will define the main appearance of the structure, i.e., lamellar with water, 

dendritic with camphene or prismatic with tert-butyl alcohol [54]. Obtaining radically different 
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morphologies will imply a new choice of solvent with different properties, and will be restricted by 

the requirements exposed previously. 

Freezing conditions – Both the kinetics and the directionality of the freezing conditions can be used 

to modify the pores morphology. For the reasons previously exposed, the freezing conditions will 

affect both the pore size and the pore morphology, so that these two parameters are usually 

interdependent. 

Particle size – The homogeneity of the porous structure is lost when the particle size become too 

similar to the size of the solvent crystals. Morphological features of the crystals cannot be well 

replicated into the final structure if the size of the particle is in the range of order of that of the 

interdendritic spaces. Hence, the particle size must be kept below the wavelength of the desired 

structure. Micron-sized particles can obviously not be used to create nanometer-sized structure (Fig. 

15). Freeze-casting seem to be appealing for creating porous structures with a pore size smaller than 

a hundred microns. In that case, to ensure a homogeneous and well defined structure, powders with 

submicronic mean particle size seem to be desirable. Distribution of the particle size should also be 

taken into account for the same reasons, and the presence of large particle or particles agglomerates 

is detrimental to the homogeneity of the final structure. Finally, the critical velocity for particles 

entrapment is inversely proportional to the particle size. Using larger particles will lower this critical 

velocity and processing conditions might fall in the range were fast freezing kinetics (desirable to get 

small pores) cannot be used. 

 

 

Figure 15: Influence of particle size on pores morphology. Details of the crystals are well replicated 

in the case of small particles (a) whereas such details are lost with large particles (b). 
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6.5 Processing time and dimensions of the pieces 

Two stages of the process are critical in regards of the total processing time and the dimensions 

of the final pieces: the freezing stage and the sublimation stage. 

Freezing time – The freezing time required will depend on two parameters: the desired structure 

wavelength (i.e., pore size or wall thickness) and the dimensions of the final piece. Regarding the 

structure wavelength, freeze-casting seem to offer unique opportunities for dimensions below a 

hundred microns. Within this range, the freezing kinetics required are rapid enough so that the 

processing times remain reasonable (a few minutes for pieces of a few centimeters). Reaching 

smaller pores will imply faster freezing, so that the freezing time is even further reduced. The desired 

dimensions of the pieces must also be taken into account. Most of the investigations reported so far 

were dealing with sample’s thickness in the range 1-3 cm, i.e., at the lab scale. Freezing time will 

more or less linearly increase with the thickness of the sample, but maintaining the homogeneity of 

the temperature field and the freezing kinetics (which control the homogeneity of the porosity) will 

become problematic for pieces of larger dimensions. This will imply both a better control of the 

formulation to ensure its stability during the solidification and improved experimental setup with 

optimal temperature control. 

Sublimation – The time necessary for sublimating the solvent is directly dependent on the 

dimensions of the pieces to be treated. While kept in the centimeter range, sublimation can occur 

overnight. This stage must nevertheless be carefully controlled to avoid any formation of defects 

(cracks, distortion) during the solid-vapor phase transition, and such control might become 

problematic for larger pieces. Technical solutions are already available to treat pieces of larger 

dimensions. 

7. Applications of porous freeze-casted ceramics 

The potentialities offered by the unique structures obtained by freeze-casting have drawn 

attention for a number of very diverse applications, although very few figures of functional 

properties have been reported so far. The applications considered so far belongs to two main groups: 

Biomaterials – [17, 24, 30-35, 45, 69, 70]. The structure of the porous ceramics obtained by freeze-casting 

being very similar to that of natural biomaterials such as nacre or bone [72], biomaterials has become 

a field with potentially important applications of this technology, with particular attention to tissue 

engineering. Preliminary reports of dramatic improvements of the compressive strength of freeze-

casted hydroxyapatite seem to confirm that potential [17], and the assessment of the biological 

response of these materials is under way in various laboratories. 
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Materials for chemical processes and energy sources – including SOFC, electrodes, catalysts, 

sensors, filtration/separation devices [13, 16, 18-21, 37, 38, 40, 41, 43, 47, 48, 52, 56, 73, 74], and photocatalysis for air 

or water purification [44]. The unique morphology of the porosity is of interest for these applications, 

where open structures with good connectivity and low tortuosity (close to 1, ensuring optimal access 

of the fluids to the reaction sites), large surface area (large number of electrochemical reaction sites), 

dense ceramic walls (good conductivity) and good mechanical properties are required. The 

directionality of the porosity can be used to optimize the species transport properties while the dense 

walls will ensure optimal conducting properties and mechanical reliability. The versatility of the 

process allows considering a wide range of technical ceramics or composites (e.g., NiO-YSZ), and 

the typical dimensions of the samples processed so far appear to be suitable for most of these 

applications. 

A recent report of freeze-casted piezoelectrics [42] can also be found, with high hydrostatic figures of 

merit. Such materials could find applications as actuators, transducers and in particular low 

frequency hydrophones. 

8. Perspectives 

Following a promising beginning, a bright future seems to open for freeze-casted porous 

ceramics. Perspectives for the technology can be classified along two axes: the development of the 

technique and its underlying science. The present review has highlighted strategies and limits for 

improving the structure of the materials and the experimental setups. Incremental developments can 

be expected in the following aspects (although things never turn out quite the way you expect, of 

course…): 

- Improved control of the structure by improvements of the setup, in particular with regards to 

the homogeneity of the temperature field and the directionality of freezing. Inspiration can be 

taken from setups developed for freeze-casting of polymers, such as the power-down setup 

used to process porous collagen plates [15]. The improvement of the setup should probably 

consider the issues associated with the scaling up of the process. 

- Development of functional structures, either by an improvement of the experimental setup, 

such as the recent freeze-tape casting developments [16, 39], or by a post-processing 

functionalisation of the structures, as recently reported with the nano-TiO2 coating [44] 

deposited on freeze-casted porous ceramics, to add a photocatalysis function. Such 

functionalisation will be required for the majority of the applications considered so far, from 

biomaterials scaffolds to SOFC. 
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- The development of functional structure will be probably benefit from the development of 

new materials and corresponding processing strategies, such as the silicon carbide obtained 

after pyrolysis of freeze-casted precursors [52], or complex composites (polymer/ceramic, 

metal/ceramic, ceramic/ceramic), obtained either in one-step [62] or two-steps approaches [17]. 

From a fundamental point of view, a large number of aspects of the processes are still to be 

fully understood. The core problem of the process, the particles/solidification front interactions, is 

complex to understand and model, and both theoretical and experimental work will be welcome. 

Preliminary modeling work has been undertaken [75] and should be highly beneficial to control and 

optimizes the structure of freeze-casted porous ceramics. This analysis could largely benefit from the 

knowledge derived from other fields involved with the same underlying science. 
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