

Fast phylogenetic inference from typing data

João André Carriço, Maxime Crochemore, Alexandre P. Francisco, Solon P. Pissis, Bruno Goncalves, Cátia Vaz

▶ To cite this version:

João André Carriço, Maxime Crochemore, Alexandre P. Francisco, Solon P. Pissis, Bruno Goncalves, et al.. Fast phylogenetic inference from typing data. Algorithms for Molecular Biology, 2018, 13, pp.4. 10.1186/s13015-017-0119-7 . hal-01785677

HAL Id: hal-01785677 https://hal.science/hal-01785677

Submitted on 4 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Algorithms for Molecular Biology Fast phylogenetic inference from typing data --Manuscript Draft--

Manuscript Number:	AMOB-D-17-00047R1	
Full Title:	Fast phylogenetic inference from typing dat	а
Article Type:	Research	
Funding Information:	Fundação para a Ciência e a Tecnologia (TUBITAK/0004/2014)	Not applicable
	Royal Society International Exchanges Scheme	Not applicable
	Fundação para a Ciência e a Tecnologia (LISBOA-01-0145-FEDER-016394)	Not applicable
	Fundação para a Ciência e a Tecnologia (LISBOA-01-0145-FEDER-016417)	Not applicable
	Fundação para a Ciência e a Tecnologia (UID/CEC/500021/2013)	Not applicable
	European Food Safety Authority (GP/EFSA/AFSCO/2015/01/CT2)	Not applicable
Abstract:	Background: Microbial typing methods are commonly use strains. Sequence-based typing methods a surveillance due to the inherent portability of analysis times and their capacity to create of clones. This led to development of several to made available for many microbial species. With the mainstream use of High Throughp accumulated in these databases is huge, st other hand, computing genetic evolutionary taxa dominates the running time of many pl It is important also to note that most of gene if indirectly, on computing the pairwise Ham profiles. Results: We propose here an average-case linear-tin distances among a set of taxa under a give This article includes both a theoretical analy concerning the proposed algorithm. We further show how this algorithm can be phylogenetic inference method, and how it ophylogenetic patterns over large typing data	ed to study the relatedness of bacterial are a gold standard for epidemiological of sequence and allelic profile data, fast common nomenclatures for strains or novel methods and several databases being ut Sequencing, the amount of data being toring thousands of different profiles. On the distances among a set of typing profiles or nylogenetic inference methods. etic evolution distance definitions rely, even aming distance among sequences or me algorithm to compute pairwise Hamming n Hamming distance threshold. ysis and extensive experimental results successfully integrated into a well known can be used to speedup querying local abases.
Corresponding Author:	Alexandre Francisco Universidade de Lisboa Instituto Superior T PORTUGAL	ecnico
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	Universidade de Lisboa Instituto Superior T	ecnico
Corresponding Author's Secondary Institution:		
First Author:	João Carriço	
First Author Secondary Information:		
Order of Authors:	João Carriço	
	Maxime Crochemore	
	Alexandre Francisco	

	Solon Pissis
	Bruno Ribeiro-Gonçalves
	Cátia Vaz, Ph.D
Order of Authors Secondary Information:	
Response to Reviewers:	Dear Editor, Dear Reviewers,
	Thank you very much for your comments on our manuscript. We tried our best to address all your comments and concerns. Please find below our detailed comments (starting with R:).
	Editor's comments (if any):
	Thank you for submitting a paper expanding upon your WABI submission. The reviewers felt that you satisfactorily > addressed the concerns raised in the reviews of the WABI paper and find value in the new additions you have made > here. They note only some minor remaining issues. Please see Reviewer #2's comments below for specific comments. I would ask that you revise the paper in accordance with the reviewer's suggested minor revisions and prepare a response to the critiques. I expect that we should be able to assess these revisions without the need to send the papers back to the reviewer again.
	R: We addressed suggested minor revisions, including missing references and typos within references. We revised also all the manuscript.
	The reviewers' critiques follow:
	Reviewer #1: The authors have satisfactorily addressed the comments that I raised for their original WABI submission and I am happy to recommend acceptance.
	R: Thank you.
	Reviewer #2: Overview:
	Distance-based phylogeny algorithms usually assume a matrix of pairwise distances between different taxa as input. However, there are algorithms that need only distances between taxa that are sufficiently small, say smaller than some given k. The question is how to construct such a restricted similarity matrix as fast as possible. The submitted article tackles this question with Hamming distance as the measure between the genotype profile sequence representing each taxa. An O(md) average time optimal algorithm is given for small k, where d is the number of taxa and m is their length. The algorithm is a simple application of suffix arrays enhanced with LCP information and RMQ data structure.
	The main observation is that one can afford to output all length L>=m/k matching substring pairs between all profiles, and check which ones lead to real matches in O(k) time using constant time longest common extension queries implemented by RMQ on LCP array. The probability of false positives is small enough for small enough k, so that the running time is dominated by that of producing the output. Similar analyses have been conducted earlier for approximate string matching (Fredriksson and Navarro. Average-Optimal Multiple Approximate String Matching. CPM 2003).
	The resulting algorithm is plugged into an existing phylogeny tool that can exploit restricted matrices. Experiments show that the speed-up is significant and the simulations also confirm that the average case analysis assumptions are not too optimistic.
	A new application for the technique has been included to this extended journal version compared to the original conference paper. Namely, the application of querying typing databases is considered. In this application, a query pattern is searched in a database for approximate matches. The specialization of the all-pairs algorithm for this application is implemented and incorporated to INNUENDO Platform.

Minor revision requests:
Please add a reference to the approximate pattern matching literature, e.g. [Fredriksson and Navarro. Average-Optimal Multiple Approximate String Matching. CPM 2003], is one candidate, but some earlier work already contains similar analyses. With the added application of searching for query patterns this connection is even more evident. The analyses are really pretty much the same including the limitations on k when the approach works, so this connection should really be made visible, to give credit to the earlier work.
R: We agree with the reviewer and we added the suggested reference, and another one, stating the relationship between the problems addressed in our work and approximate pattern matching. Both the statement and cited references may be found in Conclusions.
Page 12, first line: Add "which is" or something like this to make the sentence complete.
R: Thanks, we fixed the sentence adding "which is" as suggested.
References: ??? in many places
R: Thanks, some info was missing in our bib file. We revised all references and we believe that all are complete now.
With my best regards,
Alexandre Francisco

RESEARCH

Fast phylogenetic inference from typing data

João A Carriço¹, Maxime Crochemore², Alexandre P Francisco^{3,4*}, Solon P Pissis², Bruno Ribeiro-Gonçalves¹ and Cátia Vaz^{3,5}

*Correspondence: aplf@ist.utl.pt ³INESC-ID Lisboa, Rua Alves Redol 9, 1000-029 Lisboa, PT Full list of author information is available at the end of the article

Abstract

Background: Microbial typing methods are commonly used to study the relatedness of bacterial strains. Sequence-based typing methods are a gold standard for epidemiological surveillance due to the inherent portability of sequence and allelic profile data, fast analysis times and their capacity to create common nomenclatures for strains or clones. This led to development of several novel methods and several databases being made available for many microbial species. With the mainstream use of High Throughput Sequencing, the amount of data being accumulated in these databases is huge, storing thousands of different profiles. On the other hand, computing genetic evolutionary distances among a set of typing profiles or taxa dominates the running time of many phylogenetic inference methods. It is important also to note that most of genetic evolution distance definitions rely, even if indirectly, on computing the pairwise Hamming distance among sequences or profiles. Results: We propose here an average-case linear-time algorithm to compute pairwise Hamming distances among a set of taxa under a given Hamming distance threshold. This article includes both a theoretical analysis and extensive experimental results concerning the proposed algorithm. We further show how

this algorithm can be successfully integrated into a well known phylogenetic inference method, and how it can be used to speedup querying local phylogenetic patterns over large typing databases.

Keywords: computational biology; phylogenetic inference; Hamming distance

³⁰Background

³¹Introduction

³² The evolutionary relationships between different species or taxa are usually inferred ³²

³³ through known phylogenetic analysis techniques. Some of these techniques rely on

¹the inference of phylogenetic trees, which can be computed from DNA or Protein¹ ²sequences, or from allelic profiles where the sequences of defined loci are abstracted² ³to categorical indexes. The most popular method is MultiLocus Sequence Typing³ ⁴(MLST) [1] that typically uses seven 450 to 700 bp fragments of housekeeping genes⁴ ⁵for a given species. Phylogenetic trees are also used in other contexts, such as to⁵ ⁶understand the evolutionary history of gene families, to allow phylogenetic foot-⁶ ⁷printing, to trace the origin and transmission of infectious diseases, or to study the⁷ ⁸co-evolution of hosts and parasites [2, 3].

In traditional phylogenetic methods, the process of phylogenetic inference starts with a multiple alignment of the sequences under study that is then corrected using models of DNA or Protein evolution. Tree-building methodologies can then be applied on the resulting distance matrix. These methods rely on some distancebased analysis of sequences or profiles [4].

Distance-based methods for phylogenetic analysis rely on a measure of geneticis 16evolution distance, which is often defined directly or indirectly from the fraction16 170f mismatches at aligned positions, with gaps either ignored or counted as mis-17 18 matches. A first step of these methods is to compute this distance between all pairs 18 190f sequences. The simplest approach is to use the Hamming distance, also known19 20as observed p-distance, defined as the number of positions at which two aligned 20 21sequences differ. Note that the Hamming distance between two sequences under-21 22estimates their true evolutionary distance and, thus, a correction formula based 22 230n some model of evolution is often used [2, 4]. Although distance-based methods23 24not always produce the best tree for the data, usually they also incorporate an24 250ptimality criterion into the distance model for getting more plausible phylogenetic25 26 reconstructions, such as the minimum evolution criterion [5], the least squares cri-26 27 terion [6] or the clonal complexes expansion and diversification [7]. Nevertheless, 27 28this category of methods are much faster than Maximum Likelihood or Bavesian28 29Inference Methods [8], making them excellent choices for the primary analysis of 29 solarge data sets.

³¹ Most of the distance-based methods are agglomerative methods. They start with ³² each sequence being a singleton cluster and, at each step, they join two clusters. The ³² iterative process stops when all sequences are part of a single cluster, resulting in ³³

¹a phylogenetic tree. At each step the candidate pair is selected taking into account¹ ²the distance among clusters as well as the optimality criterion chosen to adjust it.²

The computation of a distance matrix (2D array containing the pairwise distances ⁴ between the elements of a set) is a common first step for distance-based methods, ⁵ such as eBURST [9], goeBURST [10], Neighbor Joining [11] and UPGMA [12]. This ⁶ particular step dominates the running time of most methods, taking $\Theta(md^2)$ time ⁷ in general, *d* being the number of sequences or profiles and *m* the length of each ⁸ sequence or profile. For large-scale datasets this running time may be quite prob-⁹ lematic. And nowadays, with the mainstream use of High Throughput Sequencing, ¹⁰ the amount of data being accumulated in typing databases is huge. It is common to ¹¹ find databases storing thousands of different profiles for a single microbial species, ¹² with each profile having thousands of loci [13, 14].

However, depending on application, on the underlying model of evolution and on the optimality criterion, it may not be strictly necessary to be aware of the complete distance matrix. There are methods that continue to provide optimal solutions without a complete matrix. For such methods, one may still consider a truncated distance matrix and several heuristics, combined with final local searches through topology rearrangements, to improve the running time [6]. The goeBURST algorithm, one of our use cases in this article, is an example of a method that can work with truncated distance matrices by construction, *i.e.*, one needs only to know which pairs are at Hamming distance at most k.

24Our results

²⁵We propose here an average-case $\mathcal{O}(md)$ -time and $\mathcal{O}(md)$ -space algorithm to com-²⁵ ²⁶pute the pairs of sequences, among d sequences of length m, that are at distance at²⁶ ²⁷most k, when $k < \frac{(m-k-1)\cdot\log\sigma}{\log md}$, where σ is the size of the sequences alphabet. We²⁷ ²⁸support our result with both a theoretical analysis and an experimental evaluation²⁸ ²⁹on synthetic and real datasets of different data types (MLST, cgMLST, wgMLST²⁹ ³⁰and SNP). We further show that our method improves goeBURST, and that we can³⁰ ³¹use it to speedup querying local phylogenetic patterns over large typing databases.³¹ ³² A preliminary version of this paper was presented at the Workshop on Algorithms³² ³³in Bioinformatics (WABI) 2017 [15].

¹ Methods ¹
² Closest pairs in linear time
³ Let P be the set of profiles (or sequences) each of length m , defined over an integer
⁴ alphabet Σ , (<i>i.e.</i> , $\Sigma = \{1, \dots, m^{O(1)}\}$), with $d = P $ and $\sigma = \Sigma $. Let also $H : P \times$
$^{5} P \rightarrow \{0, \dots, m\}$ be the function such that $H(u, v)$ is the Hamming distance between
⁶ profiles $u, v \in P$. Given an integer threshold $0 < k < m$, the problem is to compute
all pairs $u, v \in P$ such that $H(u, v) \leq k$, and the corresponding $H(u, v)$ value, faster
⁸ than the $\Theta(md^2)$ time required to compute naïvely the complete distance matrix
⁹ for the d profiles of length m .
¹⁰ We address this problem by indexing all profiles P using the suffix array (denoted
¹¹ by SA) and the longest common prefix (denoted by LCP) array [16]. We rely also
on a range minimum queries (RMQ) data structure [17, 18] over the LCP array
13 (denoted by $\mathrm{RMQ}_{\mathrm{LCP}}$). The problem is then solved in three main steps:
14 Index all profiles using the SA data structure
¹⁵ ¹⁵ ¹⁶ ¹⁷ ¹⁷ ¹⁷ ¹⁷ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵
$_{16}$ 2 Enumerate an candidate prome pairs given the maximum framming distance ₁₆
17 κ . 17 2. Write each condidate profile pair by checking if the approximated Hamming
$_{18}$ 3 Verify each candidate profile pair by checking if the associated Hamming ₁₈
$\frac{19}{19} \qquad \text{distance is no more than } k. \qquad 19$
$_{20} {\rm Table \ 1}$ summarizes the data structures and strategies followed in each step. Profiles $_{20}$
$_{21}\mathrm{are}$ concatenated and indexed using SA. Depending on the strategy to be used, we $_{21}$
$_{22} {\rm further}$ process the SA and build the LCP array and pre-process it for fast RMQ. $_{22}$
$_{23} {\rm This}$ allows for enumerating candidate profile pairs and computing distances faster. $_{23}$
$_{24}\mathrm{In}$ what follows, we detail the above steps and show how the data structures are $_{24}$
25 used to improve the overall running time. 25
26 26
²⁷ Step 1: Profile indexing
²⁸ Profiles are concatenated and indexed in an SA in $\mathcal{O}(md)$ time and space [19, 20]. ²⁸
²⁹ Let us denote this string by s . Since we only need to compute the distances between

³⁰ profiles that are at Hamming distance at most k, we can conceptually split each ³⁰ ³¹ profile into k non-overlapping *blocks* of length $\mathcal{L} = \lfloor \frac{m}{k+1} \rfloor$ each. It is then folklore ³¹ ³² knowledge that if two profiles are within distance k, they must share at least one ³² ³³ such block of length \mathcal{L} . Our approach is based on using the SA of s to efficiently ³³

¹identify matching blocks among profile pairs. This lets us quickly filter in candidate¹ ²profile pairs and filter out the ones that can never be part of the output. ² ³

Step 2: Candidate profile pairs enumeration

The candidate profile pairs enumeration step provides the pairs of profiles that do₆ The candidate profile pairs enumeration step provides the pairs of profiles that do₆ The candidate profile pairs enumeration step provides the pairs of profiles that do₆ The candidate profile is a position, but it may include spurious pairs. Since SA₇ as an ordered structure, a simple solution is to use a binary search approach. For peach block of each profile, we can obtain in $\mathcal{O}(\mathcal{L} \log n)$ time, where n = md, all the suffixes that have that block as a prefix. If a given match is not aligned with the initial block, *i.e.* it does not occur at the same position in the respective profile, then it should be discarded. Otherwise, a candidate profile pair is reported. This searching procedure is done in $\mathcal{O}(dk\mathcal{L} \log n) = \mathcal{O}(n \log n)$ time.

¹⁴ Another solution relies on computing the LCP array: the longest common prefix₁₄ ¹⁵between each pair of consecutive elements within the SA. This information can also₁₅ ¹⁶be computed in $\mathcal{O}(n)$ time and space [21]. Since SA is an ordered structure, for the₁₆ ¹⁷contiguous suffixes s_i, s_{i+1}, s_{i+2} of s, with $0 \leq i < n-2$, we have that the common₁₇ ¹⁸prefix between s_i and s_{i+1} is at least as long as the common prefix of s_i and $s_{i+2\cdot 18}$ ¹⁹By construction, it is possible to get the position of each suffix in the corresponding₁₉ ²⁰profile in constant time. Then, we cluster the corresponding profiles of contiguous₂₀ ²¹pairs if they have an LCP value greater than or equal to \mathcal{L} and they are also aligned.²¹ ²²This clustering procedure can be done in $\mathcal{O}(kd^2)$ time.

²⁴Step 3: Pairs verification

²⁵After getting the set of candidate profile pairs, a naïve solution would be to compute ²⁶ ²⁶the distance for each pair of profiles by comparing them in linear time, *i.e.*, $\mathcal{O}(m)^{26}$ ²⁷time. However, if we compute the LCP array of *s*, we can then perform a sequence²⁷ ²⁸of $\mathcal{O}(k)$ RMQ over the LCP array for checking if a pair of profiles is at distance²⁸ ²⁹at most *k*. These RMQ over the LCP array correspond to longest common prefix²⁹ ³⁰queries between a pair of suffixes of *s*. Since after a linear-time pre-processing over³⁰ ³¹the LCP array, RMQ can be answered in constant time per query [17], we obtain a³¹ ³²faster approach for computing the distances. This alternative approach takes $\mathcal{O}(k)^{32}$ ³³time to verify each candidate profile pair instead of $\mathcal{O}(m)$ time.

¹Average-case analysis

²Algorithm 1 below details the solution based on LCP clusters; and Theorem 1 shows²
³that this algorithm runs in linear time on average using linear space. We rely here³
⁴on well-known results concerning the linear-time construction of the SA [19, 20]⁴
⁵and the LCP array [21], as well as the linear-time pre-processing for the RMQ data⁵
⁶structure [18].

⁷ In what follows, LCP[*i*], *i* > 0, stores the length of the longest common prefix⁷ ⁸of suffixes s_{i-1} and s_i of *s*, and RMQ_{LCP}(*i*, *j*) returns the index of the smallest⁸ ⁹element in the subarray LCP[*i*...*j*] in constant time [18]. We rely also on some⁹ ¹⁰auxiliary subroutines; let $\mathcal{L} = \lfloor \frac{m}{k+1} \rfloor$:

¹¹Aligned(*i*) Let $\ell = i \mod m$, *i.e.*, the starting position of the suffix s_i within¹¹ ¹² a profile. Then this subroutine returns ℓ/\mathcal{L} if ℓ is multiple of \mathcal{L} , and -1^{12} ¹³ otherwise.

¹⁴**HD** (p_i, p_j, ℓ) Given two profiles p_i and p_j which share a substring of length \mathcal{L} ,¹⁴ ¹⁵ starting at index $\ell \mathcal{L}$, this subroutine computes the minimum of k and the¹⁵ ¹⁶ Hamming distance between p_i and p_j . This subroutine relies on RMQ_{LCP} to¹⁶ ¹⁷ find matches between p_i and p_j and, hence, it runs in $\mathcal{O}(k)$ time since it can¹⁷ ¹⁸ terminate after k mismatches. ¹⁸

²⁰**Theorem 1** Given d profiles of length m each over an integer alphabet Σ of size₂₀ ^{21 σ} > 1 with the letters of the profiles being independent and identically distributed₂₁ ²²random variables uniformly distributed over Σ , and the maximum Hamming dis-²² ²³tance 0 < k < m, Algorithm 1 runs in $\mathcal{O}(md)$ average-case time and space if ²³

$$k < \frac{(m-k-1) \cdot \log \sigma}{\log md}.$$

²⁶ Proof Let us denote by s the string of length md obtained after concatenating the ²⁶ ²⁷ d profiles. The time and space required for constructing the SA and the LCP arrays²⁷ ²⁸ for s and the RMQ data structure over the LCP array is $\mathcal{O}(md)$.²⁸

²⁹ Let us denote by \mathcal{B} the total number of blocks over s and by \mathcal{L} the block length.²⁹ ³⁰We set $\mathcal{L} = \lfloor \frac{m}{k+1} \rfloor$ and thus we have that $\mathcal{B} = d \lfloor \frac{m}{\mathcal{L}} \rfloor$. Let us also denote by C a³⁰ ³¹maximal set of indices over x satisfying the following:³¹

	orithm 1: Algorithm using LCP clusters.	-1
2	the A set D of d reactions of length m such an interventional $0 < k < m$	2
-1 Inpu	It: A set P of a profiles of length m each; an integer threshold $0 < k < m$.	
3 ² Out X	Further set X of distinct pairs of profiles that are at Hamming distance at most k, i.e., = $\{(u, v) \in P \times P \mid u < v \text{ and } H(u, v) \le k\}.$	3
43 Initi	alization: Let $s = s[0 \dots n-1]$ be the string of length $n = md$ obtained after concatenating	4
5 the	$\mathcal{L} = d$ profiles, and $\mathcal{L} = \lfloor \frac{m}{k+1} \rfloor$. Construct the SA S for s , the LCP array for s and $\mathrm{RMQ}_{\mathrm{LCP}}$.	5
Ini	tialize a hash table HT to track verified pairs.	U
64 Can	didate pairs enumeration:	6
5 X :=	$= \emptyset; \ \ell_p := -1; \ C_t := \emptyset, \ \text{for} \ 0 \le t \le k$	7
6 fore	$\mathbf{each} \ 1 \leq i < n \ \mathbf{do}$	ï
8 ⁷	$\ell := \mathrm{LCP}[i]$	8
8 9	if $\ell \geq \mathcal{L}$ then	٩
9	$p_i := \lfloor S[i]/m \rfloor$	3
10 L0	$x := \operatorname{Aligned}(i)$	10
110	$\begin{array}{c} n & x \neq -1 \text{ then} \\ \hline C & := C + f_{n} \\ \end{array}$	11
2 ³	If $\ell_p = -1$ then	12
14 3_	$p_{i-1} := \lfloor S[i-1]/m \rfloor$ $m := A \text{ligned}(i-1)$	13
15	$x := \operatorname{Aligned}(i-1)$ if $x \neq -1$ then	10
4	$\begin{bmatrix} 1 & 1 & j \neq -1 & \text{oten} \\ 0 & 1 & j \neq -1 & \text{oten} \end{bmatrix}$	14
5		15
18	$\ell_p := \ell$	
6 19	else if $\ell_p \neq -1$ then	16
2 0	Pairs enumeration:	17
21	for each C_t , with $0 \le t \le k$ do	
2	$\mathbf{foreach} \hspace{0.2cm} (p,q) \in C_t \times C_t : p < q \hspace{0.2cm} \mathbf{do}$	18
3	$\mathbf{if} \ (p,q) \notin HT \ \mathbf{then}$	19
24	$HT := HT \cup \{(p,q)\}$	
/5	$\delta := \operatorname{HD}(p, q, t)$	20
:6 1	if $\delta \leq k$ then	21
:7		
2		22
:8 3	$\ell_p := -1; \ C_t := \emptyset$, for $0 \le t \le k$	23
∟ ₂9 Fina	lize: Return the set X .	
1		_24
5		25
6		26
2	both of these suffixes start at the starting position of a block:	
7 -		27
8 3	and both indices correspond to the starting position of the i th block in the	ir 28
9	profiles.	20
م. م.	can be done in $\mathcal{O}(md)$ time using the LCD among (lines 7.17). Dreases	1120
•1 ms	can be done in $O(ma)$ time using the LCP array (lines 7-17). Processing a	1120
1such	sets C (lines 21-27) requires total time	31
12		32
3		33
	$PKUC_{i,j} imes Pairs$	

Page 8 of 21

¹where $\mathsf{PROC}_{i,j}$ is the time required to process a pair i, j of elements of a set C, and ¹ ²Pairs is the sum of $|C|^2$ over all such sets C. We have that $\mathsf{PROC}_{i,j} = \mathcal{O}(k)$ by² ³using RMQ over the LCP array. Additionally, by the stated assumption on the d^3 ⁴profiles, the expected value for *Pairs* is no more than $\frac{\mathcal{B}d}{\sigma^{\mathcal{L}}}$: we have \mathcal{B} blocks in total⁴ ⁵and each block can only match at most d other blocks by the conditions above.⁵ ⁶Hence, the algorithm requires on average the following running time

$$\mathcal{O}(md + k \cdot \frac{\mathcal{B}d}{\sigma^{\mathcal{L}}}).$$

Let us analyze this further to obtain the relevant condition on k. We have the following:

$$k \cdot \frac{\mathcal{B}d}{\sigma^{\mathcal{L}}} = \frac{k \cdot \lfloor \frac{m}{\lfloor m/(k+1) \rfloor} \rfloor \cdot d^2}{\sigma^{\lfloor \frac{m}{k+1} \rfloor}} \le \frac{k \cdot \left(\frac{m}{\lfloor m/(k+1) \rfloor}\right) \cdot d^2}{\sigma^{\frac{m}{k+1} - 1}}.$$
13

¹⁴Since 0 < k < m by hypothesis, we have the following:

$$\frac{\frac{k \cdot \left(\frac{m}{\lfloor m/(k+1) \rfloor}\right) \cdot d^2}{\sigma^{\frac{m}{k+1}-1}} \le \frac{(md)^2}{\sigma^{\frac{m}{k+1}-1}}.$$
16

 $_{18}$ By some simple rearrangements we have that:

²¹Consequently, in the case when

$$k < \frac{(m-k-1) \cdot \log \sigma}{\log md}$$
23

the algorithm requires $\mathcal{O}(md)$ time on average. The extra space usage is clearly 25 $\mathcal{O}(md).$

²⁷Use case 1: goeBURST algorithm

²⁸The distance matrix computation is a main step in distance-based methods for phylogenetic inference. This step dominates the running time of most methods, ³⁰ taking $\Theta(md^2)$ time, for d sequences of length m, since it must compute the distance³⁰ among all sequence pairs. But for some methods, or when we are only interested in 31 ³²local phylogenies for sequences or profiles of interest, one does not need to know all³² pairwise distances for reconstructing a phylogenetic tree. The problem $addressed^{33}$

¹in this article was motivated by the goeBURST algorithm [10], our use case 1.¹ ²goeBURST is one of such methods for which one must know only the pairs of ³sequences that are at Hamming distance at most k. The solution proposed here³ ⁴can however be extended to other distance-based phylogenetic inference methods,⁴ ⁵that rely directly or indirectly on Hamming distance computations. Note that most⁵ ⁶methods either consider the Hamming distance or its correction accordingly to⁶ ⁷some formula based on some model of evolution [2, 4]. In both cases we must start⁷ ⁸by computing the Hamming distance among sequences, but not necessarily all of ⁹them [6].

¹¹ The underlying model of goeBURST is as follows: a given genotype increases in ¹¹ ¹²frequency in the population as a consequence of a fitness advantage or of random¹² ¹³genetic drift, becoming a founder clone in the population; and this increase is ac-¹³ ¹⁴companied by a gradual diversification of that genotype, by mutation and recombi-¹⁴ ¹⁵nation, forming a cluster of phylogenetic closely-related strains. This diversification ¹⁵ ¹⁶of the "founding" genotype is reflected in the appearance of genetic profiles differing ¹⁶ ¹⁷only in one housekeeping gene sequence from this genotype — single locus variants ¹⁷ ¹⁸(SLVs). Further diversification of those SLVs will result in the appearance of vari-¹⁸ ¹⁹ations of the original genotype with more than one difference in the allelic profile, ¹⁹ ²⁰*e.g.*, double and triple locus variants (DLVs and TLVs). ²⁰

The problem solved by goeBURST can be stated as a graphic matroid optimiza-²² tion problem and, hence, it follows a classic greedy approach [22]. Given the maxi-mum Hamming distance k, we can define a graph G = (V, E), where V = P (set of ²³ ⁴ profiles) and $E = \{(u, v) \in V^2 \mid H(u, v) \leq k\}$. The main goal of goeBURST is then²⁴ to compute a minimum spanning forest for G taking into account the distance H and ²⁵ a total order on links. It starts with a forest of singleton trees (each sequence/profile is a tree). Then it constructs the optimal forest by adding links connecting profiles ²⁸ in different trees in increasing order accordingly to the total order, similarly to what is done in the Kruskal's algorithm [23]. In the current implementation, a total or-³⁰ der for links is implicitly defined based on the distance between sequences, on the number of SLVs, DLVs, TLVs, on the occurrence frequency of sequences, and on ³² the assigned sequence identifier. With this total order, the construction of the tree consists of building a minimum spanning forest in a graph [23], where each sequence

¹ is a node and the link weights are defined by the total order. By construction, the¹ ² pairs at distance δ will be joined before the pairs at distance $\delta + 1$. ³

⁴Use case 2: Querying typing databases

⁵A related problem is querying typing databases for similar typing profiles. Given₅ ⁶a set P of d profiles of length m each, a profile u not necessarily in P but with₆ ⁷the same length m as those in P, and k such that 0 < k < m, the problem is₇ ⁸to find all profiles $v \in P$ such that $H(u, v) \leq k$. One may be also interested on₈ ⁹local phylogenetic patterns, but those can be inferred from found profiles using for₉ ¹⁰instance the goeBURST algorithm.

¹¹ Once we define the value for k, we can address this problem as follows. We index all₁₁ ¹²d profiles in the database as before in linear time $\mathcal{O}(md)$, and given a query profile₁₂ ¹³u, we enumerate all candidate profiles v. We then verify as before all candidate pairs₁₃ ¹⁴and we return only those satisfying $H(u, v) \leq k$.

Since u may not be in P, we rely neither on LCP clustering nor on RMQ. By₁₅ 16 using the SA we find candidate matches through binary search, identifying lower₁₆ 17 and higher bounds in the SA, as discussed before. Hence, given the k + 1 non-₁₇ 18 overlapping blocks of length $\mathcal{L} = \lfloor \frac{m}{k+1} \rfloor$ for u, we search for each one of them in₁₈ 19 $\mathcal{O}(\mathcal{L} \log md)$ time. Since we have k+1 blocks, it takes $\mathcal{O}(k\mathcal{L} \log md) = \mathcal{O}(m \log md)_{19}$ 20 time to search for all k + 1 blocks in u. Finally, we can then verify and report all₂₀ 21 candidate profiles $v \in P$ as detailed in Algorithm 2.

²² Although, in the worst case, Algorithm 2 runs in time $\mathcal{O}(md + m \log md)$, as we₂₂ ²³may have d matches at most, we can prove a similar average case as in Theorem 1.₂₃

²⁴**Theorem 2** Given a profile u and a set of d profiles of length m each, all over an ²⁵integer alphabet Σ of size $\sigma > 1$, with the letters of the profiles being independent and ²⁶identically distributed random variables uniformly distributed over Σ , the SA for the ²⁷string s of length md obtained after concatenating the d profiles, and the maximum ²⁸Hamming distance 0 < k < m, Algorithm 2 runs in $\mathcal{O}(m \log md)$ average-case time ²⁹if

$$k < \frac{(m-k-1) \cdot \log \sigma + (k+1) \cdot \log \log md}{\log md}.$$

³²*Proof* Let us denote by \mathcal{B} the total number of blocks over *s* and by \mathcal{L} the block³² ³³length. We set $\mathcal{L} = \lfloor \frac{m}{k+1} \rfloor$ and thus we have that $\mathcal{B} = d \lfloor \frac{m}{\mathcal{L}} \rfloor$. By the stated assump-³³

1	1
Algorithm 2: Algorithm for querying typing databases.	
2 1 Input: An SA $\mathcal S$ for a set P of d profiles of length m each, concatenated as a string s of length	2
md; a profile u of length m ; an integer threshold $0 < k < m$.	3
² Output: The set X of distinct profiles that are at Hamming distance at most k from u , <i>i.e.</i> ,	0
4 $X = \{ v \in P \mid H(u, v) \le k \}.$	4
³ ₅ Initialization: Initialize a hash table HT to track verified profiles v and let $\mathcal{L} = \lfloor \frac{m}{k+1} \rfloor$.	5
4 $X := \emptyset$	0
65 foreach $0 \le i \le k$ do	6
$\ell := \text{LowerBinSearch}(\mathcal{S}, s, u[i\mathcal{L}(i+1)\mathcal{L} - 1])$	7
7 $h := \text{HigherBinSearch}(\mathcal{S}, s, u[i\mathcal{L}(i+1)\mathcal{L}-1])$	'
$\mathbf{s} \mathbf{foreach} \ \ell \leq j \leq h \ \mathbf{do}$	8
9 if Aligned $(j) = i$ then	0
$v := \lfloor \mathcal{S}[j]/m \rfloor$	9
$\mathbf{i}\mathbf{b}^{1}$ if $v \notin HT$ then	10
$HT := HT \cup \{v\}$	
$\delta := \mathrm{H}(v, u)$	11
$\begin{array}{c} 14 \\ 12 \end{array} \qquad $	12
$15 \qquad \qquad \bigsqcup \qquad X := X \cup \{v\}$	
	13
12 6 Finalize: Return the set X .	14

¹⁶ tion on the profiles, the expected value for the number of profiles matching u is no¹⁶ ¹⁷more than $\frac{B}{\sigma^{L}}$: we have \mathcal{B} blocks in total and each block can only match at most¹⁷ ¹⁸ one other block in u (since they must be aligned; line 9). Moreover, since we are not¹⁸ 19 relying on the LCP array in this case, the verification step (line 13) takes $\mathcal{O}(m)^{19}$ $^{\rm 20}{\rm time.}$ Hence, the algorithm requires on average the following running time

$$\mathcal{O}(m\log md + m \cdot \frac{\mathcal{B}}{\sigma^{\mathcal{L}}}).$$
 22

Let us analyze this further to obtain the relevant condition on k. We have the $_{24}$ 25 following:

$$m \cdot \frac{\mathcal{B}}{\sigma^{\mathcal{L}}} = \frac{m \cdot \lfloor \frac{m}{\lfloor m/(k+1) \rfloor} \rfloor \cdot d}{\sigma^{\lfloor \frac{m}{k+1} \rfloor}} \le \frac{m \cdot \left(\frac{m}{\lfloor m/(k+1) \rfloor}\right) \cdot d}{\sigma^{\frac{m}{k+1}-1}} \le \frac{m^2 d}{\sigma^{\frac{m}{k+1}-1}}.$$

$$m \cdot \frac{\sigma^{\mathcal{L}}}{\sigma^{\mathcal{L}}} = \frac{\sigma^{\mathcal{L}}}{\sigma^{\mathcal{L}}} \leq \frac{\sigma^{\mathcal{L}}}{\sigma^{\mathcal{L}}} \leq \frac{\sigma^{\mathcal{L}}}{\sigma^{\mathcal{L}}} \leq \frac{\sigma^{\mathcal{L}}}{\sigma^{\mathcal{L}}} \leq \frac{\sigma^{\mathcal{L}}}{\sigma^{\mathcal{L}}}$$

²⁸By some simple rearrangements we have that:

29
30
$$\frac{m^2 d}{\sigma^{\frac{m}{k+1}-1}} = \frac{m^2 d}{(md)^{\frac{\log \sigma}{\log md}(\frac{m}{k+1}-1)}} = m(md)^{1 - \frac{(m-k-1)\log \sigma}{(k+1)\log md}}.$$
30

Consequently, in the case when

$$k < \frac{(m-k-1) \cdot \log \sigma + (k+1) \cdot \log \log md}{\log md}$$
33

 \square^1

¹the algorithm requires $\mathcal{O}(m \log md)$ time on average.

³ This algorithm was implemented and integrated in INNUENDO Platform, which³ ⁴is publicly available [24]. The INNUENDO Platform is an infrastructure that pro-⁴ ⁵vides the required framework for data analyses from bacterial raw reads sequencing⁵ ⁶data quality insurance to the integration of epidemiological data and visualization.⁶ ⁷As such, rapid methods for classification and search for closely related strains are⁷ ⁸a necessity for quick navigation through the platform database entries. More infor-⁸ ⁹mation about the project can be found at its website [25].

¹⁰ As a starting point and for the purpose of this study, a subset of 2312 wgMLST¹⁰ ¹¹profiles of *Escherichia coli* retrieved from Enterobase [13] were included in the IN-¹¹ ¹²NUENDO database as well as their ancillary data and predefined core-genome clus-¹² ¹³ter classification. Two tab-separated files containing the wgMLST and cgMLST pro-¹³ ¹⁴files for the *Escherichia coli* strains were also created to allow storing information¹⁴ ¹⁵on the currently available profiles and for updating with profiles that will become¹⁵ ¹⁶available upon the platform analyses.

One of two index files are used depending on the type of search we want to per-¹⁷ ¹⁸ form: classification or search for k-closest. The cgMLST index file is used for strain¹⁸ ¹⁹classification, which relies on a nomenclature designed for the cgMLST profiles. As¹⁹ 20 such, and since a pre-classification was performed on the database of *Escherichia*²⁰ ²¹ coli strains, we continued using it for comparison purposes. However, when search-²¹ ²²ing for the k-closest profiles, we take into consideration all targets available in the k^{22} ²³wgMLST profiles using the wgMLST index file for a higher discriminatory power. ²³ Each time a new profile is generated from the platform, it requires classification.²⁴ ²⁵The INNUENDO Platform performs the classification step based on the approach²⁵ ²⁶ described in our use case 2 with a given maximum of k differences over core genes.²⁶ ²⁷It uses the cgMLST index file for the search since the classification is constructed²⁷ ²⁸based on those number of loci. If the method returns at least one match, it classifies²⁸ ²⁹ the new profile with the classification of the closest. If not, a new classification is ³⁰ assigned. A new entry is then added to the INNUENDO database as well as to the ³¹cgMLST and wgMLST profiles files and the index files are updated. In the case of the search for the k-closest, it is useful to define the input data for 32

³³visualization methods according to a defined number of differences on close strains.

¹For each profile used as input for the search, the method searches for the k-closest¹ ²strains considering at most k differences among all wgMLST loci. Since duplicate² ³matches can occur between the profiles used for each search, the final file used as³ ⁴input for the visualization methods is the intersection of the results of the k-closest⁴ ⁵profiles between each input strain. The set of strain identifiers are then used to⁵ ⁶query the INNUENDO database to get the profiles and ancillary data to be sent to⁶ ⁷PHYLOViZ Online [26] for further analysis, namely with the goeBURST algorithm.⁷

⁸ The drawback of using this method for classification and search is the need for⁸ ⁹rebuilding the index each time there is a new profile, which will depend on the⁹ ¹⁰number of profile entries on the database. Nevertheless, the number of updates¹⁰ ¹¹is rather smaller compared to the number of queries and the index can be build¹¹ ¹²in the background, with search functionalities still using the old index during the¹² ¹³process. In our implementation, the index and related data structures are serialized¹³ ¹⁴in secondary memory and they are accessed by mapping them into memory. The¹⁴ ¹⁵implementation of the underlying tool is made publicly available [27].

¹⁶ The above described approaches in combination with the features offered by the
 ¹⁷INNUENDO Platform allow microbiologists to quickly and efficiently search for
 ¹⁸strains close to their strain of interest, allowing a more targeted, focused and simple
 ¹⁹visualization of results.
 ²⁰ 20

²¹Experimental evaluation

²²We evaluated the proposed approach to compute the pairs of profiles at distance²² ²³at most k using both real and synthetic datasets. We used real datasets obtained²³ ²⁴through different typing schemas, namely whole-genome multi-locus sequence typ-²⁴ ²⁵ing (wgMLST) data, core-genome multi-locus sequence typing (cgMLST) data, and²⁵ ²⁶single-nucleotide polymorphism (SNP) data. Table 2 summarizes the real datasets²⁶ ²⁷used. We should note that wgMLST and cgMLST datasets contain sequences of²⁷ ²⁸integers, where each column corresponds to a locus and different values in the same²⁸ ²⁹column denote different alleles. Synthetic datasets comprise sets of binary sequences²⁹ ³⁰of variable length, uniformly sampled, allowing us to validate our theoretical find-³⁰ ³¹ings. ³¹

³² We implemented both versions described above in the C programming language: ³³ one based on binary search over the SA; and another one based on finding clusters

¹in the LCP array. Since allelic profiles can be either string of letters or sequences of ¹²integers, we relied on libdivsufsort library [28] and qsufsort code [29, 30], re-² ³spectively. For RMQ over the LCP array, we implemented a fast well-known solution ³⁴that uses constant time per query and linearithmic space for pre-processing [17]. ⁴ ⁵ All tests were conducted on a machine running Linux, with an Intel(R) Xeon(R) ⁶ CPU E5-2630 v3 @ 2.40GHz (8 cores, cache 32KB/4096KB) and with 32GB of ⁷ RAM. All binaries where produced using GCC 5.3 with full optimization enabled. ⁸

¹⁰Synthetic datasets

We first present results with synthetic data for different values of d, m and k. All synthetic sequences are binary sequences uniformly sampled. Results presented in this section were averaged over ten runs and for five different sets of synthetic data. The bound proved in Theorem 1 was verified in practice. For k satisfying the₁₅ $_{16}$ conditions in Theorem 1, the running time of our implementation grows $almost_{16}$ $_{17}$ linearly with n, the size of the input. We can observe in Fig. 1 a growth slightly $_{17}$ 18 above linear. Since we included the time for constructing the SA, the LCP array and to the RMQ data structure, with the last one in linearithmic time, that was expected. ²⁰ We also tested our method for values of k exceeding the bound shown in Theo-²⁰ ²¹rem 1. For d = m = 4096 and a binary alphabet, the bound for k given in Theorem 1²¹ ²²is no more than $|m/(2\log m)| = 170$. For k above this bound we expect that pro-²² 23 posed approaches are no longer competitive with the naïve approach. As shown in²³ ²⁴Fig. 2, for k > 250 and k > 270 respectively, both limits above the predicted bound.²⁴ ²⁵the running time for both computing pairwise distances by finding lower and higher²⁵ ²⁶bounds in the SA, and by processing LCP based clusters, becomes slower than the²⁶ ²⁷running time of the naïve approach.

²⁸ In Fig. 3 we have the running time as a function of the number d of profiles, for ²⁸ ²⁹ different values of m and for k satisfying the bound given in Theorem 1. The running ²⁹ ³⁰ time for the naïve approach grows quadratically with d, while it grows linearly for ³⁰ ³¹ both computing pairwise distances by finding lower and higher bounds in the SA, ³¹ ³² and by processing LCP based clusters. Hence, for synthetic data, as described by ³² ³³ Theorem 1, the result holds.

¹Real datasets

²For each dataset in Table 2, we ranged the threshold k accordingly and compared ³the approaches discussed in methods section with the naïve approach that computes ⁴the distance for all sequence pairs. Results are provided in Table 3. ⁴

⁵ In most cases, the approach based on the LCP clusters is the fastest up to two⁵ ⁶orders of magnitude compared to the naïve approach. As expected, in the case when⁶ ⁷data are not uniformly random, our method works reasonably well for smaller values⁷ ⁸of k than the ones implied by the bound in Theorem 1. As an example, the upper⁸ ⁹bound on k for C. *jejuni* would be around 200, but the running time for the naïve⁹ ¹⁰approach is already better for k = 64. We should note however that the number¹⁰ ¹¹of candidate profile pairs at Hamming distance at most k is much higher than the¹¹ ¹²expected number when data are uniformly random. This tells us that we can design¹² ¹³a simple hybrid scheme that chooses a strategy (naïve or the proposed method)¹³ ¹⁴depending on the nature of the input data. It seems also to point out clustering¹⁴ ¹⁵effects on profile dissimilarities, which we may exploit to improve our results. We¹⁵ ¹⁶leave both tasks as future work for the full version of this article.

We incorporated the approach based on finding lower and higher bounds in the ¹⁸SA in the implementation of goeBURST algorithm, discussed in methods section. ¹⁹We did not incorporate the approach based on the LCP clusters as the running time ²⁰did not improve much as observed above. Since running times are similar to those reported in Table 3, we discuss only the running time for *C. jejuni*. We need only ²² to index the input once. We can then use the index in the different stages of the algorithm and for different values of k. In the particular case of goeBURST, we use ²⁴ the index twice: once for computing the number of neighbors at a given distance.²⁴ used for untying links according to the total order discussed in the description of 25 goeBURST algorithm in methods section, and a second time for enumerating pairs at distance below a given threshold. Note that the goeBURST algorithm does not aim to link all nodes, but to identify clonal complexes (or connected components) for a given threshold on the distance among profiles [10]. In the case of C. jejuni ³⁰ dataset, and for k = 52, the running time is around 36 seconds, while the naïve approach takes around 115 seconds, yielding a three-fold speedup. In this case we $\frac{1}{2}$ get several connected components, *i.e.*, several trees, connecting the most similar³² profiles. We provide the tree for the largest component in Fig. 4, where each node 33

¹represents a profile. The nodes are colored according to one of the loci for which¹ ²profiles in this cluster differ. Note that this tree is optimal with respect to the² ³criterion used by the goeBURST algorithm, not being affected by the threshold on³ ⁴the distance. In fact, since this problem is a graphic matroid, the trees found for a⁴ ⁵given threshold will be always subtrees of the trees found for larger thresholds [22].⁵ ⁶Comparing this tree with other inference methods is beyond the scope of this article;⁶ ⁷the focus here was on the faster computation of an optimal tree under this model.⁷

⁸ In many studies, the computation of trees based on pairwise distances below a⁸ ⁹given threshold, usually small compared with the total number of loci, combined⁹ ¹⁰with ancillary data, such as antibiotic resistance and host information, allows mi-¹⁰ ¹¹crobiologists to uncover evolution patterns and study the mechanisms underlying¹¹ ¹²the transmission of infectious diseases [31].

¹⁴Conclusions

¹⁵Most distance-based phylogenetic inference methods rely directly or indirectly on¹⁵ ¹⁶Hamming distance computations. The computation of a distance matrix is a com-¹⁶ ¹⁷mon first step for such methods, taking $\Theta(md^2)$ time in general, with *d* being the¹⁷ ¹⁸number of sequences or profiles and *m* the length of each sequence or profile. For¹⁸ ¹⁹large-scale datasets this running time may be problematic; however, for some meth-¹⁹ ²⁰ods. we can avoid to compute all-pairs distances [6].

We addressed this problem when only a truncated distance matrix is needed,²¹ 22 *i.e.*, one needs to know only which pairs are at Hamming distance at most k.²² ²³This problem was motivated by the goeBURST algorithm [10], which relies on ²⁴ a truncated distance matrix by construction. Both the problem and techniques²⁴ ²⁵ discussed here are related to average-case approximate string matching [32, 33]. We ²⁶ proposed here an average-case linear-time and linear-space algorithm to compute²⁶ ²⁷ the pairs of sequences or profiles that are at Hamming distance at most k, when $^{28}k < \frac{(m-k-1)\cdot \log \sigma}{\log md}$, where σ is the size of the alphabet. We integrated our solution in 28 ²⁹goeBURST demonstrating its effectiveness using both real and synthetic datasets.²⁹ We must note however that our analysis holds for uniformly random sequences $^{\tt 30}$ and, hence, as observed with real data, the presented bound may be optimistic. It is 31 ³² thus interesting to investigate how to address this problem taking into account local conserved regions within sequences. Moreover, it might be interesting to consider 33

¹in the analysis null models such as those used to evaluate the accuracy of distance-¹ ²based phylogenetic inference methods [4]. ²

³ The proposed approach is particularly useful when one is interested in local phy	3
4 logenies, <i>i.e.</i> , local patterns of evolution, such as searching for similar sequences of	4
⁵ profiles in large typing databases, as in our use case 2. In this case we do not need t	о ⁵
⁶ construct full phylogenetic trees, with tens of thousands of taxa. We can focus ou	6 Ir
⁷ search on the most similar sequences or profiles, within a given threshold k . Ther	e^7
⁸ are however some issues to be solved in this scenario, namely, dynamic updating of	of ⁸
⁹ the data structures used in our algorithm. Note that after querying a database.	if ⁹
¹⁰ new sequences or profiles are identified, then we should be able to add them whil	_10
¹¹ keeping our data structures undated. Although more complex and dynamic dat	11
12	a 12
¹³	ا- 13
erwise static data structures can be useful to address this issue $[34]$. This and othe	r 14
challenges raised above are left as future work.	15
16	16
Competing interests	17
The authors declare that they have no competing interests.	11
18 Author's contributions	18
19 MC, APF, SPP and CV conceived the study and contributed for the design and analysis of the methods and	19
20experimental evaluation. APF, SPP and CV implemented Algorithm 1 and run the experiments. JAC conceived the	≥ 20
case study 2 and contributed with the biological background. APF and BRG implemented Algorithm 2 and 21	21
²⁻ integrated it in INNUENDO Platform. All authors contributed to the writing of the manuscript. All authors have	
	22
²³ Acknowledgements	23
²⁴ This work was partly supported by the Royal Society International Exchanges Scheme, and by the following project	^{s:} 24
²⁵ Technological Research Council of Turkey (Türkiye Bilimsel ve Teknolojik Araşırma Kurumu, TÜBİTAK), PRECIS	E 25
(LISBOA-01-0145-FEDER-016394) and ONEIDA (LISBOA-01-0145-FEDER-016417) projects co-funded by FEEI 26	26
27national funds from FCT, UID/CEC/500021/2013 funded by national funds from FCT, and INNUENDO	27
project [25] co-funded by the European Food Safety Authority (EFSA), grant agreement	
²⁸ GP/EFSA/AFSCO/2015/01/CT2 ("New approaches in identifying and characterizing microbial and chemical	28
$_{29}$ hazards"). The conclusions, findings, and opinions expressed in this review paper reflect only the view of the authority (EESA)	rs ₂₉
30	30
Author details	31
¹ Faculdade de Medicina, Instituto de Microbiologia and Instituto de Medicina Molecular, Universidade de Lisboa,	21
³² Lisboa, PT. ² Department of Informatics, King's College London, London, UK. ³ INESC-ID Lisboa, Rua Alves Red	_{ol} 32

 9, 1000-029 Lisboa, PT.
 ⁴Instituto Superior Técnico, Universidade de Lisboa, Lisboa, PT.
 ⁵Instituto Superior de 33 Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, PT.

¹ Refe	erences	1
2 ^{1.}	Maiden, M.C., Bygraves, J.A., Feil, E.J., Morelli, G., Russell, J.E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K.,	2
	Caugant, D.A., Feavers, I.M., Achtman, M., Spratt, B.G.: Multilocus sequence typing: a portable approach to	
3	the identification of clones within populations of pathogenic microorganisms. Proceedings of the National	3
4	Academy of Sciences of the United States of America 95(6), 3140-3145 (1998)	4
2.	Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications.	•
5	Cambridge University Press, New York, NY, USA (2010). doi:10.1017/CBO9780511974076	5
3. 6	Robinson, D.A., Feil, E.J., Falush, D.: Bacterial Population Genetics in Infectious Disease. John Wiley & Sons, Hoboken, NJ, USA (2010). doi:10.1002/9780470600122	6
74.	Saitou, N.: Introduction to Evolutionary Genomics. Springer, London (2013). doi:10.1007/978-1-4471-5304-7	7
5.	Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the	
8	minimum-evolution principle. Journal of Computational Biology 9 (5), 687–705 (2002).	8
9	doi:10.1089/106652702761034136	9
6.	Pardi, F., Gascuel, O.: Distance-based methods in phylogenetics. In: Encyclopedia of Evolutionary Biology, pp.	Ū
10	458-465. Elsevier, Oxford, MA, USA (2016). doi:10.1016/B978-0-12-800049-6.00206-7	10
7.	Feil, E.J., Holmes, E.C., Bessen, D.E., Chan, MS., Day, N.P., Enright, M.C., Goldstein, R., Hood, D.W.,	
11	Kalia, A., Moore, C.E., et al.: Recombination within natural populations of pathogenic bacteria: short-term	11
12	empirical estimates and long-term phylogenetic consequences. Proceedings of the National Academy of	12
	Sciences 98 (1), 182–187 (2001). doi:10.1073/pnas.98.1.182	
13 8.	Yang, Z., Rannala, B.: Molecular phylogenetics: principles and practice. Nature Reviews Genetics 13(5),	13
14	303–314 (2012)	1/
9.	Feil, E.J., Li, B.C., Aanensen, D.M., Hanage, W.P., Spratt, B.G.; eBURST; inferring patterns of evolutionary	17
15	descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of	15
	Bacteriology 186 (5) 1518–1530 (2004) doi:10.1128/JB.186.5.1518-1530 2004	
16 10	Francisco A.P. Bugalho M. Ramirez M. Carrico, I.: Global ontimal eBURST analysis of multilocus typing	16
17	data using a graphic matroid approach BMC Bioinformatics $10(1)$ (2009) doi:10.1186/1471-2105-10-152	17
11	Saitou N. Nei M : The neighbor-joining method: a new method for reconstructing phylogenetic trees	
18	Molecular Biology and Evolution 4(4), 406–425 (1987), doi:10.1093/oxfordiournals.molbey.2040454	18
1012	Sokal R.R.: A statistical method for evaluating systematic relationships. Univ. Kans Sci. Rull 38 , 1400–1438	10
.012.		10
²⁰ 13	Sergean M. Zhou, Z. Alikhan NF. Achtman M.: EnteroBase Accessed on 31 October 2017	20
10.	https://enterohase_varvick_ac_uk/	~
21 14	Iolley K.A. Maiden M.C.L. BIGSdb. Scalable analysis of bacterial genome variation at the nonulation level	21
14. 22	RMC Bioinformatics 11 505 (2010)	22
15	Crochemore M. Francisco A.D. Dissis S.D. Vaz C.: Towards Distance Pased Devloyenstic Inference in	
2313.	Average Case Linear Time In: Schwartz, P. Painest, K. (eds.) 17th International Workshap on Alexithms in	23
04	Average-Case Linear-Time. In: Schwartz, K., Keinert, K. (eds.) 1/th International Workshop on Algorithms in	24
	Bioinformatics (VVABI 2017). Leibniz International Proceedings in informatics (LIPICS), Vol. 88, pp. 9–1914.	24
25	Jennoss Dagstuni-Leidniz-Zentrum fuer informatik, Dagstuni, Germany (2017).	25
- a1C	aoi:10.4230/LIPICS.VVABI.2017.9. http://drops.dagstuni.de/opus/volitexte/2017/7652	<u> </u>
2616.	Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM Journal on Computing	26
27	22(5), 935–948 (1993). doi:10.1137/0222058	27
17.	Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: LATIN 2000: Theoretical Informatics: 4th	
28	Latin American Symposium. Lecture Notes in Computer Science, vol. 1776, pp. 88–94. Springer, Berlin,	28
20	Heidelberg (2000). doi:10.1007/10719839_9	20
- <i>°</i> 18.	Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees	29
30	and directed acyclic graphs. Journal of Algorithms 57(2), 75–94 (2005). doi:10.1016/j.jalgor.2005.08.001	30
19.	Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. Journal of ACM 53(6),	
31	918-936 (2006). doi:10.1145/1217856.1217858	31
20. 32	Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Annual Symposium on	32
	Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 2676, pp. 200-210. Springer, Berlin	,
33	Heidelberg (2003). doi:10.1016/j.jda.2004.08.002	33

¹ 21.	Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation in suffic	×1
2	arrays and its applications. In: Annual Symposium on Combinatorial Pattern Matching, pp. 181–192 (2001).	2
³ 22.	Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc.,	, 3
4	Upper Saddle River, NJ, USA (1982)	4
23.	Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of	f
5	the American Mathematical Society 7(1), 48–50 (1956). doi:10.2307/2033241	5
24.	B-UMMI: INNUENDO Platform. Accessed on 31 October 2017. https://github.com/B-UMMI/INNUENDO	
°25.	INNUENDO: A novel cross-sectorial platform for the integration of genomics in surveillance of foodborne	б
7	pathogens. Accessed on 31 October 2017. http://www.innuendoweb.org/	7
26.	Ribeiro-Gonçalves, B., Francisco, A.P., Vaz, C., Ramirez, M., Carriço, J.A.: Phyloviz online: web-based tool for	r
8	visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. Nucleic Acids Research	8
9	44(Webserver-Issue), 246–251 (2016). doi:10.1093/nar/gkw359	9
27.	B-UMMI: Fast MLST searching and querying. Accessed on 31 October 2017.	
10	https://github.com/B-UMMI/fast-mlst	10
11 28.	Mori, Y.: A lightweight suffix-sorting library. Accessed on 31 October 2017.	11
	https://github.com/y-256/libdivsufsort	
1229.	Larsson, N.J., Sadakane, K.: Suffix sorting implementation to accompany the paper Faster Suffix Sorting.	12
12	Accessed on 31 October 2017. http://www.larsson.dogma.net/qsufsort.c	12
¹³ 30.	Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theor. Comput. Sci. 387(3), 258–272 (2007).	15
14	doi:10.1016/j.tcs.2007.07.017	14
31.	Francisco, A.P., Vaz, C., Monteiro, P.T., Melo-Cristino, J., Ramirez, M., Carriço, J.A.: PHYLOViZ:	
15	phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics $13(1)$,	15
16	87 (2012). doi:10.1186/1471-2105-13-87	16
32.	Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximate string matching. ACM Journal	
17	of Experimental Algorithmics 9 (2004). doi:10.1145/1005813.1041513	17
33. 18	Barton, C., Iliopoulos, C.S., Pissis, S.P.: Fast algorithms for approximate circular string matching. Algorithms for Molecular Biology 9 , 9 (2014), doi:10.1186/1748-7188-9-9	18
1934.	Munro, J.I., Nekrich, Y., Vitter, J.S.: Dynamic data structures for document collections and graphs. In:	19
	Proceedings of the 34th ACM Symposium on Principles of Database Systems, pp. 277-289. ACM, New York,	
20	NY, USA (2015). doi:10.1145/2745754.2745778	20
21 ^{35.}	Nascimento, M., Sousa, A., Ramirez, M., Francisco, A.P., Carriço, J.A., Vaz, C.: PHYLOViZ 2.0: providing	21
	scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics $33(1)$,	
22	128-129 (2017). doi:10.1093/bioinformatics/btw582	22
23 ^{36.}	Page, A.J., Taylor, B., Delaney, A.J., Soares, J., Seemann, T., Keane, J.A., Harris, S.R.: SNP-sites: rapid	23
20	efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics $2(4)$ (2016).	20
24	doi:10.1099/mgen.0.000056	24
37.	Croucher, N.J., Finkelstein, J.A., Pelton, S.I., Mitchell, P.K., Lee, G.M., Parkhill, J., Bentley, S.D., Hanage,	25
20	W.P., Lipsitch, M.: Population genomics of post-vaccine changes in pneumococcal epidemiology. Nature	20
26	Genetics 45 (6), 656–663 (2013). doi:10.1038/ng.2625	26
38. 27	Chewapreecha, C., Harris, S.R., Croucher, N.J., Turner, C., Marttinen, P., Cheng, L., Pessia, A., Aanensen,	27
21	D.M., Mather, A.E., Page, A.J., Salter, S.J., Harris, D., Nosten, F., Goldblatt, D., Corander, J., Parkhill, J.,	21
28	Turner, P., Bentley, S.D.: Dense genomic sampling identifies highways of pneumococcal recombination. Nature Genetics 46 (3), 305–309 (2014). doi:10.1038/ng.2895	28
²⁹ 39.	National Center for Biotechnology Information: GeneBank. Accessed on 31 October 2017.	29
30	ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/	30
31		31
32		32
02		52
33		33

¹Figures

ε

Figure 1 Synthetic datasets, with $\sigma = 2$ and $k = \lfloor m/(2 \log m) \rfloor$ according to Theorem 1. Running time for computing pairwise distances by finding lower and higher bounds in the SA, and by processing LCP based clusters, as function of the input size n = dm.

Figure 2 Synthetic datasets, with $\sigma = 2$ and m = 4096. Running time for computing pairwise distances by finding lower and higher bounds in the SA, and by processing LCP based clusters, as function of the number d of profiles and for different values of k.

10	
	Figure 3 Synthetic datasets, with $\sigma=2$ and $k=\lfloor m/(2\log m) \rfloor$ according to Theorem 1.
11	Running time for computing pairwise distances naïvely, by finding lower and higher bounds in the
12	SA, and by processing LCP based clusters, as a function of the number d of profiles.

14	Figure 4 The tree inferred for the largest connected component found with $k = 52$ for the C.
15	jejuni dataset. Image produced by PHYLOViZ [35].

16	16
17	17
18	18
19	19
20	20
21	21
22	22
23	23
24	24
25	25
26	26
27	27
28	28
29	29
30	30
31	31
32	32
33	33

¹Tables

 $^2 \mbox{Table 1}$ Data structures used in our approach for each step.

Profile indexing	Candidate profile pairs enumeration	Pairs verification
Suffix array	Binary search	Naïve
	LCP based clusters	$\mathrm{RMQ}_{\mathrm{LCP}}$

6 Table 2 Real datasets used in the experimental evaluation. (*)Dataset provided by the Molecular Microbiology and Infection Unit, IMM.

7		Typing	Profile	Number of	Reference	
8	Dataset	method	length	distinct elements		
	Campylobacter jejuni	wgMLST	5446	5669	(*)	
9	Salmonella enterica	wgMLST	3002	6861	[13]	
10	Salmonella typhi	SNP	22143	1534	[36]	
	Streptococcus pneumoniae	cgMLST	235	1968	[37, 38, 39]	
11						

 $^{12}\mbox{Table 3}$ Time and percentage of pairs processed for each method and dataset.

13		k	N	aïve	Binar	y search	LCP	clusters	13
	Dataset		t (s)	pairs (%)	t (s)	pairs (%)	t (s)	pairs (%)	
14		8	108.59	100	0.22	0.06	0.17	0.06	14
15	C. jejuni	16	109.30	100	0.48	0.32	0.34	0.32	15
		32	108.60	100	3.52	5.45	2.67	5.45	
16		64	108.60	100	231.05	99.98	162.36	99.98	16
17	17 18 <i>S. enterica</i> 19	8	89.85	100	1.04	2.37	0.95	2.37	17
		16	87.26	100	7.16	12.69	6.73	12.69	
18		32	85.36	100	36.29	33.22	30.76	33.22	18
19		64	84.63	100	254.45	82.44	187.15	82.44	19
10		89	28.83	100	16.63	91.48	12.02	91.48	10
20	S. typhi	178	28.32	100	46.98	99.91	32.03	99.91	20
21		890	30.04	100	113.57	100	129.14	100	- 21
21		8	0.56	100	0.02	0.93	0.02	0.93	21
22	22S. pneumoniae23	16	0.57	100	0.05	1.71	0.04	1.71	22
		32	0.56	100	0.20	4.42	0.15	4.42	
23		64	0.58	100	5.63	73.36	5.01	73.36	23
24									24
25									25

 25
 25

 26
 26

 27
 27

 28
 28

 29
 29

 30
 30

 31
 31

 32
 32

	1
	2
	3
	4
	5
	5
	0
	/
	8
	9
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	0 7
1	/
1	8
T	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	0 7
2	/ 0
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
2	7
2	ç
ך ר	0
د ،	9
4	0
4	T
4	2
4	3
4	4
4	5
4	б
4	7
4	8
4	9
-1 5	0
5	1
р 5	т Т
5	2
5	3
5	4
5	5

Click here to download Figure

Please find enclosed our research article entitled "Fast phylogenetic inference from typing data".

The current ability to rapidly sequence whole microbial genomes, has the promise to revolutionize these fields by allowing the identification of thousands of potentially clinically relevant targets in the genome. NGS data can be used to detect outbreaks in hospital settings or in the food industry, e.g., by monitoring the spread of antimicrobial resistance, an ever-growing concern. It can help also in the development of vaccines by helping, for instance, to determine targets conserved in the entire bacterial population.

However, it is becoming clear that the bottleneck shifted from the production of sequence data to its analysis. One of the major challenges is on how phylogenetic inference methods can be scaled up to analyze thousands of genetic loci in thousands of isolates. Usually, computing genetic evolutionary distances among a set of typing profiles or taxa dominates the running time of many of these methods. It is important also to note that most of genetic evolution distance definitions rely, even if indirectly, on computing the pairwise Hamming distance among sequences or profiles.

In this work, we propose an average-case linear-time algorithm to compute pairwise Hamming distances among a set of taxa under a given Hamming distance threshold. This article includes both a theoretical analysis and extensive experimental results concerning the proposed algorithm. We further show how this algorithm can be successfully integrated into a well-known phylogenetic inference method, and how it can be used to speedup querying local phylogenetic patterns over large typing databases.

This work is an extension of the article "Towards distance-based phylogenetic inference in averagecase linear-time", presented at WABI 2017. It includes several revisions, including those raised by reviews of the workshop version of the paper, and it presents another real application of the developed methods, showing how it can be successfully used to speedup querying local phylogenetic patterns over large typing databases. The algorithm was integrated in INNUENDO platform, that is being developed under the INNUENDO project (http://www.innuendoweb.org/).

We wish to confirm that there are no known conflicts of interest associated with this publication.

The manuscript has been revised taking into account reviewers comments, and it has been read and approved by all named authors. Answers to reviewers' comments are also provided with our resubmission.

With my best regards,

Alexandre Francisco