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Abstract

In the context of K—armed stochastic bandits with distribution only assumed to be supported by
[0, 1], we introduce a new algorithm, KL-UCB-switch, and prove that is enjoys simultaneously a
distribution-free regret bound of optimal order v/K T and a distribution-dependent regret bound of
optimal order as well, that is, matching the xInT" lower bound by Lai and Robbins (1985) and
Burnetas and Katehakis (1996).

Keywords: K-armed stochastic bandits, distribution-dependent regret bounds, distribution-free
regret bounds

1. Introduction and brief literature review

Great progress has been made, over the last decades, in the understanding of the stochastic K-
armed bandit problem. In this simplistic and yet paradigmatic sequential decision model, an agent
can at each step ¢ € N* sample one out of K independent sources of randomness and receive the
corresponding outcome as a reward. The most investigated challenge is to minimize the (pseudo-)
regret, which is defined as the difference between the cumulated rewards obtained by the agent and
by an oracle knowing in hindsight the distribution with largest expectation.

After Thompson’s seminal paper (Thompson, 1933) and Gittins’ Bayesian approach in the
1960s, Lai and his co-authors wrote in the 1980s a series of articles laying the foundations of a
frequentist analysis of bandit strategies based on confidence regions. Lai and Robbins (1985) pro-
vided a general asymptotic lower bound, for parametric bandit models: for any reasonable strategy,
the regret after 7" steps grows at least as xIn(7"), where « is an informational complexity measure
of the problem. In the 1990s, Agrawal (1995) and Burnetas and Katehakis (1996) analyzed the
UCB algorithm, a simple procedure where at step ¢ the arm with highest upper confidence bound
is chosen. The same authors also extended the lower bound by Lai and Robbins to non-parametric
models.

In the early 2000s, the much noticed contributions of Auer et al. (2002a) and Auer et al. (2002b)
promoted three important ideas.

(© May 2018 A. Garivier, H. Hadiji, P. Ménard & G. Stoltz.
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1. First, a bandit strategy should not address only specific statistical models, but general and
non-parametric families of probability distributions, e.g., bounded distributions.

2. Second, the regret analysis should not only be asymptotic, but should provide finite-time
bounds.

3. Third, a good bandit strategy should be competitive with respect to two concurrent notions
of optimality: distribution-dependent optimality (it should reach the asymptotic lower bound
of Lai and Robbins and have a regret not much larger than x In(7")) and distribution-free
optimality (the maximal regret over all considered probability distributions should be of the
optimal order \/ﬁ).

These efforts were pursued by further works in those three directions. Maillard et al. (2011)
and Garivier and Cappé (2011) simultaneously proved that the distribution-dependent lower bound
could be reached with exactly the right multiplicative constant in simple settings (for example, for
binary rewards) and provided finite-time bounds to do so. They were followed by similar results for
other index policies like BayesUCB (Kaufmann et al., 2012) or Thompson sampling (Korda et al.,
2013).

Initiated by Honda and Takemura for the IMED algorithm (see Honda and Takemura, 2015
and references to earlier works of the authors therein) and followed by Cappé et al. (2013) for the
KL-UCB algorithm, the use of the empirical likelihood method for the construction of the upper
confidence bounds was proved to be optimal as far as distribution-dependent bounds are concerned.
The analysis for IMED was led for all (semi-)bounded distributions, while the analysis for KL-
UCB was only sucessfully achieved in some classes of distributions (e.g., bounded distributions
with finite supports). A contribution in passing of the present article is to also provide optimal
distribution-dependent bounds for KL-UCB for families of bounded distributions.

On the other hand, classical UCB strategies were proved not to enjoy distribution-free optimal
regret bounds. A modified strategy named MOSS was proposed by Audibert and Bubeck (2009)
to address this issue: minimax (distribution-free) optimality was proved, but distribution-dependent
optimality was then not considered. It took a few more years before Ménard and Garivier (2017) and
Lattimore (2016) proved that, in simple parametric settings, a strategy can enjoy, at the same time,
regret bounds that are optimal both from a distribution-dependent and a distribution-free viewpoints.

Main contributions. In this work, we generalize the latter bi-optimality result to the non-para-
metric class of distributions with bounded support, say, [0, 1]. Namely, we propose the KL-UCB-
switch algorithm, a bandit strategy belonging to the family of upper-confidence-bounds strategies.
We prove that it is simultaneously optimal from a distribution-free viewpoint (Theorem 1) and from
a distribution-dependent viewpoint in the considered class of distributions (Theorem 2).

We go one step further by providing, as Honda and Takemura (2015) already achieved for
IMED, a second-order term of the optimal order — In(In(7")) in the distribution-dependent bound
(Theorem 3). This explains from a theoretical viewpoint why simulations consistently show strate-
gies having a regret smaller than the main term of the lower bound of Lai and Robbins (1985). Note
that, to the best of our knowledge, IMED is not proved to enjoy an optimal distribution-free regret
bound; only a distribution-dependent regret analysis was provided for it.

Beyond these results, we took special care of the clarity and simplicity of all the proofs, and all
our bounds are finite time, with closed-form expressions. In particular, we provide for the first time
an elementary analysis of performance of the KL-UCB algorithm on the class of all distributions
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over a bounded interval. The study of KL-UCB in Cappé et al. (2013) indeed remained somewhat
intricate and limited to finitely supported distributions. Furthermore, our simplified analysis allowed
us to derive similar optimality results for the anytime version of this new algorithm, with little if no
additional effort (see Theorems 4 and 5).

Organization of the paper. Section 2 contains the presentation of the KL-UCB-switch algorithm,
the precise statement of the aforementioned theorems, and corresponding results for an anytime ver-
sion of the KL-UCB-switch algorithm. Section 3 discusses some numerical experiments comparing
the performance of the KLL.-UCB-switch algorithm to competitors like IMED or KL-UCB. Section 5
contains the statements and the proofs of several results that were already known before, but for
which we sometimes propose a simpler derivation. All technical results needed in this article are
thus stated and proved from scratch (e.g., on the IC;,,¢ quantity that is central to the analysis of IMED
and KL-UCB, and on the analysis of the performance of MOSS), which makes our paper fully self-
contained. These known results are used as building blocks in Section 4, where the main results of
this article are proved, up to some more sophisticated bound whose analysis is detailed in Section 6.
Technical arguments are deferred to the appendices.

2. Setting and statement of the main results

We consider the simplest case of a stochastic bandit problem, with finitely many arms indexed
by a € {1,..., K}. Each of these arms is associated with an unknown probability distribution v,
over [0,1]. We call v = (v4, ..., vk ) a bandit problem over [0, 1]. At each round ¢ > 1, the player
pulls the arm A; and gets a real-valued reward Y; drawn independently at random according to the
distribution v 4,. This reward is the only piece of information available to the player.

A typical measure of the performance of a strategy is given by its regret. To recall its definition,
we denote by E(v,) = 1, the expected payoff of arm a and by A, its gap to an optimal arm:

pr= max pg o and A=t~ fia

Arms a such that A, > 0 are called suboptimal arms. The expected regret of a strategy equals

T
d v

t=1

Ry =Tup —E =Tu —E

T K T
Zum] => ALE[N(T)] where No(T) = Ta,_q).
a=1 t=1

t=1
The first equality above follows from the tower rule. To control the expected regret, it is thus
sufficient to control the E [Na(T)} quantities for suboptimal arms a.

Reminder of the existing lower bounds. The distribution-free lower bound of Auer et al. (2002b)
states that for all strategies, forall 7' > 1 and all K > 2,

1
sup Ry > o min{\/KT, T} , (1)

where the supremum is taken over all bandit problems v over [0, 1].

We denote by P[0, 1] the set of all distributions over [0, 1]. The key quantity in stating distribution-
dependent lower bounds is based on KL, the Kullback-Leibler divergence between two probability
distributions. For v, € P[0, 1] and z € [0, 1],

Kint(Va, ) = inf{KL(Va,I/;) . v, €Pl0,1] and E(V)) > :1:},

3
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where E(v),) denotes the expectation of the distribution »/, and where by convention, the infimum
of the empty set equals +00. As essentially proved by Lai and Robbins (1985) and Burnetas and
Katehakis (1996)—see also Garivier et al., 2018—, for any “reasonable” strategy, for any bandit
problem v over [0, 1], for any suboptimal arm a,

E|N,(T
lim inf [ al )] > 1

= . 2
T—00 InT Kint (Va, %) @

By “reasonable” strategy, we mean a strategy that is uniformly fast convergent on P[0, 1], that is,
such that for all bandit problems v over [0, 1], for all suboptimal arms a,

Va >0, E[No(T)] = o(T?).

For uniformly super-fast convergent strategies, that is, strategies for which there exists a constant C'
such for all bandit problems v over [0, 1], for all suboptimal arms a,

E[N.(T)] _ C

In7T A2’
the lower bound above can be strengthened into: for any bandit problem v over [0, 1], for any
suboptimal arm a,
InT
E(NJ(T)| > ———
[ a< )} ,Cinf(Vavu*)
see Garivier et al. (2018, Section 4). This order of magnitude — In(In 7") for the second-order term

in the regret bound is optimal, as follows from the upper bound exhibited by Honda and Takemura
(2015, Theorem 5).

—Q(In(InT)), 3

2.1. The KL-UCB-switch algorithm

Algorithm 1 Generic index policy
Inputs: index functions U,
Initialization: Play each arm a = 1,. .., K once and compute the U, (K)
fort=K+1,...,Tdo

Pull an arm A; € argmax U, (t — 1)
a=1,....K
Get a reward Y; drawn independently at random according to v 4,

end for

For any index policy as described above, we have N, (t) > 1 for all arms a and ¢ > K and may
thus define, respectively, the empirical distribution of the rewards associated with arm a up to round
t included and their empirical mean:

1 1

t t
) = o 2 by and ) =B = 5 3 Ve biamn

where d,, denotes the Dirac point-mass distribution at y € [0, 1].
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The MOSS algorithm (see Audibert and Bubeck 2009) uses the index functions

Mgy def ~ 1 T
U(t) —ua(t>+\/2Na(t) ln+<KNa(t)>’ )

where In denotes the nonnegative part of the natural logarithm, In; = max{In, 0}.
We also consider a slight variation of the KLL-UCB algorithm (see Cappé et al. 2013), which we
call KL-UCB™ and which relies on the index functions

Us-(t) & sup{u € 0.1 Kur (a0 < 550+ (7o) } . )

We introduce a new algorithm KL-UCB-switch. The novelty here is that this algorithm switches
from the KL-UCB-type index to the MOSS index once it has pulled an arm more than f(7, K)
times. In the sequel we will take f(T,K) = |(T/K)'/5|. More precisely, we define the index
functions

Ua(t) = {Uf(t) if Na(t) < f(T, K)

UM(t) it No(t) > f(T, K)

2.2. Optimal distribution-dependent and distribution-free regret bounds (known horizon 7°)

We first consider a fixed and beforehand-known value of T'. The proofs of the theorems below
are provided in Section 4.

Theorem 1 (Distribution-free bound) Given T' > 1, the regret of the KL-UCB-switch algorithm,
tuned with the knowledge of T and the switch function f(T,K) = |(T/K)'5|, is uniformly
bounded over all bandit problems v over |0, 1] by

Rr < (K —1)+25VKT,

KL-UCB-switch thus enjoys a distribution-free regret bound of optimal order v KT, see (1).
The MOSS strategy by Audibert and Bubeck (2009) already enjoyed this optimal regret bound.

Theorem 2 (Distribution-dependent bound) Given T' > 1, the KL-UCB-switch algorithm, tuned
with the knowledge of T and the switch function f(T,K) = |(T/K)'Y?|, ensures that for all
bandit problems v over [0, 1], for all sub-optimal arms a,

InT

E[N,(T)] < Kot (Ve 1)

+ Op ((ln T)2/3) ,

where a finite-time, closed-form expression of the Or ((ln T )2/ 3 ) term is the sum of the bounds (13)
and (16) for the choice § = (InT)~1/3,

By considering the exact same algorithm but by following a more sophisticated proof we may
in fact get a stronger result.
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Theorem 3 (Distribution-dependent bound with a second-order term) We actually have

InT —InlnT
E[Na(T)]<w

< + Op(1),
Kinf(”aa;u*) T( )

where a finite-time, closed-form expression of the O (1) term is the sum of the bounds (13) and (39)
for the choice § = T—1/5.

KL-UCB-switch thus enjoys a distribution-dependent regret bounds of optimal orders, see (2)
and (3). This optimal order was already reached by the IMED strategy by Honda and Takemura
(2015) on the model P[0, 1]. The KL-UCB algorithm studied, e.g., by Cappé et al. (2013), only
enjoyed optimal regret bounds for more limited models; for instance, for distributions over [0, 1]
with finite support. In the analysis of KL-UCB-switch we actually provide in passing an analysis of
KL-UCB for the model P[0, 1] of all distributions over [0, 1].

2.3. Adaptation to the horizon 7' (an anytime version of KL-UCB-switch)

A standard doubling trick fails to provide a meta-strategy that would not require the knowledge
of T'and have optimal O(v/KT) and (140(1)) (InT') /Kint (va, *) bounds. Indeed, there are first,
two different rates, v/T" and In T', to accommodate simultaneously and each would require different
regime lengths, e.g., 2" and 22", respectively, and second, any doubling trick on the distribution-
dependent bound would result in an additional multiplicative constant in front of the 1//Cip¢ (v, 1*)
factor. This is why a dedicated anytime version of our algorithm is needed.

For technical reasons, it was useful in our proof to perform some additional exploration, which
deteriorates the second-order terms in the regret bound. Indeed, we define the augmented explo-
ration function

o(z) =Ing (z(1 + In? z)) (6)

and the corresponding anytime index

SUP{M € [0,1] ’ Kint (7a(t), 1) < Nj(t) S”(szta(t))} if Ny (t) < f(t, K)

U () =

ﬁa(t)+\/2N1(t)so<K§a(t)) if Nu(t) > f(t, K)

Theorem 4 (Anytime distribution-free bound) The regret of the anytime version of KL-UCB-
switch algorithm above, tuned with the switch function f(t, K) = | (t/K)Y?|, is uniformly bounded
over all bandit problems v over |0, 1] as follows: for all T > 1,

Ry < (K — 1)+ 46VKT

Theorem 5 (Anytime distribution-dependent bound) The anytime version of KL-UCB-switch
algorithm above, tuned with the switch function f(t, K) = |(t/K)'?|, ensures that for all bandit
problems v over [0, 1], for all sub-optimal arms a,

BN 1
imsu <
T%oop InT ,Cinf(Vaa N*)
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We provide the proofs of the two theorems in Appendix C. The distribution-free analysis is
essentially the same as in the case of a known horizon, although the additional exploration required
an adaptation of most of the calculations. Note also that the simulations detailed below suggest that
all anytime variants of the KL-UCB algorithms (KL-UCB-switch included) behave better without
the additional exploration required, i.e., with In as the exploration function.

3. Numerical experiments

We provide here some numerical experiments comparing the different algorithms we refer to in
this work. The KL-UCB-switch, KL-UCB, and MOSS algorithms are used in their anytime versions
as described in Section 2.1 and Section 2.3. However, we stick to the natural exploration function
Iny (t/(KNy(t))), ie. without extra-exploration.

For KL-UCB-switch we actually consider a slightly delayed switch function, different from the
one in our theoretical analysis : f(¢, K) = [t/K |%/°. While our choice f(t, K) = |t/K |/ ap-
peared most naturally in the proofs, many other choices were possible at the cost of higher constants
in one of the two regret bounds.

Distribution-dependent bounds. We compare in Figure 1 the distribution-dependent behaviors
of the algorithms. For the two scenarios with truncated exponential or Gaussian rewards we also
consider the appropriate version of the kl-UCB algorithm for one-parameter exponential family
(see Cappé et al., 2013), with the same exploration function as for the other algorithms; we call
these algorithms kl-UCB-exp or kl-UCB-Gauss, respectively. The parameters of the middle and
right scenarios were chosen in a way that, even with the truncation, the kl-UCB algorithms have a
significantly better performance than the other algorithms. (This is the case because they are able to
exploit the form of the underlying distributions.) Note that the kl-UCB-Gauss algorithm reduces to
the MOSS algorithm with the constant 202 instead of 1/2.

As expected the regret of KL-UCB-switch is an interpolation between the one of MOSS and of
KL-UCB.

. Average regret (Normalized for 10000 rounds. Average regret (Normalized for 10000 rounds;
Average regret (Normalized for 10000 rounds) 9 gret ( ) 9 gret ( )
17.5 oss — Moss 357 — moss
T MED IMED IMED
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Figure 1: Regrets approximated over 10, 000 runs, shown on a log-scale; distributions of the arms consist of:

Left: Bernoulli distributions with parameters (0.9, 0.8)

Middle: Exponential distributions truncated on [0, 1], with parameters (0.15, 0.12, 0.1, 0.05)

Right: Gaussian distributions truncated on [0, 1], with means (0.7, 0.5, 0.3, 0.2) and same standard deviation o = 0.1
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Distribution-free bounds. Here we also consider the UCB algorithm of Auer et al. (2002a) with
the exploration function In(t). We plot the behavior of the normalized regret, Rr/v/ KT, either as
a function of 7" (Figure 2 left) or of K (Figure 2 right). This quantity should not increase without a
bound as T" or K increases. KL-UCB-switch and KL-UCB have a normalized regret that seems to
not depend too much on 7" and K. (KL-UCB may perhaps satisfy a distribution-free bound of the
optimal order, but we were unable to prove this fact.) The regret of IMED seems to suffer from a
suboptimal dependence in K.

Normalized Average regret (Normalized for 5000 rounds) Normalized Average regret (Normalized for 5000 rounds), T= 2000

— UcCB
IMED
— = KL-UCB-Switch

25 — uce

IMED
—-= KL-UCB-Switch
204 .. KL-UCB

Avg. regret
Avg. regret

x (T=100) x (T=1000) x (T=10000) x (K=2) x (K=10) x (K=50)

Figure 2: Expected regret R /v KT, approximated over 5, 000 runs
Left: as a function of x, for a Bernoulli bandit problem with parameters (0.8, 0.8 —zy/K/ T) and for time horizons
T € {100, 1000, 10000}

Right: as a function of z, for a Bernoulli bandit problem with parameters (0.8, 0.8 — z+/K/T, ..., 0.8 — x/K/T)
and K arms, where K € {2, 10, 50}

4. Proofs of our main results: the first two theorems of Section 2.2

The proof of Theorem 1 is quite standard: it is similar the proof of MOSS and involves no
particular difficulty. Some difficulties had to be overcome for the proof of Theorem 2.

Proof of Theorem 1 The first step is standard, see Bubeck and Liu (2013); we use U, (t) = Ugx(t)
to decompose the regret as

T T T
Rr=) E[p*—pa] <(E -1+ > Ep—Us@®)]+ > E[Ualt)—pa] O
t=1 t=K+1 t=K+1

Each term in the second sum in (7) is bounded in a crude way: by the application (28) of Pinsker’s

inequality, U, (t) < U}'(t) so that
K
<t/ =+E
T +

Bl < \E“E <UAt<t>—uAt—\/§>+

K\t
(00— )
>+
where for the final inequality we used optional skipping (see Section 5.1). The first sum in (7) is
dealt with by substituting the value UK (t) or UM (t) of Ugx(t) depending on Ny« (t) < f(T, K) or

slks

(Ugjn — Ma —
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Nox(t) > f(T, K):

T T
> B - Us®] < D E[(w - US®) Lin,. sy |
t=K+1 t:K+1
+ Z E|(w* = U ()" Ynee s sy |
t=K+1

<1

Collecting the inequalities above into (7), we see that the regret of KL-UCB-switch is less than the
claimed (K — 1) 4+ 25v/ KT bound,

T

Rr <(K-1)+ ) E[(M — U)o )gf(T,K)}]
t=K+1 ~
we show below that <8,/ K /T for each ¢

+f*+§j E[(w* }+Zzﬁ[ w— o — VE/T) "]

t=K+1 a=1n=1

<17V KT by (25)

Indeed, by optional skipping (see Section 5.1),

H(T.K)
E[(M*—Ug*L(t))+1{Na*(t)<f(T7K)}} < E[(“ - KLn)ﬂ

n=1
where by Fubini-Tonelli, foreach 1 <n < f(T,K) < T/K,

*

“+oo
°w
B[ Uit ] = [ Bl — U > ] du < / e(2n +1) e du
0

as for all u € (0, u*), by using successively (31) and Proposition 12,
~ 1 T Kn _, .2
P — ot > u] < P[’Cinf(ya*,na wr) > - 1H(ﬁ> + 2U2} <e(2n+ 1)Te 2

The proof of the desired 8/ K /7T bound is concluded by straightforward calculations,

K)

(T,K) [+ f(T,K)
Kn Kn 1 I efK
e(2n + 1 o2 gy, = e(2n+1)— —— /= = o+ 1
E /0 (n+)T du = E (n—i—)Tm 2T§(n+)\/ﬁ

n=1 n=1 n=1

<%f§ mKN%mKW%meWﬂ\WﬁKw@KW“w¢MT
since by definition of f(T', K), we have f(T, K)%/? < (T/K)'/?. |

The proof of the first distribution-dependent bound (Theorem 2) relies entirely on elementary
applications of concentration inequalities, after some careful cutting of events.
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Proof of Theorem 2 Given § > 0 sufficiently small (to be determined by the analysis), we decom-
pose E[N,(T)] as

T—1 T-1
E[N,(T)] =1+ Z P[Uq(t) < p* — 6 and Agyq = a] + Z P[Uq(t) > p* — 6 and Ayyq = a
=K t=

(®)
Control of the first sum in (8). When A;11 = a, we have Uy« (t) < U,(t) by definition of the index
policy and this is the only piece of information that traditional proofs, as the one of, e.g., Cappé
etal. (2013), use: they are left to bound » | P [Ua* (t) < p*— 5} . We proceed slightly more carefully
by introducing a possible cutting at (u* + p,)/2 and by distinguishing whether U« (t) is smaller or
larger than this value; in the latter case, U, (%) is also larger than it. In addition we set a threshold
ng > 1 (to be determined by the analysis) and distinguish whether N, (t) > ng or N, (t) < ng — 1.
We thus get the decomposition

{Us(t) <p*—band Aypy = a} C {Ua(t) < (0" + 11a)/2}
U{Ua(t) = (0" + p1a)/2 and Ay = a and Ny (t) > no}
U{Uqa(t) < p* — 6 and Ay = a and N,(t) < ng — 1}

For u € (0,1), we introduce the event
£, (u) = {37 e{K,....T —1}:Up(7) < u}

We now rewrite the second event in the set decomposition above. To that end, we note that by (28)
and by definition of the MOSS index, we have, when N, (t) > no,

Ua(t) < U, (t) = fa(t) + \/2N(11(t) 1n+([{]\jf;(t)> S Ha(t) + \/21110 ot (KTno> ®

<Au/d

where the inequality in the root of the right-most term comes from the choice
8 T

[Ua(t) > (4" + 110)/2} = {Uall) > tta + D2} C {Tialt) > pra + Au/4}

In particular, we get the inclusion

Collecting all elements together and substituting the definition of &,, we established the cruder
decomposition

{U.() <p*—dand Apyr = a} C  E((W* + 1a)/2)
U {ﬁa(t) > g+ Agy/4and Apypq = a and Ny(t) > no}

U (5*(;1* —9)N {At+1 =aand Ny(t) < ng — 1})

10
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Taking probabilities, resorting to a union bound, summing over ¢, and using the deterministic control

T—

[y

LA, =a and No(t)<no—1} < 10
=K

~+

we get (and this is where it is so handy that the £, do not depend on a particular ¢):

T-1 T-1

A,
P[Uq(t) < p* — 6 and Agyq = a] < E P[ﬁa(t) > g + e and Ay11 = a and Ny(t) > no]
t=K t=K

4T ]P’(S*((u* n ua)/2)) +ng P(E(u* —5))  (11)

By optional skipping (see Section 5.1), the first sum above is bounded by

T-1 T

~ Ag . A,
;{P[ua() ua+jandAt+1—aandN() ng] < ZP[ua,n2ua+4}
— n=ng

and we continue the upper bounding by applying Hoeffding’s inequality (Proposition 7, actually not
using the maximal form):

T T 2
N A, Lanzgg e M0hal8 K/T
E ]P)|:,U/a,n>,ufa+4:| < E e " :1_e—A3/8<1—e_A<2z/8 (12)

n=ngo n=no

where we substituted the value (10) of ng. The two other terms in (11) are bounded using the lemma
right below, respectively with x = A, /2 and 2 = J, and we get the final upper bound

T-1

(1—e2)3 A8
8 (T be K o K/T
B | Y 20°T/K e A
+[A2 n( >—‘ ((1—e )3T<56+e +1—e*A(2z/8

The bound above is a O (1) for the choices § = (In7")~'/3 and § = T—/® respectively considered
in Theorems 2 and 3.

2 K
IP )< wp*—0and Ay = a] < <30€ 4 TeTAE/(QK)>

Lemma 6 Forall z € (0, 1*),

. B . . % K o 20°T/K
]p(g*(u ;C)>_P[EITG{K,...,T 1} U () <4 =2 S 7 oy O

Proof The In. in the definition of U, (7) vanishes when Ny« (7) > T'/K. Therefore, by distin-
guishing the cases Ny« (7) < T/K and N4« (7) > T/K, by Pinsker’s inequality (28), by optional
skipping (see Section 5.1) and by the definition of the index as a given supremum, we successively

11
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get

P37 € {K,....,T —1}: Upe(7) <,u*—:v]

—P[3r e {K,...,T — 1} : Up(7) < ii* —  and Nos (1) <T/K}
+P[37 € {K,...,T =1} : Upe(7) < p* — 2 and Ngs(7) >T/K]
:P_HTE{K,.. T —1}: U (1) < u* — x and Ny« (T)<T/K:|
+P[E|T €K, ..., T — 1} : fia~ (1) < yi* — z and Ny (1) >T/K}

<P[Im {1, |T/K]} UL, < it — o + P[3m € {[T/K],... . T}t figrm < " —

- 1 T
<P|3m e{l,...,[T/K|} : Kint(Varm, " — x) > —In <Km>

+P[3me {IT/K],...., T} fiaem <u*—x]

where by a union bound, by the deviation inequality (35) stated as a consequence of Proposition 12,
and by some elementary calculations detailed below,

B|3m efl,..., |T/K|} : Kt (Bar s — 2) >77111n( T )

Km
[T/K] Km eK =2 22 He K 4
< Y e@mA1) e <2 N m2m o 1) e <
—= T T — (1—e2)33Tx

while by Hoeffding’s maximal inequality (Proposition 7)
P[Hm € {[T/KL . .,T} : ,aa*,m < pr - $} < e 2[T/K] a? < e—QIZT/K

More precisely, the elementary calculations leading to the final inequality in (14) are based on
differentiating the defining series for the exponential distribution: for all § > 0,

Hence

12
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Now, since 6 € (0, +00) — /(1 — e?) is increasing and since 222 < 2, we have

212 o2 " 1 - 1
~X S X
1—e 222 © 1—e2 ! (1 —e22%)3 = z6(1 — e=2)3

which concludes the proof of the final inequality in (14), thus the proof of this lemma, and finally,
the treatment of the first sum in (8). |

Control of the second sum in (8). By what are routine manipulations now, namely, distinguishing
whether N, (t) is larger or smaller than f (7, K') and by optional skipping (see Section 5.1), we have

T-1 T (T,K)
Y PULt) 2 p*—dand Ay =a] < ) PUY, >p =0+ > PUS > p* -4
t=K n=f(T,K)+1 n=1

(15)
Let us denote

! 16072 + In?(
= — e n
R V1 —p*x 1—p*
as in the statement of Proposition 13. For 7" large enough to satisfy (17) and for  small enough so
that 6 < A,/2 and 62 < v, (1 — p*)?/2, we further upper bound below (15) by

K f(T,K)/T 1 . In(T/K)
1— eAg/S 1— e—52/(2’Y*(1_N*)2) ICinf(Ua, ,u*) — 25/(1 — ,LL*)

(16)

The obtained bound indeed equals (InT') /Kin¢ (vq, 1*) + Or((In T)?% 3) for the considered choice
§ = (InT)~Y/3, as can be seen by noting that the first term in (16) can be bounded by a constant,
while the second and third terms can be dealt with by resorting, respectively, to 1 —e™ = u + o(u)
and 1/(1 —u) = 1+ u + o(u) as u — 0, where u is proportional, respectively, to 6 and 4.

We turn to the proof of (16). We deal with the first sum in the right-hand side of (15) as
around (9): provided that 7" is large enough, so that

n(T/(K f(T.K))) a2

<77 17
JT,K) 3 )
we have, for f(T,K)+1<n<T/K,
1 T A
on < Up! = Han 1 < fap + — 1
Van < U ity = M, +\/ rrw () <Pt T W

13
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Note that the Ugfn < fan + Ag/4 bound is valid even when n > T'/K, as the exploration then
vanishes. Therefore, as in (12), as soon as 0 < A, /2,

A
Mo x < M S —a
Z ]P)[Ua,n =z [ 5] ~ Z ]P)|:Ua,n =z K 9 :|
n=f(T,K)+1 n=f(T,K)+1
T T
A A A
< ]P)Aan 7(12 -2 = PAan> a —
O D N
n=f(T,K)+1 n=f(T,K)+1
T ~f(TK)AZ/8 K (T K)/T
—nA2/8 _ € a [T, K)/
S Z ¢ S 1 — e—A2/8 S 1 — e—A2/8 (19)
n=f(T,K)+1

where we used again condition (17) to get the last inequality.
It only remains to deal with the second sum in the right-hand side of (15). Let

o [ In(T/K) 1
Kint(Va, p*) — 26/(1 — p*)

Forny < n < f(T, K) < T/K, by definition of the index as a supremum and by left-continuity of
Kins (see the comments after Lemma 10),

KL L . 5 * l l
{Ua,n = 5} - {’Cmf(l/a,m,u 6) < n In (Kn)}
g {]Cinf (/V\a,na M* - 5) < Kinf(yavﬂ*) - 26/(1 - :Uf*)}

- {K:inf (ﬁa,na M*) < Kinf(”a» :U’*) - 5/(1 - /J'*))}

where the second inclusion only uses n > n; and the definition of ny, and the last inclusion holds
by the regularity inequality (29). Therefore we may resort to the concentration inequality on Ciy,
stated as Proposition 13: we get, forall n; < n < f(T, K),

nd?
et ) <o - )

(20)

27, (1 — p*)?
and whether the first or the second argument of the maximum is the largest is independent of n.
Therefore, a summation over n > n; keeping the latter remark in mind leads to

f(T.K) 1 1
KL *
Z P[Ua,n > o= 6] < max{ 1 e_1/4> 1_ 6_52/(27*(1_“*)2) } (21)

n=ni

Now if 62 < v, (1 — p*)?/2 we may keep only the second term in the maximum. For such J, by
bounding by 1 the first n; — 1 probabilities in the sum in (15), we finally obtain

f(T,K)

In(T/K) 1
IP) UKL 2 * 5 g oY)
nzl Va2 0" =0 S oo S o5/ =)t 1o wenaes 3
which concludes the proof of (16). |

14
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5. Results (more or less) extracted from the literature

We gather in this section results that are all known and published elsewhere (or almost). For the
sake of self-completeness we provide a proof of each of them (sometimes this proof is shorter or
simpler than the known proofs, and we then comment on this fact).

5.1. Optional skipping

The trick detailed here is standard in the bandit literature, see, e.g., its application in Auer et al.
(2002a).

We detail how to reindex various quantities like U, (t), 1i4(t), etc., that are indexed by the global
time ¢, into versions indexed by the local number of times N, (¢) = n the specific arm considered
has been pulled. The corresponding quantities will be denoted by Uy, ,, fig n. etc.

The reindexation is possible as soon as the considered algorithm pulls each arm infinitely often;
it is the case for all algorithms considered in this article (exploration never stops even if it becomes
rare after a certain time).

We denote by Fy = {f), Q} the trivial c—algebra and by F; the o—algebra generated by Ay, Y7, .. .,
Ay, Yy, when ¢t > 1. We fix an arm a. For each n > 1, we denote by

Ton = min{t >1: Ny(t) = n}

the round at which arm a was pulled for the n—th time. Doob’s optional skipping (see, e.g., Chow
and Teicher, 1988, Section 5.3 for a reference) ensures that the random variables X, , = Yz, , are
independent and identically distributed according to v,.

We can then define, for instance, for n > 1,

1
ﬁmn ::7ng;)£Lk

and have the equality ji4(t) = Jiq,n, () for t > K. Here is an example of how to use this rewriting.
Recall that N, () > 1 fort > K and N,(t) <t — K + 1 as each arm was pulled once in the first
rounds. Given a subset £ C [0, 1], we get the inclusion

t—K+1 t—K+1
{Fat) €€} = |J {fa(t) € Eand Ny(t) =n} = | {fiam € € and No(t) = n}
n=1 n=1

so that, by a union bound,

t—K+1 1—K+1
Plia(t) €E] < D Plian€Eand No(t) =n] < > Plfian € E].
n=1 n=1

The last sum above only deals with independent and identically distributed random variables; we
took care of all dependency issues that are so present in bandit problems. The price to pay, however,
is that we bounded one probability by a sum of probabilities.

15
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5.2. Maximal Hoeffding’s inequality

This standard result from Hoeffding (1963) was already used in the proof of the regret bound of
MOSS (Audibert and Bubeck, 2009).

Proposition 7 Let X1,..., X, be a sequence of i.i.d. random variables bounded in [0, 1] and let
[y, denote their empirical mean. Then for all u > 0 and for all N > 1:

P [ma;g (Ain — 1) > u] < o2V 23)

nz

Corollary 8 Under the same assumptions, for all € > 0,

max(lu—ﬁ —5) ' <\/?\/Te_2Na2 (24)
>N " V8V N

Proof By Fubini-Tonelli, an integration of the maximal concentration inequality yields

E

n>N n=

+0c0 +0o0
2 2 2 T /1 2
</ o 2N (ute) du<e—2N5 / o 2Nv? g4, n e—2Ne
0 0 8 N ]

5.3. Analysis of the MOSS algorithm

E[(max (M_ﬁn_g)ﬂ _ /Omp[maj)v{ (fn - 1~ 2) > ] du

This analysis was already performed in the literature, both for a known horizon 7" (see Audibert
and Bubeck 2009) and for an anytime version (see Degenne and Perchet 2016). We provide slightly
shorter and more focused proofs of these results based on Proposition 8 in Appendix B; the main
difference to the mentioned proofs lies in elegance. Typically, the peeling trick was used on the
probabilities of deviations (see Proposition 7) and had to be performed separately and differently
for each deviation u; then, these probabilities were integrated to obtain a control on the needed
expectations. In contrast, we perform the peeling trick directly on the expectations at hand, and
we do so by applying it only once, at fixed times depending solely on 7', which makes the proof
more readable. Put differently, we do not claim any improvement on the results themselves, just a
clarification of their proof.

We first recall the distribution-free bound on the regret of MOSS, when 7' is known. We also
extract an intermediary result from its proof, which will be used in the analysis of our algorithm.
We denote by A}' the arm played by the index strategy maximizing, at each step ¢ + 1 with ¢ > K,
the quantity

gy def ! d
UN(t) & falt) + \/ ™ ()

Proposition 9 For all bandit problems v over |0, 1], the regret of MOSS satisfies

Ry < (K — 1)+ 17VKT

16
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More precisely, we have the inequalities

Rr — (K — 1)
T K T
<SVET+ Y E[(r = v ®) ] + 3 Y B[, — wa— VE/T) '] @25)
t=K+1 a=1n=1
<16VKT

Our proof in Appendix B reveals that designing an adaptive version of MOSS comes at no effort;
indeed, MOSS-anytime relies on the indexes, for ¢t > K,

M-A (g def ~ 1 t
Uy (1) = Ha(t) + \/2]\7a(t) Iny <KNa(t)> (26)

and satisfies a regret bound of (K — 1) + 29V KT.

5.4. Regularity and deviation/concentration results on ;¢

Many results of this section rely on Pinsker’s inequality. One of its most basic consequences is
in terms of a lower bound on C;,r. Indeed, since we are considering distributions over [0, 1], the
data-processing inequality for Kullback-Leibler divergences ensures (see, e.g., Garivier et al., 2018,
Lemma 1) that for all v € P[0, 1] and all p € (E(v), 1),

King(v,p) > inf KL (Ber (E(v)), Ber (E(y’))) =KL (Ber (E(v)), Ber (u)) ,
vViEW ) >

where Ber(p) denotes the Bernoulli distribution with parameter p. Therefore, by Pinsker’s inequal-

ity for Bernoulli distributions,

Kint(v, 1) > 2(E(v) — ), thus  US(t) SUN() 27

for all arms a and all rounds ¢ > K. In particular, for KL-UCB-switch,
UXt(t) < Ua(t) < UM(t) (28)

Another consequence of Pinsker’s inequality is given by the inequality (30) below, while the
inequality (29) appears as Lemma 7 in Honda and Takemura (2015), see also Garivier et al. (2018,
Lemma 3) for a later but much simpler proof of (29). These two inequalities are proved in details in
Section D; the proposed proofs are slightly simpler or lead to sharper bounds than in the mentioned
references.

Lemma 10 (regularity of K;,f) Forallv € P[0,1] and all pn € (0, 1),

Ve € (07 ,LL) 5 ICinf<V7 :u’) < ,Cinf(V7 n—= E) + ’ (29)

I—p

and
Vee [0,u—EW)],  Kut(v, 1) > Kint(v, p — ) + 282, (30)

17
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A consequence of Lemma 10 is the left-continuity of Ci,s: for all v € P[0,1] and all p €
(0,1), we have Kins(v, 0 — €) 7 King(v, ) as € \, 0. Therefore, by a sandwich argument,
Kint (v, E(v)) = 0 whenever E(v) € (0,1).

A consequence of (30) is the following. For all B > 0, all i € (0,1), all e € [0, /1), and all
distributions v over [0, 1] with E(v) < i — ¢,

{Sup{u € [0,1] | King(v, ) < B} < ,1—5} C {lcmf(u,g—s) > B} c {/cmf(u, i) > B+252},
(€2

and these inclusions still hold even when E(v) > [i — ¢, as in this case, the left-most set is empty.
The variational formula appears in Honda and Takemura (2015) as Theorem 2 (and Lemma 6)

and is an essential tool for deriving concentration results for the ;. We re-derive it in an elegant
and direct way in Section D.

Lemma 11 (variational formula for Ki,s) Forallv € P[0,1] and all 0 < p < 1,

Kint(v, p) = max E

0<A<1

T
1n<1 -5 ”) where X ~ v (32)
—p

Moreover, if we denote by \* the value at which the above maximum is reached, then

. }
E <1 33)
[1 = M(X = p)/(1 = p) ]
The following deviation inequality on KCi,s was provided by Cappé et al. (2013, Lemma 6) in
all cases where the variational formula (32) holds. For the sake of completeness, we recall its proof
in Section D.

Proposition 12 (deviation result on C;,.¢) Let U, denote the empirical distribution associated with
a sequence of n i.i.d. random variables with distribution v over [0, 1] with E(v) € (0,1). Then, for
all uw > 0,

P[Kinf (/1/\”, E(V)) > u} < 6(277, + 1) e (34)

A consequence of the proposition above and of Lemma 10 is the following one: for all u > 0
andalle € [0,E(v)),

P[Kinf (/V\n, E(I/) — 5) > u:| < e(2n + 1) e—n(u—&-252) (35)

Indeed, when ¢ is such that E(v) — ¢ < [in, where ji,, denotes the average of the considered
i.i.d. random variables, then /C;,¢ (ﬁn, E(v) — 5) = 0 by definition, while otherwise, by (30), since
e € [0,E(v) — fin], we have

King (ﬁn, E(v) — 5) + 262 < King (ﬁn,E(y)) )
Therefore, the inclusion
{ Kt (5, BW) = 2) > u} € {Kint (7, BW)) >+ 25
is valid for all v > 0 and (35) follows from Proposition 12.

The next proposition is similar in spirit to Honda and Takemura (2015, Proposition 11) but is
better suited to our needs. We prove it in Appendix A.

18
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Proposition 13 (concentration result on ;,¢) With the same notation and assumptions as in the
previous proposition, consider a real number p* € (E(V), 1) and define

S (166 fn (1_M*)> (36)

Then for all x < Kins(v, 1),

exp(—n7,/8) < exp(—n/4) if v < King (v, 1) = 74/2

]P)’Cin I//\n, * < x| <
[Kint (P, %) < 2] exp(=n(Kins (v, 1%) = 2)*/(22)) i & > Kint (v, 17) = 72/2

6. Proof of the more advanced bound of Theorem 3

The proof of the sharper bound of Theorem 3 relies on the following lemma, which was (almost)
stated in Honda and Takemura (2015, Lemma 18): our assumptions and result are slightly different
(they are tailored to our needs), which is why we provide below a proof of this lemma.

By convention, the infimum over an empty set equals +o0o. In what follows, A denotes the
minimum of two numbers; the considered stopping time T is thus always bounded by 7". We recall
that Lambert’s function W is defined, for = > 0, as the unique solution W (z) of the equation
we = x, with unknown w > 0. We recall (see, e.g., Hoorfar and Hassani, 2008, Corollary 2.4)
that it is increasing and that

Vo >e, ln:n—lnlnng(:U)glnx—lnln:ﬂ—i—ln(l%—e_l) 37)
and in particular, W(z) = Inz — Inlnz + O(1) as x — +o0.

Lemma 14 Let (Z;) be a sequence of i.i.d. variables with a positive expectation E[Z1] > 0 and
such that Z; < a for some o > 0. For an integer T' > 1, consider the stopping time

" T
Z; > In| — T
; > n(Kn)}/\

W(T/K)+a+In2
E[Z1]

def .
Télnf{n>1

Then, for all T > Ke®,

E[t] <
where W is Lambert’s function.

Proof We consider the martingale (M,,),,>o defined by

M, =Y (Zi - E[Z))

i=1

As Tis a finite stopping time, Doob’s optional stopping theorem indicates that E[ M| = E[M] = 0,

that is,
T
EE[Z] =E|>  Z
=1

19
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That first step of the proof was similar to the one of Honda and Takemura (2015, Lemma 18). The
idea is now to upper bound the right-hand side of the above equality, which we do by resorting to
the very definition of T. An adaptation is needed with respect to the original argument as the value
In(T/(Kn)) of the barrier varies with n.

We proceed as follows. Since Z; < avand T > Ke® by assumption, we necessarily have T > 2;
using again the boundedness by «, we have, by definition of T,

T—1
T T T T
. < e — = J— - < —
E Zl—i—ZT\ln( (T_1)>—i—a ln< T>+ln<T_1>+a\ln< T)—i—lm2+04

i=1
In addition, when T < T/ K,

T Z T T Ta
In[ — | < Z; < th 0<—In({— ) < —
n(KT) ; psTa Kt n(KT) K
Applying the increasing function W to all sides of the latter inequality, we get, when T < T/ K,

(i) < (%)

This inequality also holds when T > T/K as the left-hand side then is non-positive, while the
right-hand side is positive. Putting all elements together, we successively proved

T

T
Y 7| <E|m(-—
£ [H<KT>

which concludes the proof. |

Ta

E[q]E[Z)] = E =

+1n2—|—o¢<W< >+ln2+a

Proof of Theorem 3 All inequalities of the proof of Theorem 2 hold in the present case as well,
given that we are studying exactly the same algorithm. The regret is decomposed as in the mentioned
proof, and inequality (13) holds as a first part of the final regret bound. Now, the second part consists
of (15), which we bound as (19) plus the bound

Yy In(1/(1 — u*
S Bl > 0] S <W< T *>)>

1
1 — e Kint(v,1*)2/(87x)

To do so, we use the conditions (17) and T > K /(1 — *) on T, and the conditions 6 < A, /2 and
6 < Kint(va, *)/(2(1 — p*)) on 6; all in all, we get

+5+

(38)

where again,

T-1
* _ Kf(1,K)/T 1
t—KP[Ua(t) > = 0and Ay = a] S R 5 T e
1 In(1/(1—p")) >
+ W(—"————T)+In(2/(1-p")) | 39
lCinf(Vay,Uz*) - 5/(1 — ,U,*) < < K ( /( K ))
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Since 1/(1 —u) = 14 O(u) as u — 0, for the choice § = T~'/8 contemplated in Theorem 3, the
bound above equals

L In(1/(1 - p¥))
e (R T) o)
- D _ 18 _ Tl
 Kine(va, %) (1+0rT5) + 0r(1) = Kont (Var i) Or(1),

where the final equality follows from the asymptotic expansion (37).

The difference with the proof of Theorem 2 lies in a sharper bound of the quantity (38), given
by the last two terms in the above inequality (39). We follow exactly the same method as in the
analysis of the IMED policy of Honda and Takemura (2015, Theorem 5): their idea was to deal
with the deviations in a more careful way and relate the sum (38) to the behaviour of a biased
random walk.

We start by following the same steps as in the proof of Proposition 13 in Appendix A and
link the deviations in /C;,¢ divergence to the ones of a random walk. The variational formulation
(Lemma 11) for /Cj,¢ entails the existence of A\, 5 € [0, 1] such that

Xo — (@ — 5))
In([1—Xjs5—————= where Xo ~ vy,
(12

Note that [Cin¢ (v, £*—0) > 0 by (27) given that 6 < A, /2. We consideri.i.d. copies X 1, ..., Xon
of X and form the random variables

Kinf(yanu* - 5) =K

Xm-—w—a))
Zoi=Inl1—- A s———->
| ( 1= (= 9)

where, since X, ; > 0and A\, 5 € [0, 1], we have

Zai=n(1- X220 ) I 14+ Ags—r
( 1= (u* —9) 1= (u* =)

T} 1 1 def
<hnf(1+—L "2 Jom(—— ) <1 def
n< +1—(M*—5)> n<1—(u*—5)> n<1—u*> “

By the variational formulation again, applied this time to Cins (Vg n, p* — 9),

- 1 ¢
King (Va,n7 - 5) > n Zl Zayi
1=

which entails, for eachn > 1,

-0 it -0 < () e S ()} o

=1
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where the first inclusion holds for the same reasons (including left-continuity of Ci,¢) as in (20).
Therefore, the quantity of interest (38) is bounded by

f(T,K) F(T.K) n F(T.K)
KL
n§:1 ]P[Ua,n > — nE ) E Zaji < hl(Kn)] =E Z {Z Zaﬂ.gln(T/(Kn))}

. nz::l ]I{Z?:l Za,igln(T/(Kn))} ]

This latter sum can be reinterpreted as the expected number of times a random walk with positive
bias stays under a decreasing logarithmic barrier. We exploit this interpretation to our advantage by
decomposing this sum into the expected hitting time of the barrier and a sum of deviation probabil-
ities for the walk.

Let us therefore define the first hitting time T of the barrier

- T
— inf 21’ Zoish(— )T 41
T=1n {n ; ’>H<Kn)} 41)

which is is a stopping time with respect to the filtration generated by the family (Z,)1<i<n- By
distinguishing according to whether or not the condition in the defining infimum of T is met for a
1 < n < T ornot, i.e., whether or not the barrier is hit for 1 < n < 7', we get

T+E

Z {zn Za,iéln(T/(Kn))}] (42)

n=1t+1

Z ﬂ{z | Zai<In(T/(Kn)) }

where the sum from T + 1 to 7" is void thus null when T = 7' (this is the case, in particular, when
the barrier is hit for no n < 7'). Lemma 14 applies, as, among others, Z,; < o = In(1/(1 — p*))
as shown above and 7" > K /(1 — p*); it yields

1 In(1/(1 — p*)) .

We apply the regularity inequality on Ki,¢, see also (45) below, to get the claimed bound on the first
part of (42) We now bound its second part. We may assume that T < 7" so that

T T
n (m) <2
1=

For n > T, we then have

n T ' ) n T T
Z} Z,; <In <Kn> implies z; Zai <In <KT> < Z Zai (43)
1= 1=

Hence, in this case,
n T n
Z Zai <In (Kn> implies Z Z,: <0
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This, together with a breakdown according to the values of T and the independence between {T = k}
and Xy41,..., X7, yields

| IS

T
E 1
L;l {>r Zai<n(T/(Kn)) }

T T T
<E T, = E(lq— T,
T T n
-S 3 rer] 3 e
k=1n=k+1 1=k+1
T 4 - def 1
= = < <BE
ZP[T k‘] Z P Z Za,z X 0] X B 5+ 1 — e—Kint(vu*)2/(874) (44)
k=1 n=k+1 i=k+1

we show below <3

Indeed, by the concentration results on ;¢ (Proposition 13), denoting

1 1
Ya§ = ————— 162 + In? <> S
’ w/1—(M*—5)< 1— (= 9)

we get

<ol < —(n—k)/4 _n . * _
'_g Zai < O] < max {e , eXp s (lCmf(ua,,u 5))

—k 2
< —(n—k)/4 _ n . *_
<e + exp ( 2 (IClnf(l/a, 1 5))

< e~ (R/A | o= (n=R)Kint(v,u*)?/(872)

where the third inequality follows from the first regularity inequality of Lemma 10 and from our
stated condition § < King(va, 1*)/(2(1 — p*)):

) > Kinf(l/, ,U’*)

Kinf(”a N* - 5) 2 ICinf(Vv N*) - 1— M* = 2 (45)

We finally get, after summation overn =k +1,...,7T,
T n 1 1
P < <
> P .Z Zai S 0] ST oo/ T o Ko 2/
n=k+1 i=k+1 ——
<5

which is the inequality claimed in (44). |
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Appendix A. Proof of Proposition 13

The proof of Proposition 13 relies on the following lemma via the variational formula (32). This
lemma is a concentration result for random variables that are essentially bounded from one side only.
Its holds also for possibly negative v (there is no lower bound on the u that can be considered).

Lemma 15 Let 7Z1,...,Z, be i.i.d. random variables such that there exist a, b > 0 with
Z1<a as. and E[ele] <b
Define furthermore v = \/@(16 e 2b + a2). Then Z, in integrable and for all u < E[Z1],

exp(—nv/8) ifu<E[Z1] —~/2

¢ ;Zi s nu] s exp(—n(E[Zl] — u)2/(2fy)> ifu>E[Z1] —~/2

Indeed, denoting by A* € [0,1] a real number achieving the maximum in the variational for-
mula (32) for KCin¢ (v, 1*), we introduce the random variable
X —u
1—p*

7 = ln(l -\ > where X~v

and i.i.d. copies Z1,...,Z, of Z. Then, Kin¢(v, u*) = IE[Z] and by the variational formula (32)
again,

n
Kinf (ﬁn, u*) > %Z Zi, therefore, IP[,Cinf(/V\n, W) < x] <P
i=1

i Z; < na:]
i=1

for all real numbers x. Now,

* 1
X >0  thus Z<1n<1+x*1“*><1n< >d§fa
—p

and on the other hand,

e ] = 1 def
S e =]

where b < 1 follows from (33). This proves Lemma 15, except for the inequality e M/8 L emn/4

claimed therein. The latter is a consequence of 5 > 2, as 7, is an increasing function of p* > 0,

1 _ 1 _
7*:m<16e 2+ln2<1_ﬂ*)> > 16e72 > 2.

Proof of Lemma 15

For the sake of completeness, we provide a proof of Lemma 15 which is a direct application of
the Crdmer-Chernoff method.
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Proof We will make repeated uses of the fact that e~%! is integrable (by the assumption on b), and

that so is eZ?, as eZ! takes bounded values in (0,e%]. In particular, Z; is integrable, as by Jensen’s
inequality,
E[|Z1]] <E[e?!] <n(E[e™?] +E[e?]) < +o00

We will show below that the log-moment generation function A of Z; is well-defined at least on the
interval [—1, 1],
A:zel[-1,1]+— lnIE[ele]

and twice differentiable at least on (—1,1), with A’(0) = E[Z;] and A”(z) < v forz € [-1/2, 0].
By a Taylor expansion with a Cauchy remainder, we then have

2
Vee[-1/2,0, Al@) <AO) +zANO0)+Z  sup  A(y) < zE[Zi] + La?
2 ye(-1/2,0) 2

Therefore, by the Cramer-Chernoff method, for all x € [—1/2, 0], the probability of interest is
bounded by

n
3z gnu] 5
=1

n
Z/.
P Hex i > QnuT

=1

< e (B[e])" = exp(—n(uz - Ala) )

S exp (_n xe[rzllil/lz,o]{x (v~ E[Z1]) —2* WQ})
(46)

which we will further upper bound depending on whether v > E[Z;] — v/2 or u < E[Z;] — v/2.

Proofs of the statements on A. That A is well-defined over [—1, 1] follows from the inequality
e"?1 < %l 4 e~%1, which is valid for all # € [~1, 1] and whose right-hand side is integrable as
already noted above. That ¢ : z — E [e’”zl] is differentiable at least on (—1, 1) follows from the
fact that 2 € (—1,1) — Z; e®#! is locally dominated by an integrable random variable; indeed, for
z e (—1,1),

1 1
‘Zl e“"”Zl‘ = 7,4 Liz,;>0) + 21 ™41 Tiz,<oy <ae®+— sup f=ae"+—
x (70070) ex

where f(t) = —tel. Similarly, * € (—1,1) — Z? %% is also locally dominated by an integrable
random variable. Thus, v is twice differentiable at least on (—1, 1), with first and second derivatives

V'(z) =E[Z1e"”]  and  ¢"(z) = E[Z] "]
and therefore, so is A = In v, with

A/(a:) _ ’gZJ’(x) _ E[Zl eﬂ?Zl] ind A//(x) _ w//(x) ¢($) _ (¢/($))2 _ w//(l,) B E[Z% e:cZ1]

b(x)  Elens] (x)? T Y(z)  E[en?]

In particular, A’(0) = E[Z;]. As for the bound on A”(x), we note first that e*%1 > e™® > 1/+/e® as
Z1 < aandz € [—1/2, 0]. Second, using that (proof below)

Vo e[-1/2,0], z€ (—o0,a), 2" < 16e %e % +a? (47)
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we get E[Z 1] < 16e72b + a®. The claimed bound A”(z) < v = Ve?(16e7%b + a?)
follows. We prove (47): if z > 0, since x < 0 we have 22e%* < 22 < a2, while, if z < 0, using
22 < 16e~27%/2 in this case, we obtain 22 e%* < 16e 2e(@=1/2)2 L 16e 2e *asz > —1/2.

Upper bounds on the minimum in (46). We rewrite

ou—Elz) o292 = (2 - 2222

and deal with a second-order polynomial with roots 0 and 2 (u —-E[Z 1]) /7 < 0 and whose minimum
over the entire real line (—oo, +00) is thus achieved at the midpoint * = (u — E[Z1])/y < 0
between these roots. But the expression above is to be minimized over [—1/2, 0] only. In the case
where v > E[Z;] — 7/2, then z* belongs to the interval of interest and

T* U — u—EIZ: )2
er%?Q,O]{x(U*E[Zﬂ)fx%/z}=”2 (x*2 f[Zﬂ>:( 27[ 1)

Otherwise, u — E[Z;] < —~v/2 and the midpoint z* is to the left of —1/2 and the considered
expression is decreasing with x on [—1/2, 0], so that the minimum is achieved at —1/2, that is,

: —E[Z] v _ v
—E[Z)]) — 2? 2} LAl Y > =
xe[l?%%,o}{x (u [ 1]) =/ 2 8 8
which concludes the proof. |

Appendix B. A simplified proof of the regret bounds for MOSS and MOSS anytime

The regret bounds proven here are not new all, see Audibert and Bubeck (2009) and Degenne
and Perchet (2016) for, respectively, the case of a known horizon 7' and the anytime version of
MOSS; however the proof exposed here is somewhat simpler and more direct than in these ref-
erences. In previous works, attempts were made to simultaneously build the distribution-free and
some type of distribution-dependent bounds. This raised technical difficulties because of the corre-
lations between the choices of the arms and the observed rewards. The idea of this proof is to focus
solely on the distribution-free regime, for which we notice that some crude boundings neglecting the
correlations suffice (i.e., our analysis deals with all suboptimal arms in the same way, independently
of how often they are played). We have also simplified the use of the peeling trick, by perform-
ing it only once on integrated quantities (instead of performing a different doubling trick for each
deviation). All in all, our proof therefore consists entirely of fairly elementary and natural steps,
with Hoeffding’s maximal inequality in its integrated version (Corollary 8) as the only necessary
technical ingredient.

To emphasize the similarity of the proofs in the anytime and non-anytime case, we present both
of them in a unified fashion. The indexes used only differ by the replacement of 7" by ¢ in the
logarithmic exploration term in case 7' is unknown, see (4) and (26): compare

UM(t) = ﬁ“(t)+\/2Ni(t) Iny <K]\17;(t)> and U)A(t) = ﬁa(t)+\/2Ni(t) Iny <K]\§a(t)>
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Note in particular that U)"*(t) < UM(t) for all arms a and all steps 1 < ¢ < 7. We will denote by

oM~ 1 Tt
Ua,T (t) - :ua(t) + \/2]\7(1(15) 1H+ (W)

the index of generic MOSS (GM) strategy, so that U,'(t) = UZ(t) and Up™*(t) = UZ}(t). This
GM strategy considers a sequence (71, ..., ) of integers, either 7z = T for MOSS or 7, = ¢ for
MOSS anytime, and pick at each step ¢ > K + 1, an arm A; with maximal index U} (t).

Proof of Proposition 9 and of the claim after it The first step is standard, see Bubeck and Liu

(2013). Using the fact that U, (t) < Ufgew . (t) by definition of the index policy, the regret is
’ t

smaller than

T T T
Rp =Y E[p—pse] < (K-1)+ > E[p-Ud, 0]+ > E[Ujg,dmﬂ(t)—,uA?M (48)
t=1 t=K+1 t=K+1

Since # < 0+ (# — &)™ for all z and 4, for the first inequality, by optional skipping (Section 5.1) for
the second inequality, where we also use that pairs (a, n) such A = a and N, (t) = n correspond
to at most one t € {K + 1,...,T}, and by using that U7} (¢) is increasing with 7 for the third
inequality,

T T +
K
> E[chM(t)—uAgM} <VKT+ Y E <Uggﬂm77t(t)—uAgM_ T)
t=K+1 t=K+1
K T K +
<VET+ 30 Y B| (08— a7 )
a=1n=1
K T K +
< \/KT+2121JE (U(%,n ~ g — T)
a=1ln=

While this latter inequality may seem very crude, it turns out it is sharp enough to obtain the claimed
distribution-free bounds. Moreover, it gets rid of the bothersome dependencies among the arms
that are contained in the choice A7™. Substituting in (48), we have shown the first inequality of
Proposition 9, namely,

T K T
By < (K=1)+ Y B[(u =02, 0) |+ VET+3 S B[ (U8, —ma—VE/T) | (49)
t=K+1 a=1n=1

This inequality actually holds for all choices of sequences (7¢);<7 With 74 < T'. The first sum in the
right-hand side of (49) depends on the specific value of (7;);<7 but the second sum only depends
on the bound 7'.

Control of the left deviations of the best arm, that is, of the first sum in (49). For each given round
t > K + 1, we decompose

E| (0 U, (0) "] = B[ (" U2 (0) L iy |HE | (0 —U5,(0) "L, im0 |

29



KL-UCB-SWITCH: DISTRIBUTION-DEPENDENT AND DISTRIBUTION-FREE OPTIMALITY

The two pieces are handled differently. The second one is easily treated by optional skipping (Sec-
tion 5.1) and by Corollary 8, using that UM (t) > fia-(t), which actually holds with equality given
Na* (t) > Tt/Ki

K
E| (1"~ U (1) U 03 m) | SB[ max (" = fi ) }g\/?/n (50)

When the arm has not been pulled often enough, we resort to a “peeling trick”. We consider a
real number $ > 1 and further decompose the event {Na* (t) < /K } along the geometric grid
xy = 7, where ¢ = 0,1,2,... (the endpoints xy are not necessarily integers, and some intervals
[€¢41, x¢) may contain no integer, but none of these facts is an issue):

E{(M*— M) Ln. <Tt/K}} ZE{ a*Tt())]]-{xg+1<Na*(t)<xg}}

ZE{ max (u* — U, )]

Top1Sn<xy

where in the second inequality, we applied optional skipping (Section 5.1) once again. Now for
any ¢, the summand can be controlled as follows, first by using n < x, and second by Corollary 8:

1 +
max W — fig —1/=—1In <i>
Tpq1<n<Tp anTen 2n Kn
ma; ) ! ln( Tt ) "
X — Ug*m — A — —
Tpyp1 <<z " Ha,n 2xy Kxy
cJBfEm(-n(2)
CU£+1 e
T 1 NI T /1 _
_ \/; (5 e) /B _ \/> /751/2%(1/2 1/8)
\/ Te41 8V 7

The above series is summable whenever 5 € (1,2). For instance we may choose 5 = 3/2, for
which

+00 1/24-£(1/2—2/3) 3 3\(1/2-2/3)
Z( ) \/> - <19 where o = <> .
1 —aV 2 2

£=0

E{ max (p* — UM )Jr}:E

*
Top1Sn<zy anTen

<E

Therefore we have shown that

K
]E[(H* — UM (1) Ty, (t)<n/K}} < 19\/§\/ o (51)

Combining this bound with (50) and summing over ¢, we proved
T
> B[ - 0)] <02 S VES (5)
t=K+1 t=K+1
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Control of the right deviations of all arms, that is, of the second sum in (49). As (z+y)" < 2T +y™
for all real numbers z, y, we have, foralla andn > 1,

—~ 1 T
(Ut?,lﬁ\ld”,n — Ha — \/ﬁ)+ < (Ha,n — Ha — \/ﬁ)+ + %]nJr <[{n>

0 ifn>T/K
= (ﬁa,n_ﬂa_\/m)—i_"i' 1 T
Therefore, for each arm a,
T T |T/K | T
S E| (U~ 10~ VET) | < SB[ (Fan—pa—VE/T) |+ >\ 1n< ) (53)
n=1 n=1

We are left with two pieces to deal with separately. For the first sum in (53), we exploit the integrated
version of Hoeffding’s inequality (Corollary 8),

iE[(ﬁa,n — fa — W)+] < \/zi \/Ee—%(\/ﬁy < \/g/T\/zeQIK/de
i [ e o
+00

where we used the equalities / (e™/Vu)du = / 0’ qu = V7.
0

For the second sum in (53), we also use a sum—integral comparison: which can be handled by
comparing it to an integral and performing the change of variable v = T'/(Kx):

[T/K]
Z —ln Kn —1n Kac dx\\/ / _3/2\/ du—f\/
n=1

+00 +o0
as / w32\ /In(u) du = 2 / v2e 2 dy =21 by the change of variable u = e*”
1 0

Conclusion. Collecting all the bounds above, we showed so far

Rr<(K-1)+ XT: E[( UaGMTt())vL}jL\/ﬁ—FZZE[ aTn Na—\/ﬁ)ﬂ

t=K+1 a=1n=1
s T
<(K-1)+VK +20\/>Z = +K<4+ﬁ>’/K
—— t=K+1 N——
<126 <2.6
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In the known horizon case > 1//7 = T/VT = /T and we get Ry < (K — 1) + 17VKT,
whereas in the anytime case,

21/\/77 Zl/\f / \}adu:Qﬁ,
0

t=1

hence Ry < (K —1) + 29V KT. [

Appendix C. Bounds for KL-UCB-Switch-Anytime

As a preliminary result to the distribution-free bound, we present an analysis of MOSS-anytime
with the additional exploration . While we could have presented this result and Proposition 9
inside a more general result, we have chosen to separate the two to improve clarity. In the following
all indices are anytime versions with exploration function .

Lemma 16 (MOSS anytime with extra-exploration)
T
3 E[(u*— }+ZZE[ AL ua—\/K/T)Jr} <20VET (55
t=K+1 a=1n=1

Proof We bound both sums separately. For the first one we may recycle the bound we obtained for
MOSS-anytime without the extra exploration. Indeed, as ¢(x) > Iny ()

which is the usual MOSS-anytime index. Therefore by extracting (52) from the previous proof

T
> E[(w - u) | <20/ VAT
t=K+1

For the second sum we use once again the fact that the exploration vanishes at N, (¢) > T/K and
to bound for all arms a as in Appendix B, eq. (53)

D [(EMRNG (o B ot RSPV )M iy S T
(56)

From (54) we recall that the first sum is smaller than 7/4,/T /K. The second sum is treated as
before by comparison to an integral

T/K] K N

1 (T L /T -
S o) < 1T\, [T - 2
n=1 2n¢<Kn) \/0 2m¢(m;> dz \/;/1 \/u In(u(1 +In*(u)) du

This integral is smaller than 4. We conclude by summing over a. |
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We now have all elements to provide a very short proof (with references to other results in this
paper) of the distribution-free anytime bound.

Proof of Theorem 4 Once again we begin with now usual boundings by distinguishing the value of
the index depending on N, (¢) for all ¢

T

Rr < (K-1)+ > E[(# = UL 0) U n sy |
t=K+1

we show below that <84/ K/t for each ¢

+ VKT + Z [ }+ZZE[ A m)+]

t=K+1 a=1n=1

<30V KT by (55)

And we are left to bound the first sum. Now since the exploration function verifies p(z) > In ()
we may see that the index is greater than the usual KL-UCB index. Therefore the bound from the
proof of Theorem 1 can be re-derived replacing 1" by ¢

* - K
E| (1 = US™0) Lnpewesarn | < VY G7
and the bound follows since Zthl V1/t < 2VT [

The distribution-dependent anytime bound is different from the known horizon case, as we do
not aim for the finer second order bound.
Proof of Theorem 5

T-1
E[No(T)] =1+ > P[Ua(t) < Ua(t) and Ayy1 = a
t=K
T—1 T—1 (58)
<1+ ) PlUa(t) < p* = 6]+ Y PUg(t) > p* — 6 and Ayyy = q
t=K t=K

The first sum is bounded by optional skipping, Proposition 13 and Hoeffding’s maximal inequality
as

~ 1 t ~ )
PUq(t) < p* = 6] < nzzl P[Kinf(ya,naﬂ*_5)<n¢<Kn):| +PEn > (/K] +1 ¢ fign < p* — 0]
[t/K]
< S e(2n 4+ 1)em U Em) g2  ot8?/K
n=1

For the sake of clarity, we delay some straightforward calculations (detailed after the proof) that

lead us to
T—

—_
—

A se(1+m) K

1) —¢(t/(Kn))g=2n6?
e(2n+1)e 31— 2)3 g6

(39

~+
—_

=K n=
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Hence the first sum in (58) is bounded by

Se(l1+m) K 1 K
2(1 —e2)3 46 T (60)

and we are now to treat the second sum. We proceed by a fine and exhaustive decomposition of the
sum thanks to optional skipping. Define the event

Ealn,t) = {Na(t) =nand Ay = a}

We will use repeatedly the fact that for all n there is most one value of ¢ such that &,(n, t) holds. A
direct consequence of this fact is that for any event F(n) that does not depend on ¢

ni ni
Z Zﬂ{ga(nt and F(n)} = Z Lir@n Z]l{ga nt)) < Z Lirm)n (61)

n=ng t=tg n=ngo t=to n=no

<1

Then by definition of the switch index

T-1 T-1 t
> P[Ua(t) > p* —Sand Ay =a] = > > P[Uyny > p* — 6 and Eq(n, t)]
t=K t=K n=1
T-1f(tK)
=Y Y P[US, > p — 6 and Ey(n,t)] +Z Z P[UY,, > 1" — 6 and Ey(n, t)]
t=K n=1 t=K n=f(t,K)+1
For the first sum, we may use similar bounds as in the known horizon case, as U, ; < U;), 7, and

then by invoking (61). By using the exact same calculations as in the known horizon case, see (22),
replacing In by ¢, for 62 < 7, (1 — p*)?/2 we bound the first sum by
P(T/K) ) 1
Klnf(”(zu ) - 26/(1 - ) 1 — =9/ (1=p2)?)

(62)

where -, is defined in (36). The second sum requires a more refined treatment. Define the varying

threshold
ni(t) = {8 SOXé[QJ

so that for 6 < A, /2 and n > ny(t)

~ o(t/K A
{ a,n,t = :U’*_(S}g{:ua,n>,ua+Aa_5_ 221(t))}g{ﬂa,n>ﬂa+Aa/4} (63)
We then decompose the sum as

— n1(t) T-1 t

Z Z PO, > ,u,—dandé’(nt)]—l—z Z P[UY,,; = p* — 6 and E,(n,t)]

t=K n=f(t,K)+1 t=K n=n1(t)+1
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Our choice of n1(t), via (63), leads to

T ¢ T ¢
Z Z P[UY,, ;> p*—0 and Eq(n, t)] Z Z P(Lian > pa+Aq/4 and E(n, t)]

t=K n=n1(t)+1 t=K n=n1(t)+1

Now the event does not depend on ¢ anymore, and thanks to (61) and Hoeffding’s inequality, we
may bound it by

~ 1
ZP[Ma,n Z pa +Aa/4] < 1o AZjs

The only piece that remains to be bounded is now

Z Z P[UY, ;= 1 — 6 and Ey(n, t)]

which we will bound deterministically thanks to the events &,(n, t). Indeed

T—1 ni(t)

T-1
ef
E E ]l{ga(nt E ]l{f t,K)<n1(t)} < min {t K:f(t,K)> nl(t)} < To (64)
t=K n=f(t,K) =K

since for all ¢, there is at most one n such that N, (¢) = n : hence the inside sum is at most 1, and is
trivially zero whenever f(t, K') > ny(t). 1o is a constant that depends solely on A, and K.
All in all we have shown that for all 7 and § < min (7,(1 — p*)?/2,A,/2)

o(T/K) G
E[No(T)] < Kot (o ™) — 28 /(1 = 77 + 55 TG (65)

where C' and C are constants that do not depend on 7" and §. Therefore as T" — oo we may choose
= (T/K)~/7 which gives the claimed result, remembering that ¢(z) = In(z) + o(In(z)). M

Proof of (59) This is straightforward calculations : we permute the sums and compare them to the
corresponding integrals

T-1|t/K] (T-1)/K]| T-1
Z e(2n+1 —w(t/(Kn))e—ma? Z Z (n+2)e~? (t/(Kn)) ,—2ns*
t=K n=1 = t=Kn
L(Tfl)/KJ T—1
= Z e(2n + 1)6—2n62 Z e—e(t/(Kn))
n=1 t=Kn
S 2 [ (t/(Kn))
< o2n + 1)e 2 / e P (t/(Kn) q¢
nz:l ( ) t=Kn—1
[(T-1)/K] , [T—1/(Kn)
< Z e(2n—i—1)672"‘S / Kne~ Wy
n=1 u=1-1/(Kn)
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Now we have chosen ¢ so that for all n

T—-1/(Kn) +o0 1 400 d 1
/ e ?(Wqy < / e Py = = +/ u2 T (66)
u=1-1/(Kn) 1/2 2 i u(l+1n*(w) 2
Hence our sum is smaller than
[(T-1)/K]
1+m — 2162 Se(1+7) K
as already detailed in (14). |

Appendix D. Proofs of the other results of Section 5.4

Proposition 13 of Section 5.4 was already proved in Appendix A. We now prove the three
remaining results of Section 5.4, namely, Lemmas 10 and 11, as well as Proposition 12.

D.1. Proof of Lemma 11

The proof of Honda and Takemura (2015, Theorem 2, Lemma 6) relies on the exhibiting the
formula of interest for finitely supported distributions, via KKT conditions, and then taking limits
to cover the case of all distributions. We propose a more direct approach. But before we do, we
explain why it is natural to expect to rewrite Kj,¢, which is an infimum, as a maximum. Indeed,
given that Kullback-Leibler divergences are given by a supremum, X, ¢ appears as an inf sup, which
under some conditions (this is Sion’s lemma) is equal to a sup inf.

More precisely, a variational formula for the Kullback-Leibler divergence, see Boucheron et al.
(2013, Chapter 4), has it that

KL(v, V') = sup{Ey[Y] —IE,[e"]: YstE "] < —I—oo}

where we indexed the expectations with respect to the underlying probability. In particular, denoting
by X the identity and considering, for A € [0, 1], the bounded variables

X — A
YA:ln<1—)\ “><1n<1+“>
1—pu 1—pu

we have, for any probability measure v/ such that E(v') > u:

InE,, [eYA} =1In <El,/

Hence, for these distributions ¢/,

KL(v,v/) > max E,[Y)] - InE, [e"] > max E,
A€[0,1] A€[0,1]
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and by taking the infimum over all distributions v/ with E(¢/) > p:

X —p
. > _
]Cmf(V; M) = Ofél)?é(l E, lln <1 A 14 )] (67)

We now only need to prove the converse inequality.

X _
m<1—A “)]

I—p
The function is well defined, except maybe at A\ = 1 when v{1} > 0; we then take it equal to —oo.
We begin by a study of the function H.

To do so, we define the function

H:\e[0,1]—E,

Lemma 17 Assume here that p < E(v) < 1. The function H is twice differentiable on (0,1) and
its derivative can be defined at 1. For all X € (0, 1],

1 1
HMN==(1-E,| ——— 68
1—p
Moreover, for \* € argmax H()), we have
0<A<1
Bl — 1 | 1<l and B |ITE| <1 =1
r-ngse | =X | o

in the case when \* = 1, we have in particular v{1} = 0.

Proof For \ € (0, 1), we get, by legitimately differentiating under the expectation,

X — 1 w1 (X —p)?
<1M>1_A{$] and H(”“(lmf&[a—Af$q4‘ (69)

H'(\) =E,

Indeed as long as A < 1, both variables in the expectations are bounded and we may invoke a
standard differentiation theorem under the integral sign. This proves that H” < 0 and therefore
that H is strictly concave on (0, 1). Furthermore, H is continuous on [0, 1], possibly by defining
H(1) = —o0, as by monotone convergence

: X—p 1-X
)l\linlE ln<1 —A =4 >1{X<u} = E[1n<1_u>ﬂ{x<u}]
. X—p 1-X

where the first expectation is finite (but the second may equal —o0). The same argument shows that
H' is continuous on [0, 1], and therefore (by a theorem on the limit of the derivatives) that H is
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right-derivable at 0 with derivative —(E(v) — ) /(1 — u) > 0. Since H is strictly concave on (0, 1)
and continuous, it reaches its maximum exactly once in [0, 1]. The last disjunction comes from the
fact that since H'(0) > 0 and H’ is decreasing, either H'(1) > 0 and H reaches its maximum at 1,
or H'(1) < 0 and H reaches its maximum inside (0, 1). Since H is continuously differentiable, the
derivative at the maximum is O in that case, which implies the equality of the expectation. |

We may now turn to the rest of the proof of Lemma 11.

Proof For the inequality converse to (67), it is enough to show that there exists one value of A and
one measure v/ such that E(v/) > pand v < v/ and

ln<1—)\X_'u>] (70)
I—p

Recalling the definition of the KL, it thus suffices to find A and v/ that satisfy the above conditions
and

KL(v,V') <E,

dv T —
@(1’) :1_)\1—/1, r-a.s. (71)
We look for these by setting for A € [0, 1] the measure v, defined by
dvy = ! d 1-E ! do 72
i T TR i) "
1—p 1—p

where §; is the Dirac delta measure at 1. This defines a probability measure if and only if the
coefficient in front of dd; is non-negative, i.e. if

AH'(AN) >0
Then for A satifsfying this condition, vy is a probability measure and v < v,. Furthermore, by (68):
x
E(vy :/ dv(z) + \H' (A
= TG wa A
S / /
= dv(x) + pu(l —AH' (M) + AH' (A
| TR ) = M) + )

— = (L= WH (V)1 - )

We wish to consider the case where E(v)) > p to use it to prove our inequality. The only value of
A that satisfies at the same time H'(\) > 0 and H'(\)(1 — X) < 01is A*, at which H reaches its
maximum.
Now all that is left to prove is that
dv (x)=1-— P v-a.s.
dV)\* 1-— 1%
We do so by distinguishing two cases. If A\* < 1, then by Lemma 17 the expectation in (72) is equal
to 1, that is, the dd; comes with a 0 factor. Hence, vy« is absolutely continuous with respect to v,
with a positive density given by the inverse of what we read in (72).
If \* = 1, then again by Lemma 17, we know that v does not put any probability mass at 1,
which guarantees once again the desired equality. |
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D.2. Proof of Lemma 10

The proof below is variations on the proofs that can be found in Honda and Takemura (2015) or
earlier references.

Proof To prove (29) we upper bound KCi,¢ (v, 1 — €). Let a probability distribution v/ € P[0, 1] be
such that
EW)>pu—e and vV > v.

Since v/ has a countable number of atoms, one can choose a real number x > p, arbitrary close to
1, such that 6, L 1/, where ¢, is the Dirac distribution at x. Let the probability distribution v/, be
the convex combination

vy =ad, + (1 —a)/

where,

this choice of « entails that:
E(v,) =(1—-a)EW)+az>(1—a)(u—e)+ax=p.

Moreover, since l/éY > v/ > vand §, L V/, one obtains the following relations between the
Radon-Nikodym derivative of v over v/ and v/ :

dv 1 dv

dv,  1—ad/’

This allows to compute explicitly the Kullback-Leibler divergence

d 1
KL(V,V;):/ln<dyl>d1/:KL(1/,1/)+ln1 .

o —

Since E(v),) > p and by the definition of K;,s we can lower bound the first term in the equality
above

Kinf(l/a M) < KL(”? l/) +In

1—a’

letting « go to 1, which implies a goto €/(1 — pu + £) we have

l—p+e
I—p

g
1—p

Kint (v, 1) < KL(v,v/) +1n =KL(v,”) +In <1 + 1€> < KL(v, V') +

—p

and thus taking the infimum over all the probability distributions " such that E(v') > p — € entails

that
€

’Cin ) < ICin 5 - .
t(v, p) £, p €)+1_M

To prove the second part (30), we follow the same path as above. Let a probability distribution
V' € P[0, 1] be such that

E(W)>p and V' > v.
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Let the probability distribution v/, be the convex combination v/, = (1 — «)v' + av, where

_ o) € (0,1) because E(v) < u— €.

By definition, we have E(v,) = E(V/) — a( E(V') —E(v)), therefore E(v/),) > p— e. Thanks to the
following order of absolute continuity v/ > v/, > v, we can easily compute the Radon-Nikodym
derivative

A Ay, dv  dv

_Od)_i_i

dv  dv dv dv (( ((izlyy/)

and the Kullback-Leibler divergence between v and v/

KL(V,V'):/I (;/>du+/ln((l—a)+a§;j/)dy
2/1n((f >du+a/ln<§;},)dy

= KL(v,v),) + aKL(v, V).

where we use the concavity of logarithm. Now to recover the term Cin¢(v, 4 — €) we use in this
order: the Pinsker inequality, the fact that KL(v, v,) > Kins(v, p — ) and E(v/) — E(v) > &,

KL(v,V") > KL(v,v),) + aKL(v, /)
> KL(v,v),) + 2a( E(v ’)—E(V))2
>K1nf(7/ ,U_E)‘i‘QE(E( )_E(V))
2 Kint (Vﬂ_€)+2€

To conclude it remains to take the infimum in the last inequality over the probability distributions
v/ such that E(v) > p.
|

D.3. Proof of Proposition 12

The following proof is exactly the same as that of Cappé et al. (2013, Lemma 6), except that we
correct a small mistake in the constant.

Proof Fix a real number v € (0,1) and let S, be the set

g _ 1 1 1 1 1+ 1+ 1
v 2 27 77"'72 77272 77"'72 27 Yo

which has at most 1 + 1/~ elements. Thanks to Lemma 18 below, for all Xe [0, 1] there exists a
X' € S, such that for all z € [0, 1]

7 — E(u) 57— E(p)
1n<1 - Al—E(u)) 27—|—1n<1 Y 1_E(M)> ,
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Kint (Vn; E(v)) = max 1 iln(l—X’Xk_E(V)> 2’7+max—21n (1 )\/1__E(N>> ’
k=1

0<A<1 M £ 1-E(v) Xes, it E(p)
(73)
thanks to the variational representation of K¢ (Lemma 11). It remains to apply the Markov’s
inequality and the union bound. Using the upper bound in Lemma 11 and the union bound we
obtain

P|Kint (7, B()) > u| < Y. P l,ll > n (1 - AEFZS)> >u— 2v] )
€S, k=1

By Markov’s inequality, for all A € [0, 1] we have

- _~/Xk_E(V)
H<l YR )]

using the independence of the X}, thus plugging it in (74), we obtain

P|Kint (s B)) > u] < 37 €772 < (14 1/7) €702
Xes,
since the cardinality of S, is at most 1 + 1/~. Taking v = 1/(2n) allows us to conclude. [ |

The proof above relied on the following lemma, which is extracted from Cappé et al. (2013,
Lemma 7) Its elementary proof consists in bounding of derivative of A — In(1 — A\¢) and using a
convexity argument.

Lemma 18 For all A\, X' € [0,1) such that either A\ < XN < 1/2 0r1/2 < XN < A for all real
numbers ¢ < 1,
In(1 — Ac) —In(1 — Ne) <22 = N
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