
HAL Id: hal-01785677
https://hal.science/hal-01785677

Submitted on 4 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast phylogenetic inference from typing data
João André Carriço, Maxime Crochemore, Alexandre P. Francisco, Solon P.

Pissis, Bruno Goncalves, Cátia Vaz

To cite this version:
João André Carriço, Maxime Crochemore, Alexandre P. Francisco, Solon P. Pissis, Bruno Goncalves,
et al.. Fast phylogenetic inference from typing data. Algorithms for Molecular Biology, 2018, 13, pp.4.
�10.1186/s13015-017-0119-7�. �hal-01785677�

https://hal.science/hal-01785677
https://hal.archives-ouvertes.fr

Algorithms for Molecular Biology

Fast phylogenetic inference from typing data
--Manuscript Draft--

Manuscript Number: AMOB-D-17-00047R1

Full Title: Fast phylogenetic inference from typing data

Article Type: Research

Funding Information: Fundação para a Ciência e a Tecnologia
(TUBITAK/0004/2014)

Not applicable

Royal Society International Exchanges
Scheme

Not applicable

Fundação para a Ciência e a Tecnologia
(LISBOA-01-0145-FEDER-016394)

Not applicable

Fundação para a Ciência e a Tecnologia
(LISBOA-01-0145-FEDER-016417)

Not applicable

Fundação para a Ciência e a Tecnologia
(UID/CEC/500021/2013)

Not applicable

European Food Safety Authority
(GP/EFSA/AFSCO/2015/01/CT2)

Not applicable

Abstract: Background:
Microbial typing methods are commonly used to study the relatedness of bacterial
strains. Sequence-based typing methods are a gold standard for epidemiological
surveillance due to the inherent portability of sequence and allelic profile data, fast
analysis times and their capacity to create common nomenclatures for strains or
clones. This led to development of several novel methods and several databases being
made available for many microbial species.
With the mainstream use of High Throughput Sequencing, the amount of data being
accumulated in these databases is huge, storing thousands of different profiles. On the
other hand, computing genetic evolutionary distances among a set of typing profiles or
taxa dominates the running time of many phylogenetic inference methods.
It is important also to note that most of genetic evolution distance definitions rely, even
if indirectly, on computing the pairwise Hamming distance among sequences or
profiles.
Results:
We propose here an average-case linear-time algorithm to compute pairwise Hamming
distances among a set of taxa under a given Hamming distance threshold.
This article includes both a theoretical analysis and extensive experimental results
concerning the proposed algorithm.
We further show how this algorithm can be successfully integrated into a well known
phylogenetic inference method, and how it can be used to speedup querying local
phylogenetic patterns over large typing databases.

Corresponding Author: Alexandre Francisco
Universidade de Lisboa Instituto Superior Tecnico
PORTUGAL

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universidade de Lisboa Instituto Superior Tecnico

Corresponding Author's Secondary
Institution:

First Author: João Carriço

First Author Secondary Information:

Order of Authors: João Carriço

Maxime Crochemore

Alexandre Francisco

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Solon Pissis

Bruno Ribeiro-Gonçalves

Cátia Vaz, Ph.D

Order of Authors Secondary Information:

Response to Reviewers: Dear Editor, Dear Reviewers,

Thank you very much for your comments on our manuscript. We tried our best to
address all your comments and concerns. Please find below our detailed comments
(starting with R:).

Editor's comments (if any):

Thank you for submitting a paper expanding upon your WABI submission. The
reviewers felt that you satisfactorily > addressed the concerns raised in the reviews of
the WABI paper and find value in the new additions you have made > here. They note
only some minor remaining issues. Please see Reviewer #2's comments below for
specific comments. I would ask that you revise the paper in accordance with the
reviewer's suggested minor revisions and prepare a response to the critiques. I expect
that we should be able to assess these revisions without the need to send the papers
back to the reviewer again.

R: We addressed suggested minor revisions, including missing references and typos
within references. We revised also all the manuscript.

The reviewers' critiques follow:

Reviewer #1: The authors have satisfactorily addressed the comments that I raised for
their original WABI submission and I am happy to recommend acceptance.

R: Thank you.

Reviewer #2: Overview:

Distance-based phylogeny algorithms usually assume a matrix of pairwise distances
between different taxa as input. However, there are algorithms that need only
distances betweeen taxa that are sufficiently small, say smaller than some given k. The
question is how to construct such a restricted similarity matrix as fast as possible. The
submitted article tackles this question with Hamming distance as the measure between
the genotype profile sequence representing each taxa. An O(md) average time optimal
algorithm is given for small k, where d is the number of taxa and m is their length. The
algorithm is a simple application of suffix arrays enhanced with LCP information and
RMQ data structure.

The main observation is that one can afford to output all length L>=m/k matching
substring pairs between all profiles, and check which ones lead to real matches in O(k)
time using constant time longest common extension queries implemented by RMQ on
LCP array. The probability of false positives is small enough for small enough k, so that
the running time is dominated by that of producing the output. Similar analyses have
been conducted earlier for approximate string matching (Fredriksson and Navarro.
Average-Optimal Multiple Approximate String Matching. CPM 2003).

The resulting algorithm is plugged into an existing phylogeny tool that can exploit
restricted matrices. Experiments show that the speed-up is significant and the
simulations also confirm that the average case analysis assumptions are not too
optimistic.

A new application for the technique has been included to this extended journal version
compared to the original conference paper. Namely, the application of querying typing
databases is considered. In this application, a query pattern is searched in a database
for approximate matches. The specialization of the all-pairs algorithm for this
application is implemented and incorporated to INNUENDO Platform.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Minor revision requests:

Please add a reference to the approximate pattern matching literature, e.g.
[Fredriksson and Navarro. Average-Optimal Multiple Approximate String Matching.
CPM 2003], is one candidate, but some earlier work already contains similar analyses.
With the added application of searching for query patterns this connection is even
more evident. The analyses are really pretty much the same including the limitations on
k when the approach works, so this connection should really be made visible, to give
credit to the earlier work.

R: We agree with the reviewer and we added the suggested reference, and another
one, stating the relationship between the problems addressed in our work and
approximate pattern matching. Both the statement and cited references may be found
in Conclusions.

Page 12, first line: Add "which is" or something like this to make the sentence
complete.

R: Thanks, we fixed the sentence adding "which is" as suggested.

References: ??? in many places

R: Thanks, some info was missing in our bib file. We revised all references and we
believe that all are complete now.

With my best regards,

Alexandre Francisco

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Carriço et al.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

RESEARCH

Fast phylogenetic inference from typing data

João A Carriço1, Maxime Crochemore2, Alexandre P Francisco3,4*, Solon P Pissis2, Bruno

Ribeiro-Gonçalves1 and Cátia Vaz3,5

*Correspondence: aplf@ist.utl.pt

3INESC-ID Lisboa, Rua Alves

Redol 9, 1000-029 Lisboa, PT

Full list of author information is

available at the end of the article

Abstract

Background: Microbial typing methods are commonly used to study the

relatedness of bacterial strains. Sequence-based typing methods are a gold

standard for epidemiological surveillance due to the inherent portability of

sequence and allelic profile data, fast analysis times and their capacity to create

common nomenclatures for strains or clones. This led to development of several

novel methods and several databases being made available for many microbial

species. With the mainstream use of High Throughput Sequencing, the amount

of data being accumulated in these databases is huge, storing thousands of

different profiles. On the other hand, computing genetic evolutionary distances

among a set of typing profiles or taxa dominates the running time of many

phylogenetic inference methods. It is important also to note that most of genetic

evolution distance definitions rely, even if indirectly, on computing the pairwise

Hamming distance among sequences or profiles.

Results: We propose here an average-case linear-time algorithm to compute

pairwise Hamming distances among a set of taxa under a given Hamming

distance threshold. This article includes both a theoretical analysis and extensive

experimental results concerning the proposed algorithm. We further show how

this algorithm can be successfully integrated into a well known phylogenetic

inference method, and how it can be used to speedup querying local phylogenetic

patterns over large typing databases.

Keywords: computational biology; phylogenetic inference; Hamming distance

Background

Introduction

The evolutionary relationships between different species or taxa are usually inferred

through known phylogenetic analysis techniques. Some of these techniques rely on

Manuscript Click here to download Manuscript paper.tex

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:aplf@ist.utl.pt
http://www.editorialmanager.com/amob/download.aspx?id=12196&guid=ae6f9138-c111-4d6a-a29e-8aaf904087f4&scheme=1
http://www.editorialmanager.com/amob/download.aspx?id=12196&guid=ae6f9138-c111-4d6a-a29e-8aaf904087f4&scheme=1
http://www.editorialmanager.com/amob/viewRCResults.aspx?pdf=1&docID=287&rev=1&fileID=12196&msid={E2EAAABE-C706-49CB-84EE-EADE52A3557F}

Carriço et al. Page 2 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

the inference of phylogenetic trees, which can be computed from DNA or Protein

sequences, or from allelic profiles where the sequences of defined loci are abstracted

to categorical indexes. The most popular method is MultiLocus Sequence Typing

(MLST) [1] that typically uses seven 450 to 700 bp fragments of housekeeping genes

for a given species. Phylogenetic trees are also used in other contexts, such as to

understand the evolutionary history of gene families, to allow phylogenetic foot-

printing, to trace the origin and transmission of infectious diseases, or to study the

co-evolution of hosts and parasites [2, 3].

In traditional phylogenetic methods, the process of phylogenetic inference starts

with a multiple alignment of the sequences under study that is then corrected

using models of DNA or Protein evolution. Tree-building methodologies can then

be applied on the resulting distance matrix. These methods rely on some distance-

based analysis of sequences or profiles [4].

Distance-based methods for phylogenetic analysis rely on a measure of genetic

evolution distance, which is often defined directly or indirectly from the fraction

of mismatches at aligned positions, with gaps either ignored or counted as mis-

matches. A first step of these methods is to compute this distance between all pairs

of sequences. The simplest approach is to use the Hamming distance, also known

as observed p-distance, defined as the number of positions at which two aligned

sequences differ. Note that the Hamming distance between two sequences under-

estimates their true evolutionary distance and, thus, a correction formula based

on some model of evolution is often used [2, 4]. Although distance-based methods

not always produce the best tree for the data, usually they also incorporate an

optimality criterion into the distance model for getting more plausible phylogenetic

reconstructions, such as the minimum evolution criterion [5], the least squares cri-

terion [6] or the clonal complexes expansion and diversification [7]. Nevertheless,

this category of methods are much faster than Maximum Likelihood or Bayesian

Inference Methods [8], making them excellent choices for the primary analysis of

large data sets.

Most of the distance-based methods are agglomerative methods. They start with

each sequence being a singleton cluster and, at each step, they join two clusters. The

iterative process stops when all sequences are part of a single cluster, resulting in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 3 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

a phylogenetic tree. At each step the candidate pair is selected taking into account

the distance among clusters as well as the optimality criterion chosen to adjust it.

The computation of a distance matrix (2D array containing the pairwise distances

between the elements of a set) is a common first step for distance-based methods,

such as eBURST [9], goeBURST [10], Neighbor Joining [11] and UPGMA [12]. This

particular step dominates the running time of most methods, taking Θ(md2) time

in general, d being the number of sequences or profiles and m the length of each

sequence or profile. For large-scale datasets this running time may be quite prob-

lematic. And nowadays, with the mainstream use of High Throughput Sequencing,

the amount of data being accumulated in typing databases is huge. It is common to

find databases storing thousands of different profiles for a single microbial species,

with each profile having thousands of loci [13, 14].

However, depending on application, on the underlying model of evolution and

on the optimality criterion, it may not be strictly necessary to be aware of the

complete distance matrix. There are methods that continue to provide optimal

solutions without a complete matrix. For such methods, one may still consider a

truncated distance matrix and several heuristics, combined with final local searches

through topology rearrangements, to improve the running time [6]. The goeBURST

algorithm, one of our use cases in this article, is an example of a method that can

work with truncated distance matrices by construction, i.e., one needs only to know

which pairs are at Hamming distance at most k.

Our results

We propose here an average-case O(md)-time and O(md)-space algorithm to com-

pute the pairs of sequences, among d sequences of length m, that are at distance at

most k, when k < (m−k−1)·log σ
logmd , where σ is the size of the sequences alphabet. We

support our result with both a theoretical analysis and an experimental evaluation

on synthetic and real datasets of different data types (MLST, cgMLST, wgMLST

and SNP). We further show that our method improves goeBURST, and that we can

use it to speedup querying local phylogenetic patterns over large typing databases.

A preliminary version of this paper was presented at the Workshop on Algorithms

in Bioinformatics (WABI) 2017 [15].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 4 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Methods

Closest pairs in linear time

Let P be the set of profiles (or sequences) each of length m, defined over an integer

alphabet Σ, (i.e., Σ = {1, . . . ,mO(1)}), with d = |P | and σ = |Σ|. Let also H : P ×

P → {0, . . . ,m} be the function such that H(u, v) is the Hamming distance between

profiles u, v ∈ P . Given an integer threshold 0 < k < m, the problem is to compute

all pairs u, v ∈ P such that H(u, v) ≤ k, and the correspondingH(u, v) value, faster

than the Θ(md2) time required to compute näıvely the complete distance matrix

for the d profiles of length m.

We address this problem by indexing all profiles P using the suffix array (denoted

by SA) and the longest common prefix (denoted by LCP) array [16]. We rely also

on a range minimum queries (RMQ) data structure [17, 18] over the LCP array

(denoted by RMQLCP). The problem is then solved in three main steps:

1 Index all profiles using the SA data structure.

2 Enumerate all candidate profile pairs given the maximum Hamming distance

k.

3 Verify each candidate profile pair by checking if the associated Hamming

distance is no more than k.

Table 1 summarizes the data structures and strategies followed in each step. Profiles

are concatenated and indexed using SA. Depending on the strategy to be used, we

further process the SA and build the LCP array and pre-process it for fast RMQ.

This allows for enumerating candidate profile pairs and computing distances faster.

In what follows, we detail the above steps and show how the data structures are

used to improve the overall running time.

Step 1: Profile indexing

Profiles are concatenated and indexed in an SA in O(md) time and space [19, 20].

Let us denote this string by s. Since we only need to compute the distances between

profiles that are at Hamming distance at most k, we can conceptually split each

profile into k non-overlapping blocks of length L = ⌊ m
k+1⌋ each. It is then folklore

knowledge that if two profiles are within distance k, they must share at least one

such block of length L. Our approach is based on using the SA of s to efficiently

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 5 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

identify matching blocks among profile pairs. This lets us quickly filter in candidate

profile pairs and filter out the ones that can never be part of the output.

Step 2: Candidate profile pairs enumeration

The candidate profile pairs enumeration step provides the pairs of profiles that do

not differ in more than k positions, but it may include spurious pairs. Since SA

is an ordered structure, a simple solution is to use a binary search approach. For

each block of each profile, we can obtain in O(L log n) time, where n = md, all the

suffixes that have that block as a prefix. If a given match is not aligned with the

initial block, i.e. it does not occur at the same position in the respective profile,

then it should be discarded. Otherwise, a candidate profile pair is reported. This

searching procedure is done in O(dkL log n) = O(n log n) time.

Another solution relies on computing the LCP array: the longest common prefix

between each pair of consecutive elements within the SA. This information can also

be computed in O(n) time and space [21]. Since SA is an ordered structure, for the

contiguous suffixes si, si+1, si+2 of s, with 0 ≤ i < n− 2, we have that the common

prefix between si and si+1 is at least as long as the common prefix of si and si+2.

By construction, it is possible to get the position of each suffix in the corresponding

profile in constant time. Then, we cluster the corresponding profiles of contiguous

pairs if they have an LCP value greater than or equal to L and they are also aligned.

This clustering procedure can be done in O(kd2) time.

Step 3: Pairs verification

After getting the set of candidate profile pairs, a näıve solution would be to compute

the distance for each pair of profiles by comparing them in linear time, i.e., O(m)

time. However, if we compute the LCP array of s, we can then perform a sequence

of O(k) RMQ over the LCP array for checking if a pair of profiles is at distance

at most k. These RMQ over the LCP array correspond to longest common prefix

queries between a pair of suffixes of s. Since after a linear-time pre-processing over

the LCP array, RMQ can be answered in constant time per query [17], we obtain a

faster approach for computing the distances. This alternative approach takes O(k)

time to verify each candidate profile pair instead of O(m) time.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 6 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Average-case analysis

Algorithm 1 below details the solution based on LCP clusters; and Theorem 1 shows

that this algorithm runs in linear time on average using linear space. We rely here

on well-known results concerning the linear-time construction of the SA [19, 20]

and the LCP array [21], as well as the linear-time pre-processing for the RMQ data

structure [18].

In what follows, LCP[i], i > 0, stores the length of the longest common prefix

of suffixes si−1 and si of s, and RMQLCP(i, j) returns the index of the smallest

element in the subarray LCP[i . . . j] in constant time [18]. We rely also on some

auxiliary subroutines; let L = ⌊ m
k+1⌋:

Aligned(i) Let ℓ = i mod m, i.e., the starting position of the suffix si within

a profile. Then this subroutine returns ℓ/L if ℓ is multiple of L, and −1

otherwise.

HD(pi, pj , ℓ) Given two profiles pi and pj which share a substring of length L,

starting at index ℓL, this subroutine computes the minimum of k and the

Hamming distance between pi and pj. This subroutine relies on RMQLCP to

find matches between pi and pj and, hence, it runs in O(k) time since it can

terminate after k mismatches.

Theorem 1 Given d profiles of length m each over an integer alphabet Σ of size

σ > 1 with the letters of the profiles being independent and identically distributed

random variables uniformly distributed over Σ, and the maximum Hamming dis-

tance 0 < k < m, Algorithm 1 runs in O(md) average-case time and space if

k <
(m− k − 1) · log σ

logmd
.

Proof Let us denote by s the string of length md obtained after concatenating the

d profiles. The time and space required for constructing the SA and the LCP arrays

for s and the RMQ data structure over the LCP array is O(md).

Let us denote by B the total number of blocks over s and by L the block length.

We set L = ⌊ m
k+1⌋ and thus we have that B = d⌊m

L ⌋. Let us also denote by C a

maximal set of indices over x satisfying the following:

1 the length of the longest common prefix between any two suffixes of s starting

at these indices is at least L;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 7 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Algorithm 1: Algorithm using LCP clusters.

1 Input: A set P of d profiles of length m each; an integer threshold 0 < k < m.

2 Output: The set X of distinct pairs of profiles that are at Hamming distance at most k, i.e.,

X = {(u, v) ∈ P × P | u < v and H(u, v) ≤ k}.

3 Initialization: Let s = s[0 . . . n− 1] be the string of length n = md obtained after concatenating

the d profiles, and L = ⌊ m
k+1

⌋. Construct the SA S for s, the LCP array for s and RMQLCP.

Initialize a hash table HT to track verified pairs.

4 Candidate pairs enumeration:

5 X := ∅; ℓp := −1; Ct := ∅, for 0 ≤ t ≤ k

6 foreach 1 ≤ i < n do

7 ℓ := LCP[i]

8 if ℓ ≥ L then

9 pi := ⌊S[i]/m⌋

10 x := Aligned(i)

11 if x 6= −1 then

12 Cx := Cx ∪ {pi}

13 if ℓp = −1 then

14 pi−1 := ⌊S[i− 1]/m⌋

15 x := Aligned(i− 1)

16 if x 6= −1 then

17 Cx := Cx ∪ {pi−1}

18 ℓp := ℓ

19 else if ℓp 6= −1 then

20 Pairs enumeration:

21 foreach Ct, with 0 ≤ t ≤ k do

22 foreach (p, q) ∈ Ct × Ct : p < q do

23 if (p, q) /∈ HT then

24 HT := HT ∪ {(p, q)}

25 δ := HD(p, q, t)

26 if δ ≤ k then

27 X := X ∪ {(p, q)}

28 ℓp := −1; Ct := ∅, for 0 ≤ t ≤ k

29 Finalize: Return the set X.

2 both of these suffixes start at the starting position of a block;

3 and both indices correspond to the starting position of the ith block in their

profiles.

This can be done in O(md) time using the LCP array (lines 7-17). Processing all

such sets C (lines 21-27) requires total time

PROCi,j × Pairs

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 8 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

where PROCi,j is the time required to process a pair i, j of elements of a set C, and

Pairs is the sum of |C|2 over all such sets C. We have that PROCi,j = O(k) by

using RMQ over the LCP array. Additionally, by the stated assumption on the d

profiles, the expected value for Pairs is no more than Bd
σL : we have B blocks in total

and each block can only match at most d other blocks by the conditions above.

Hence, the algorithm requires on average the following running time

O(md+ k ·
Bd

σL
).

Let us analyze this further to obtain the relevant condition on k. We have the

following:

k ·
Bd

σL
=

k · ⌊ m
⌊m/(k+1)⌋⌋ · d

2

σ⌊ m

k+1 ⌋
≤

k · (m
⌊m/(k+1)⌋) · d

2

σ
m

k+1−1
.

Since 0 < k < m by hypothesis, we have the following:

k · (m
⌊m/(k+1)⌋) · d

2

σ
m

k+1−1
≤

(md)2

σ
m

k+1−1
.

By some simple rearrangements we have that:

(md)2

σ
m

k+1−1
=

(md)2

(md)
log σ

log md
(m

k+1−1)
= (md)2−

(m−k−1) log σ

(k+1) log md .

Consequently, in the case when

k <
(m− k − 1) · log σ

logmd

the algorithm requires O(md) time on average. The extra space usage is clearly

O(md).

Use case 1: goeBURST algorithm

The distance matrix computation is a main step in distance-based methods for

phylogenetic inference. This step dominates the running time of most methods,

taking Θ(md2) time, for d sequences of length m, since it must compute the distance

among all sequence pairs. But for some methods, or when we are only interested in

local phylogenies for sequences or profiles of interest, one does not need to know all

pairwise distances for reconstructing a phylogenetic tree. The problem addressed

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 9 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

in this article was motivated by the goeBURST algorithm [10], our use case 1.

goeBURST is one of such methods for which one must know only the pairs of

sequences that are at Hamming distance at most k. The solution proposed here

can however be extended to other distance-based phylogenetic inference methods,

that rely directly or indirectly on Hamming distance computations. Note that most

methods either consider the Hamming distance or its correction accordingly to

some formula based on some model of evolution [2, 4]. In both cases we must start

by computing the Hamming distance among sequences, but not necessarily all of

them [6].

The underlying model of goeBURST is as follows: a given genotype increases in

frequency in the population as a consequence of a fitness advantage or of random

genetic drift, becoming a founder clone in the population; and this increase is ac-

companied by a gradual diversification of that genotype, by mutation and recombi-

nation, forming a cluster of phylogenetic closely-related strains. This diversification

of the “founding” genotype is reflected in the appearance of genetic profiles differing

only in one housekeeping gene sequence from this genotype — single locus variants

(SLVs). Further diversification of those SLVs will result in the appearance of vari-

ations of the original genotype with more than one difference in the allelic profile,

e.g., double and triple locus variants (DLVs and TLVs).

The problem solved by goeBURST can be stated as a graphic matroid optimiza-

tion problem and, hence, it follows a classic greedy approach [22]. Given the maxi-

mum Hamming distance k, we can define a graph G = (V,E), where V = P (set of

profiles) and E = {(u, v) ∈ V 2 | H(u, v) ≤ k}. The main goal of goeBURST is then

to compute a minimum spanning forest forG taking into account the distanceH and

a total order on links. It starts with a forest of singleton trees (each sequence/profile

is a tree). Then it constructs the optimal forest by adding links connecting profiles

in different trees in increasing order accordingly to the total order, similarly to what

is done in the Kruskal’s algorithm [23]. In the current implementation, a total or-

der for links is implicitly defined based on the distance between sequences, on the

number of SLVs, DLVs, TLVs, on the occurrence frequency of sequences, and on

the assigned sequence identifier. With this total order, the construction of the tree

consists of building a minimum spanning forest in a graph [23], where each sequence

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 10 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

is a node and the link weights are defined by the total order. By construction, the

pairs at distance δ will be joined before the pairs at distance δ + 1.

Use case 2: Querying typing databases

A related problem is querying typing databases for similar typing profiles. Given

a set P of d profiles of length m each, a profile u not necessarily in P but with

the same length m as those in P , and k such that 0 < k < m, the problem is

to find all profiles v ∈ P such that H(u, v) ≤ k. One may be also interested on

local phylogenetic patterns, but those can be inferred from found profiles using for

instance the goeBURST algorithm.

Once we define the value for k, we can address this problem as follows. We index all

d profiles in the database as before in linear time O(md), and given a query profile

u, we enumerate all candidate profiles v. We then verify as before all candidate pairs

and we return only those satisfying H(u, v) ≤ k.

Since u may not be in P , we rely neither on LCP clustering nor on RMQ. By

using the SA we find candidate matches through binary search, identifying lower

and higher bounds in the SA, as discussed before. Hence, given the k + 1 non-

overlapping blocks of length L = ⌊ m
k+1⌋ for u, we search for each one of them in

O(L logmd) time. Since we have k+1 blocks, it takes O(kL logmd) = O(m logmd)

time to search for all k + 1 blocks in u. Finally, we can then verify and report all

candidate profiles v ∈ P as detailed in Algorithm 2.

Although, in the worst case, Algorithm 2 runs in time O(md +m logmd), as we

may have d matches at most, we can prove a similar average case as in Theorem 1.

Theorem 2 Given a profile u and a set of d profiles of length m each, all over an

integer alphabet Σ of size σ > 1, with the letters of the profiles being independent and

identically distributed random variables uniformly distributed over Σ, the SA for the

string s of length md obtained after concatenating the d profiles, and the maximum

Hamming distance 0 < k < m, Algorithm 2 runs in O(m logmd) average-case time

if

k <
(m− k − 1) · log σ + (k + 1) · log logmd

logmd
.

Proof Let us denote by B the total number of blocks over s and by L the block

length. We set L = ⌊ m
k+1⌋ and thus we have that B = d⌊m

L ⌋. By the stated assump-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 11 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Algorithm 2: Algorithm for querying typing databases.

1 Input: An SA S for a set P of d profiles of length m each, concatenated as a string s of length

md; a profile u of length m; an integer threshold 0 < k < m.

2 Output: The set X of distinct profiles that are at Hamming distance at most k from u, i.e.,

X = {v ∈ P | H(u, v) ≤ k}.

3 Initialization: Initialize a hash table HT to track verified profiles v and let L = ⌊ m
k+1

⌋.

4 X := ∅

5 foreach 0 ≤ i ≤ k do

6 ℓ := LowerBinSearch(S, s, u[iL..(i+ 1)L − 1])

7 h := HigherBinSearch(S, s, u[iL..(i+ 1)L − 1])

8 foreach ℓ ≤ j ≤ h do

9 if Aligned(j) = i then

10 v := ⌊S[j]/m⌋

11 if v /∈ HT then

12 HT := HT ∪ {v}

13 δ := H(v, u)

14 if δ ≤ k then

15 X := X ∪ {v}

16 Finalize: Return the set X.

tion on the profiles, the expected value for the number of profiles matching u is no

more than B
σL : we have B blocks in total and each block can only match at most

one other block in u (since they must be aligned; line 9). Moreover, since we are not

relying on the LCP array in this case, the verification step (line 13) takes O(m)

time. Hence, the algorithm requires on average the following running time

O(m logmd+m ·
B

σL
).

Let us analyze this further to obtain the relevant condition on k. We have the

following:

m ·
B

σL
=

m · ⌊ m
⌊m/(k+1)⌋⌋ · d

σ⌊ m

k+1 ⌋
≤

m · (m
⌊m/(k+1)⌋) · d

σ
m

k+1−1
≤

m2d

σ
m

k+1−1
.

By some simple rearrangements we have that:

m2d

σ
m

k+1−1
=

m2d

(md)
log σ

log md
(m

k+1−1)
= m(md)1−

(m−k−1) log σ

(k+1) log md .

Consequently, in the case when

k <
(m− k − 1) · log σ + (k + 1) · log logmd

logmd

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 12 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

the algorithm requires O(m logmd) time on average.

This algorithm was implemented and integrated in INNUENDO Platform, which

is publicly available [24]. The INNUENDO Platform is an infrastructure that pro-

vides the required framework for data analyses from bacterial raw reads sequencing

data quality insurance to the integration of epidemiological data and visualization.

As such, rapid methods for classification and search for closely related strains are

a necessity for quick navigation through the platform database entries. More infor-

mation about the project can be found at its website [25].

As a starting point and for the purpose of this study, a subset of 2312 wgMLST

profiles of Escherichia coli retrieved from Enterobase [13] were included in the IN-

NUENDO database as well as their ancillary data and predefined core-genome clus-

ter classification. Two tab-separated files containing the wgMLST and cgMLST pro-

files for the Escherichia coli strains were also created to allow storing information

on the currently available profiles and for updating with profiles that will become

available upon the platform analyses.

One of two index files are used depending on the type of search we want to per-

form: classification or search for k-closest. The cgMLST index file is used for strain

classification, which relies on a nomenclature designed for the cgMLST profiles. As

such, and since a pre-classification was performed on the database of Escherichia

coli strains, we continued using it for comparison purposes. However, when search-

ing for the k-closest profiles, we take into consideration all targets available in the

wgMLST profiles using the wgMLST index file for a higher discriminatory power.

Each time a new profile is generated from the platform, it requires classification.

The INNUENDO Platform performs the classification step based on the approach

described in our use case 2 with a given maximum of k differences over core genes.

It uses the cgMLST index file for the search since the classification is constructed

based on those number of loci. If the method returns at least one match, it classifies

the new profile with the classification of the closest. If not, a new classification is

assigned. A new entry is then added to the INNUENDO database as well as to the

cgMLST and wgMLST profiles files and the index files are updated.

In the case of the search for the k-closest, it is useful to define the input data for

visualization methods according to a defined number of differences on close strains.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 13 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

For each profile used as input for the search, the method searches for the k-closest

strains considering at most k differences among all wgMLST loci. Since duplicate

matches can occur between the profiles used for each search, the final file used as

input for the visualization methods is the intersection of the results of the k-closest

profiles between each input strain. The set of strain identifiers are then used to

query the INNUENDO database to get the profiles and ancillary data to be sent to

PHYLOViZ Online [26] for further analysis, namely with the goeBURST algorithm.

The drawback of using this method for classification and search is the need for

rebuilding the index each time there is a new profile, which will depend on the

number of profile entries on the database. Nevertheless, the number of updates

is rather smaller compared to the number of queries and the index can be build

in the background, with search functionalities still using the old index during the

process. In our implementation, the index and related data structures are serialized

in secondary memory and they are accessed by mapping them into memory. The

implementation of the underlying tool is made publicly available [27].

The above described approaches in combination with the features offered by the

INNUENDO Platform allow microbiologists to quickly and efficiently search for

strains close to their strain of interest, allowing a more targeted, focused and simple

visualization of results.

Experimental evaluation

We evaluated the proposed approach to compute the pairs of profiles at distance

at most k using both real and synthetic datasets. We used real datasets obtained

through different typing schemas, namely whole-genome multi-locus sequence typ-

ing (wgMLST) data, core-genome multi-locus sequence typing (cgMLST) data, and

single-nucleotide polymorphism (SNP) data. Table 2 summarizes the real datasets

used. We should note that wgMLST and cgMLST datasets contain sequences of

integers, where each column corresponds to a locus and different values in the same

column denote different alleles. Synthetic datasets comprise sets of binary sequences

of variable length, uniformly sampled, allowing us to validate our theoretical find-

ings.

We implemented both versions described above in the C programming language:

one based on binary search over the SA; and another one based on finding clusters

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 14 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

in the LCP array. Since allelic profiles can be either string of letters or sequences of

integers, we relied on libdivsufsort library [28] and qsufsort code [29, 30], re-

spectively. For RMQ over the LCP array, we implemented a fast well-known solution

that uses constant time per query and linearithmic space for pre-processing [17].

All tests were conducted on a machine running Linux, with an Intel(R) Xeon(R)

CPU E5-2630 v3 @ 2.40GHz (8 cores, cache 32KB/4096KB) and with 32GB of

RAM. All binaries where produced using GCC 5.3 with full optimization enabled.

Synthetic datasets

We first present results with synthetic data for different values of d, m and k. All

synthetic sequences are binary sequences uniformly sampled. Results presented in

this section were averaged over ten runs and for five different sets of synthetic data.

The bound proved in Theorem 1 was verified in practice. For k satisfying the

conditions in Theorem 1, the running time of our implementation grows almost

linearly with n, the size of the input. We can observe in Fig. 1 a growth slightly

above linear. Since we included the time for constructing the SA, the LCP array and

the RMQ data structure, with the last one in linearithmic time, that was expected.

We also tested our method for values of k exceeding the bound shown in Theo-

rem 1. For d = m = 4096 and a binary alphabet, the bound for k given in Theorem 1

is no more than ⌊m/(2 logm)⌋ = 170. For k above this bound we expect that pro-

posed approaches are no longer competitive with the näıve approach. As shown in

Fig. 2, for k > 250 and k > 270 respectively, both limits above the predicted bound,

the running time for both computing pairwise distances by finding lower and higher

bounds in the SA, and by processing LCP based clusters, becomes slower than the

running time of the näıve approach.

In Fig. 3 we have the running time as a function of the number d of profiles, for

different values ofm and for k satisfying the bound given in Theorem 1. The running

time for the näıve approach grows quadratically with d, while it grows linearly for

both computing pairwise distances by finding lower and higher bounds in the SA,

and by processing LCP based clusters. Hence, for synthetic data, as described by

Theorem 1, the result holds.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 15 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Real datasets

For each dataset in Table 2, we ranged the threshold k accordingly and compared

the approaches discussed in methods section with the näıve approach that computes

the distance for all sequence pairs. Results are provided in Table 3.

In most cases, the approach based on the LCP clusters is the fastest up to two

orders of magnitude compared to the näıve approach. As expected, in the case when

data are not uniformly random, our method works reasonably well for smaller values

of k than the ones implied by the bound in Theorem 1. As an example, the upper

bound on k for C. jejuni would be around 200, but the running time for the näıve

approach is already better for k = 64. We should note however that the number

of candidate profile pairs at Hamming distance at most k is much higher than the

expected number when data are uniformly random. This tells us that we can design

a simple hybrid scheme that chooses a strategy (näıve or the proposed method)

depending on the nature of the input data. It seems also to point out clustering

effects on profile dissimilarities, which we may exploit to improve our results. We

leave both tasks as future work for the full version of this article.

We incorporated the approach based on finding lower and higher bounds in the

SA in the implementation of goeBURST algorithm, discussed in methods section.

We did not incorporate the approach based on the LCP clusters as the running time

did not improve much as observed above. Since running times are similar to those

reported in Table 3, we discuss only the running time for C. jejuni. We need only

to index the input once. We can then use the index in the different stages of the

algorithm and for different values of k. In the particular case of goeBURST, we use

the index twice: once for computing the number of neighbors at a given distance,

used for untying links according to the total order discussed in the description of

goeBURST algorithm in methods section, and a second time for enumerating pairs

at distance below a given threshold. Note that the goeBURST algorithm does not

aim to link all nodes, but to identify clonal complexes (or connected components)

for a given threshold on the distance among profiles [10]. In the case of C. jejuni

dataset, and for k = 52, the running time is around 36 seconds, while the näıve

approach takes around 115 seconds, yielding a three-fold speedup. In this case we

get several connected components, i.e., several trees, connecting the most similar

profiles. We provide the tree for the largest component in Fig. 4, where each node

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 16 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

represents a profile. The nodes are colored according to one of the loci for which

profiles in this cluster differ. Note that this tree is optimal with respect to the

criterion used by the goeBURST algorithm, not being affected by the threshold on

the distance. In fact, since this problem is a graphic matroid, the trees found for a

given threshold will be always subtrees of the trees found for larger thresholds [22].

Comparing this tree with other inference methods is beyond the scope of this article;

the focus here was on the faster computation of an optimal tree under this model.

In many studies, the computation of trees based on pairwise distances below a

given threshold, usually small compared with the total number of loci, combined

with ancillary data, such as antibiotic resistance and host information, allows mi-

crobiologists to uncover evolution patterns and study the mechanisms underlying

the transmission of infectious diseases [31].

Conclusions

Most distance-based phylogenetic inference methods rely directly or indirectly on

Hamming distance computations. The computation of a distance matrix is a com-

mon first step for such methods, taking Θ(md2) time in general, with d being the

number of sequences or profiles and m the length of each sequence or profile. For

large-scale datasets this running time may be problematic; however, for some meth-

ods, we can avoid to compute all-pairs distances [6].

We addressed this problem when only a truncated distance matrix is needed,

i.e., one needs to know only which pairs are at Hamming distance at most k.

This problem was motivated by the goeBURST algorithm [10], which relies on

a truncated distance matrix by construction. Both the problem and techniques

discussed here are related to average-case approximate string matching [32, 33]. We

proposed here an average-case linear-time and linear-space algorithm to compute

the pairs of sequences or profiles that are at Hamming distance at most k, when

k < (m−k−1)·log σ
logmd , where σ is the size of the alphabet. We integrated our solution in

goeBURST demonstrating its effectiveness using both real and synthetic datasets.

We must note however that our analysis holds for uniformly random sequences

and, hence, as observed with real data, the presented bound may be optimistic. It is

thus interesting to investigate how to address this problem taking into account local

conserved regions within sequences. Moreover, it might be interesting to consider

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 17 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

in the analysis null models such as those used to evaluate the accuracy of distance-

based phylogenetic inference methods [4].

The proposed approach is particularly useful when one is interested in local phy-

logenies, i.e., local patterns of evolution, such as searching for similar sequences or

profiles in large typing databases, as in our use case 2. In this case we do not need to

construct full phylogenetic trees, with tens of thousands of taxa. We can focus our

search on the most similar sequences or profiles, within a given threshold k. There

are however some issues to be solved in this scenario, namely, dynamic updating of

the data structures used in our algorithm. Note that after querying a database, if

new sequences or profiles are identified, then we should be able to add them while

keeping our data structures updated. Although more complex and dynamic data

structures are known, a technique proposed recently for adding dynamism to oth-

erwise static data structures can be useful to address this issue [34]. This and other

challenges raised above are left as future work.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

MC, APF, SPP and CV conceived the study and contributed for the design and analysis of the methods and

experimental evaluation. APF, SPP and CV implemented Algorithm 1 and run the experiments. JAC conceived the

case study 2 and contributed with the biological background. APF and BRG implemented Algorithm 2 and

integrated it in INNUENDO Platform. All authors contributed to the writing of the manuscript. All authors have

read and approved the final manuscript.

Acknowledgements

This work was partly supported by the Royal Society International Exchanges Scheme, and by the following projects:

BacGenTrack (TUBITAK/0004/2014) funded by FCT (Fundação para a Ciência e a Tecnologia) / Scientific and

Technological Research Council of Turkey (Türkiye Bilimsel ve Teknolojik Araşrrma Kurumu, TÜBİTAK), PRECISE

(LISBOA-01-0145-FEDER-016394) and ONEIDA (LISBOA-01-0145-FEDER-016417) projects co-funded by FEEI

(Fundos Europeus Estruturais e de Investimento) from “Programa Operacional Regional Lisboa 2020” and by

national funds from FCT, UID/CEC/500021/2013 funded by national funds from FCT, and INNUENDO

project [25] co-funded by the European Food Safety Authority (EFSA), grant agreement

GP/EFSA/AFSCO/2015/01/CT2 (“New approaches in identifying and characterizing microbial and chemical

hazards”). The conclusions, findings, and opinions expressed in this review paper reflect only the view of the authors

and not the official position of the European Food Safety Authority (EFSA).

Author details

1Faculdade de Medicina, Instituto de Microbiologia and Instituto de Medicina Molecular, Universidade de Lisboa,

Lisboa, PT. 2Department of Informatics, King’s College London, London, UK. 3INESC-ID Lisboa, Rua Alves Redol

9, 1000-029 Lisboa, PT. 4Instituto Superior Técnico, Universidade de Lisboa, Lisboa, PT. 5Instituto Superior de

Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, PT.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 18 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

References

1. Maiden, M.C., Bygraves, J.A., Feil, E.J., Morelli, G., Russell, J.E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K.,

Caugant, D.A., Feavers, I.M., Achtman, M., Spratt, B.G.: Multilocus sequence typing: a portable approach to

the identification of clones within populations of pathogenic microorganisms. Proceedings of the National

Academy of Sciences of the United States of America 95(6), 3140–3145 (1998)

2. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications.

Cambridge University Press, New York, NY, USA (2010). doi:10.1017/CBO9780511974076

3. Robinson, D.A., Feil, E.J., Falush, D.: Bacterial Population Genetics in Infectious Disease. John Wiley & Sons,

Hoboken, NJ, USA (2010). doi:10.1002/9780470600122

4. Saitou, N.: Introduction to Evolutionary Genomics. Springer, London (2013). doi:10.1007/978-1-4471-5304-7

5. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the

minimum-evolution principle. Journal of Computational Biology 9(5), 687–705 (2002).

doi:10.1089/106652702761034136

6. Pardi, F., Gascuel, O.: Distance-based methods in phylogenetics. In: Encyclopedia of Evolutionary Biology, pp.

458–465. Elsevier, Oxford, MA, USA (2016). doi:10.1016/B978-0-12-800049-6.00206-7

7. Feil, E.J., Holmes, E.C., Bessen, D.E., Chan, M.-S., Day, N.P., Enright, M.C., Goldstein, R., Hood, D.W.,

Kalia, A., Moore, C.E., et al.: Recombination within natural populations of pathogenic bacteria: short-term

empirical estimates and long-term phylogenetic consequences. Proceedings of the National Academy of

Sciences 98(1), 182–187 (2001). doi:10.1073/pnas.98.1.182

8. Yang, Z., Rannala, B.: Molecular phylogenetics: principles and practice. Nature Reviews Genetics 13(5),

303–314 (2012)

9. Feil, E.J., Li, B.C., Aanensen, D.M., Hanage, W.P., Spratt, B.G.: eBURST: inferring patterns of evolutionary

descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of

Bacteriology 186(5), 1518–1530 (2004). doi:10.1128/JB.186.5.1518-1530.2004

10. Francisco, A.P., Bugalho, M., Ramirez, M., Carriço, J.: Global optimal eBURST analysis of multilocus typing

data using a graphic matroid approach. BMC Bioinformatics 10(1) (2009). doi:10.1186/1471-2105-10-152

11. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees.

Molecular Biology and Evolution 4(4), 406–425 (1987). doi:10.1093/oxfordjournals.molbev.a040454

12. Sokal, R.R.: A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38, 1409–1438

(1958)

13. Sergean, M., Zhou, Z., Alikhan, N.-F., Achtman, M.: EnteroBase. Accessed on 31 October 2017.

https://enterobase.warwick.ac.uk/

14. Jolley, K.A., Maiden, M.C.J.: BIGSdb: Scalable analysis of bacterial genome variation at the population level.

BMC Bioinformatics 11, 595 (2010)

15. Crochemore, M., Francisco, A.P., Pissis, S.P., Vaz, C.: Towards Distance-Based Phylogenetic Inference in

Average-Case Linear-Time. In: Schwartz, R., Reinert, K. (eds.) 17th International Workshop on Algorithms in

Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 88, pp. 9–1914.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017).

doi:10.4230/LIPIcs.WABI.2017.9. http://drops.dagstuhl.de/opus/volltexte/2017/7652

16. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM Journal on Computing

22(5), 935–948 (1993). doi:10.1137/0222058

17. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: LATIN 2000: Theoretical Informatics: 4th

Latin American Symposium. Lecture Notes in Computer Science, vol. 1776, pp. 88–94. Springer, Berlin,

Heidelberg (2000). doi:10.1007/10719839 9

18. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees

and directed acyclic graphs. Journal of Algorithms 57(2), 75–94 (2005). doi:10.1016/j.jalgor.2005.08.001

19. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. Journal of ACM 53(6),

918–936 (2006). doi:10.1145/1217856.1217858

20. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Annual Symposium on

Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 2676, pp. 200–210. Springer, Berlin,

Heidelberg (2003). doi:10.1016/j.jda.2004.08.002

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://dx.doi.org/10.1017/CBO9780511974076
http://dx.doi.org/10.1002/9780470600122
http://dx.doi.org/10.1007/978-1-4471-5304-7
http://dx.doi.org/10.1089/106652702761034136
http://dx.doi.org/10.1016/B978-0-12-800049-6.00206-7
http://dx.doi.org/10.1073/pnas.98.1.182
http://dx.doi.org/10.1128/JB.186.5.1518-1530.2004
http://dx.doi.org/10.1186/1471-2105-10-152
http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454
https://enterobase.warwick.ac.uk/
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.9
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1016/j.jalgor.2005.08.001
http://dx.doi.org/10.1145/1217856.1217858
http://dx.doi.org/10.1016/j.jda.2004.08.002

Carriço et al. Page 19 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

21. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation in suffix

arrays and its applications. In: Annual Symposium on Combinatorial Pattern Matching, pp. 181–192 (2001).

doi:10.1007/3-540-48194-X. Springer

22. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA (1982)

23. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of

the American Mathematical Society 7(1), 48–50 (1956). doi:10.2307/2033241

24. B-UMMI: INNUENDO Platform. Accessed on 31 October 2017. https://github.com/B-UMMI/INNUENDO

25. INNUENDO: A novel cross-sectorial platform for the integration of genomics in surveillance of foodborne

pathogens. Accessed on 31 October 2017. http://www.innuendoweb.org/

26. Ribeiro-Gonçalves, B., Francisco, A.P., Vaz, C., Ramirez, M., Carriço, J.A.: Phyloviz online: web-based tool for

visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. Nucleic Acids Research

44(Webserver-Issue), 246–251 (2016). doi:10.1093/nar/gkw359

27. B-UMMI: Fast MLST searching and querying. Accessed on 31 October 2017.

https://github.com/B-UMMI/fast-mlst

28. Mori, Y.: A lightweight suffix-sorting library. Accessed on 31 October 2017.

https://github.com/y-256/libdivsufsort

29. Larsson, N.J., Sadakane, K.: Suffix sorting implementation to accompany the paper Faster Suffix Sorting.

Accessed on 31 October 2017. http://www.larsson.dogma.net/qsufsort.c

30. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theor. Comput. Sci. 387(3), 258–272 (2007).

doi:10.1016/j.tcs.2007.07.017

31. Francisco, A.P., Vaz, C., Monteiro, P.T., Melo-Cristino, J., Ramirez, M., Carriço, J.A.: PHYLOViZ:

phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13(1),

87 (2012). doi:10.1186/1471-2105-13-87

32. Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximate string matching. ACM Journal

of Experimental Algorithmics 9 (2004). doi:10.1145/1005813.1041513

33. Barton, C., Iliopoulos, C.S., Pissis, S.P.: Fast algorithms for approximate circular string matching. Algorithms

for Molecular Biology 9, 9 (2014). doi:10.1186/1748-7188-9-9

34. Munro, J.I., Nekrich, Y., Vitter, J.S.: Dynamic data structures for document collections and graphs. In:

Proceedings of the 34th ACM Symposium on Principles of Database Systems, pp. 277–289. ACM, New York,

NY, USA (2015). doi:10.1145/2745754.2745778

35. Nascimento, M., Sousa, A., Ramirez, M., Francisco, A.P., Carriço, J.A., Vaz, C.: PHYLOViZ 2.0: providing

scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 33(1),

128–129 (2017). doi:10.1093/bioinformatics/btw582

36. Page, A.J., Taylor, B., Delaney, A.J., Soares, J., Seemann, T., Keane, J.A., Harris, S.R.: SNP-sites: rapid

efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics 2(4) (2016).

doi:10.1099/mgen.0.000056

37. Croucher, N.J., Finkelstein, J.A., Pelton, S.I., Mitchell, P.K., Lee, G.M., Parkhill, J., Bentley, S.D., Hanage,

W.P., Lipsitch, M.: Population genomics of post-vaccine changes in pneumococcal epidemiology. Nature

Genetics 45(6), 656–663 (2013). doi:10.1038/ng.2625

38. Chewapreecha, C., Harris, S.R., Croucher, N.J., Turner, C., Marttinen, P., Cheng, L., Pessia, A., Aanensen,

D.M., Mather, A.E., Page, A.J., Salter, S.J., Harris, D., Nosten, F., Goldblatt, D., Corander, J., Parkhill, J.,

Turner, P., Bentley, S.D.: Dense genomic sampling identifies highways of pneumococcal recombination. Nature

Genetics 46(3), 305–309 (2014). doi:10.1038/ng.2895

39. National Center for Biotechnology Information: GeneBank. Accessed on 31 October 2017.

ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://dx.doi.org/10.1007/3-540-48194-X
http://dx.doi.org/10.2307/2033241
https://github.com/B-UMMI/INNUENDO
http://www.innuendoweb.org/
http://dx.doi.org/10.1093/nar/gkw359
https://github.com/B-UMMI/fast-mlst
https://github.com/y-256/libdivsufsort
http://www.larsson.dogma.net/qsufsort.c
http://dx.doi.org/10.1016/j.tcs.2007.07.017
http://dx.doi.org/10.1186/1471-2105-13-87
http://dx.doi.org/10.1145/1005813.1041513
http://dx.doi.org/10.1186/1748-7188-9-9
http://dx.doi.org/10.1145/2745754.2745778
http://dx.doi.org/10.1093/bioinformatics/btw582
http://dx.doi.org/10.1099/mgen.0.000056
http://dx.doi.org/10.1038/ng.2625
http://dx.doi.org/10.1038/ng.2895
ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/

Carriço et al. Page 20 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Figures

Figure 1 Synthetic datasets, with σ = 2 and k = ⌊m/(2 logm)⌋ according to Theorem 1.

Running time for computing pairwise distances by finding lower and higher bounds in the SA, and

by processing LCP based clusters, as function of the input size n = dm.

Figure 2 Synthetic datasets, with σ = 2 and m = 4096. Running time for computing pairwise

distances by finding lower and higher bounds in the SA, and by processing LCP based clusters, as

function of the number d of profiles and for different values of k.

Figure 3 Synthetic datasets, with σ = 2 and k = ⌊m/(2 logm)⌋ according to Theorem 1.

Running time for computing pairwise distances näıvely, by finding lower and higher bounds in the

SA, and by processing LCP based clusters, as a function of the number d of profiles.

Figure 4 The tree inferred for the largest connected component found with k = 52 for the C.

jejuni dataset. Image produced by PHYLOViZ [35].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Carriço et al. Page 21 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Tables

Table 1 Data structures used in our approach for each step.

Profile indexing Candidate profile pairs enumeration Pairs verification

Suffix array
Binary search Näıve

LCP based clusters RMQLCP

Table 2 Real datasets used in the experimental evaluation. (*)Dataset provided by the Molecular

Microbiology and Infection Unit, IMM.

Dataset
Typing Profile Number of

Reference
method length distinct elements

Campylobacter jejuni wgMLST 5446 5669 (*)

Salmonella enterica wgMLST 3002 6861 [13]

Salmonella typhi SNP 22143 1534 [36]

Streptococcus pneumoniae cgMLST 235 1968 [37, 38, 39]

Table 3 Time and percentage of pairs processed for each method and dataset.

Dataset k
Näıve Binary search LCP clusters

t (s) pairs (%) t (s) pairs (%) t (s) pairs (%)

C. jejuni

8 108.59 100 0.22 0.06 0.17 0.06

16 109.30 100 0.48 0.32 0.34 0.32

32 108.60 100 3.52 5.45 2.67 5.45

64 108.60 100 231.05 99.98 162.36 99.98

S. enterica

8 89.85 100 1.04 2.37 0.95 2.37

16 87.26 100 7.16 12.69 6.73 12.69

32 85.36 100 36.29 33.22 30.76 33.22

64 84.63 100 254.45 82.44 187.15 82.44

S. typhi

89 28.83 100 16.63 91.48 12.02 91.48

178 28.32 100 46.98 99.91 32.03 99.91

890 30.04 100 113.57 100 129.14 100

S. pneumoniae

8 0.56 100 0.02 0.93 0.02 0.93

16 0.57 100 0.05 1.71 0.04 1.71

32 0.56 100 0.20 4.42 0.15 4.42

64 0.58 100 5.63 73.36 5.01 73.36

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

t (
s)

n = d*m (#/106)

Binary search

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140
t (

s)

n = d*m (#/106)

LCP based clustersFigure1 Click here to download Figure
rtest.pdf

http://www.editorialmanager.com/amob/download.aspx?id=12189&guid=e7100508-ddc6-4593-aa23-d5d36df8d47e&scheme=1
http://www.editorialmanager.com/amob/download.aspx?id=12189&guid=e7100508-ddc6-4593-aa23-d5d36df8d47e&scheme=1

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6 7 8 9

t (
s)

d (#/103)

Binary search

k=170
k=190
k=210
k=230
k=250
k=270
k=290
k=310
k=330
Naive

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9
t (

s)

d (#/103)

LCP based clusters

k=170
k=190
k=210
k=230
k=250
k=270
k=290
k=310
k=330
Naive

Figure2 Click here to download Figure
rtest_k.pdf

http://www.editorialmanager.com/amob/download.aspx?id=12190&guid=a6d308f8-f2d1-4988-b42f-2085e6e688ca&scheme=1
http://www.editorialmanager.com/amob/download.aspx?id=12190&guid=a6d308f8-f2d1-4988-b42f-2085e6e688ca&scheme=1

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=256

Naive
Bin search

LCP clusters

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=512

Naive
Bin search

LCP clusters

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=1024

Naive
Bin search

LCP clusters

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=2048

Naive
Bin search

LCP clusters

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=4096

Naive
Bin search

LCP clusters

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=8192

Naive
Bin search

LCP clusters

Figure3 Click here to download Figure
rtest_d.pdf

http://www.editorialmanager.com/amob/download.aspx?id=12191&guid=d27be9c9-f5b9-467b-98d7-07be2d3d3d29&scheme=1
http://www.editorialmanager.com/amob/download.aspx?id=12191&guid=d27be9c9-f5b9-467b-98d7-07be2d3d3d29&scheme=1

Figure4 Click here to download
Figure tree.pdf

http://www.editorialmanager.com/amob/download.aspx?id=12192&guid=3190fee3-4ceb-4976-81a0-e125ee079c4d&scheme=1
http://www.editorialmanager.com/amob/download.aspx?id=12192&guid=3190fee3-4ceb-4976-81a0-e125ee079c4d&scheme=1

Dear Editor,

Please find enclosed our research article entitled “Fast phylogenetic inference from typing data”.

The current ability to rapidly sequence whole microbial genomes, has the promise to revolutionize

these fields by allowing the identification of thousands of potentially clinically relevant targets in the

genome. NGS data can be used to detect outbreaks in hospital settings or in the food industry, e.g., by

monitoring the spread of antimicrobial resistance, an ever-growing concern. It can help also in the

development of vaccines by helping, for instance, to determine targets conserved in the entire bacterial

population.

However, it is becoming clear that the bottleneck shifted from the production of sequence data to its

analysis. One of the major challenges is on how phylogenetic inference methods can be scaled up to

analyze thousands of genetic loci in thousands of isolates. Usually, computing genetic evolutionary

distances among a set of typing profiles or taxa dominates the running time of many of these methods.

It is important also to note that most of genetic evolution distance definitions rely, even if indirectly, on

computing the pairwise Hamming distance among sequences or profiles.

In this work, we propose an average-case linear-time algorithm to compute pairwise Hamming

distances among a set of taxa under a given Hamming distance threshold. This article includes both a

theoretical analysis and extensive experimental results concerning the proposed algorithm. We further

show how this algorithm can be successfully integrated into a well-known phylogenetic inference

method, and how it can be used to speedup querying local phylogenetic patterns over large typing

databases.

This work is an extension of the article “Towards distance-based phylogenetic inference in average-

case linear-time”, presented at WABI 2017. It includes several revisions, including those raised by

reviews of the workshop version of the paper, and it presents another real application of the developed

methods, showing how it can be successfully used to speedup querying local phylogenetic patterns over

large typing databases. The algorithm was integrated in INNUENDO platform, that is being developed

under the INNUENDO project (http://www.innuendoweb.org/).

We wish to confirm that there are no known conflicts of interest associated with this publication.

The manuscript has been revised taking into account reviewers comments, and it has been read and

approved by all named authors. Answers to reviewers’ comments are also provided with our

resubmission.

With my best regards,

Alexandre Francisco

Personal Cover Click here to download Personal Cover
amob_cover_letter_r1.pdf

http://www.innuendoweb.org/)
http://www.editorialmanager.com/amob/download.aspx?id=12195&guid=83414d7b-615e-42e8-ba66-4303d8359bb6&scheme=1
http://www.editorialmanager.com/amob/download.aspx?id=12195&guid=83414d7b-615e-42e8-ba66-4303d8359bb6&scheme=1

