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Abstract Two-dimensional rogue wave occurrence in shallow water on a ver-7

tically sheared current of constant vorticity is considered. Using Euler equa-8

tions and Riemann invariants in the shallow water approximation, hyperbolic9

equations for the surface elevation and the horizontal velocity are derived and10

closed-form nonlinear evolution equation for the surface elevation is obtained.11

Following Whitham (1974), a dispersive term is added to this equation us-12

ing the fully linear dispersion relation. With this new single first-order partial13
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differential equation, vorticity effects on rogue wave properties are studied nu-14

merically. Besides, the Boundary Integral Element Method (BIEM) and the15

KdV equation both with vorticity are used for this numerical investigation,16

too. It is shown that results from the generalised Whitham equation agree quite17

well with those from BIEM whereas those from the KdV model are quite dif-18

ferent. The numerical simulations carried out with the generalised Whitham19

equation and BIEM show that the presence of an underlying vertically sheared20

current modifies rogue wave properties significantly. For negative vorticity the21

amplification factor and duration of extreme wave events are increased whereas22

it is the opposite for positive vorticity.23

1 Introduction24

Generally, in coastal and ocean waters, current velocity profiles are established25

by bottom friction and wind stress at the sea surface, and consequently are26

vertically varying. Ebb and flood currents due to the tide may have an impor-27

tant effect on water wave properties. In any region where the wind blows, the28

generated current affects the behavior of the waves. The present work focuses29

on the nonlinear evolution of two-dimensional gravity waves propagating in30

shallow water on a shear current which varies linearly with depth. We assume31

that the directional spread of the wave field is sufficiently narrow to consider32

unidirectional propagation of the waves.33

There are a number of physical mechanisms that focus the wave energy into a34

small area and produce the occurrence of extreme waves called freak or rogue35

waves. These events may be due to refraction (presence of variable currents or36

bottom topography), dispersion (frequency modulation), wave instability (the37

modulational instability), soliton interactions, crossing seas, etc. For more de-38

tails on these different mechanisms see the reviews on freak waves by Kharif39

and Pelinovsky (2003), Dysthe et al (2008), Kharif et al (2009) and Onorato40

et al (2013). Few studies have been devoted to the occurrence of extreme wave41

events in shallow water. Among the authors who have investigated rogue wave42
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properties in shallow water, one can cite Pelinovsky et al (2000) , Kharif et al43

(2000), Peterson et al (2003), Soomere and Engelbrecht (2005), Talipova et al44

(2008) and Chambarel et al (2010). Pelinovsky and Sergeeva (2006) and Toffoli45

et al (2006) investigated the statistical properties of rogue waves in shallow46

water.47

To the best of our knowledge, there is no paper on the effect of a vertically48

sheared current on rogue wave properties apart from that of Touboul and49

Kharif (2016) in deep water. We propose to extend this work to the case of50

shallow water.51

Within the framework of the shallow water wave theory Whitham (1974) pro-52

posed a generalised equation governing the evolution of fully nonlinear waves53

satisfying the full linear dispersion. The Whitham equation may be derived54

from the previous generalised Whitham equation assuming that the waves55

are weakly nonlinear. The Whitham equation and the KdV equation which56

have the same nonlinear term differ from each other by the dispersive term.57

Very recently, Hur and Johnson (2015) have considered a modified Whitham58

equation taking account of constant vorticity. Very recently, Kharif and Abid59

(2017) have proposed a new model derived from the Euler equations for wa-60

ter waves propagating on a vertically sheared current of constant vorticity in61

shallow water. The heuristic introduction of dispersion allows the study of62

strongly nonlinear two-dimensional long gravity waves in the presence of vor-63

ticity. Consequently, this new equation extends to waves propagating in the64

presence of vorticity the generalised Whitham equation.65

Two different approaches are used to investigate rogue waves propagating66

in shallow water on a shear current of constant vorticity: the generalised67

Whitham equation with vorticity and the Boundary Integral Element Method68

(BIEM) which allows the study of fully nonlinear dispersive water waves on69

arbitrary depth in the presence of vorticity (see Touboul and Kharif (2016) ).70

Besides, a numerical investigation is carried out by using the KdV equation71

with constant vorticity whose derivation can be found in the papers by Free-72
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man and Johnson (1970) and Choi (2003). Note that the latter equation can73

be derived from the generalised Whitham equation with vorticity assuming74

that the waves are weakly nonlinear and weakly dispersive.75

2 Two mathematical formulations76

2.1 The generalised Whitham equation with vorticity77

We consider two-dimensional gravity water waves propagating at the free sur-78

face of a vertically sheared current of uniform intensity Ω which is the opposite79

of the vorticity. The wave train moves along the x − axis and the z − axis is80

oriented upward opposite to the gravity. The origin z = 0 is the undisturbed81

free surface and z = −h is the rigid horizontal bottom.82

The continuity equation is83

ux + wz = 0 (1)

where u and w are the longitudinal and vertical components of the wave in-84

duced velocity, respectively. The underlying current is U = U0 +Ωz where U085

is the constant surface velocity.86

Integrating equation (1) and using the boundary conditions at the free surface87

and at the bottom we obtain the following equation88

ηt +
∂

∂x
[u(η + h) +

Ω

2
η2 + U0η] = 0 (2)

where u is assumed to be independent of z.89

Equation (2) corresponds to mass conservation in shallow water in the pres-90

ence of constant vorticity.91

Under the assumption of hydrostatic pressure, the Euler equation in x-direction92

is93

ut + (u + U0 +Ωz)ux +Ωw + gηx = 0 (3)

where g is the gravity.94
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Using the continuity equation and boundary conditions that w satisfies on the95

bottom and at the free surface, we obtain96

w = −(z + h)ux (4)

It follows that the Euler equation becomes97

ut + (u + U0 −Ωh)ux + gηx = 0 (5)

The dynamics of non dispersive shallow water waves on a vertically sheared98

current of constant vorticity is governed by equations (2) and (5) that admit a99

pair of Riemann invariants. These Riemann invariants which are derived ana-100

lytically allows us to express the longitudinal component of the wave induced101

velocity u(x, t) as a function of the elevation η. Finally, equations (2) and (5)102

can be reduced to the following single nonlinear partial differential equation103

for η104

ηt +

{

U0 −
Ωh

2
+ 2
√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4 +

g

Ω
ln

[

1 +
Ω

2g

Ωη + 2(
√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4)

1 + Ω
g (

Ωh
2 +

√

gh+Ω2h2/4)

]

}

ηx = 0

(6)

This equation is fully nonlinear and describes the spatio-temporal evolution of105

hyperbolic water waves propagating rightwards in shallow water in the pres-106

ence of constant vorticity.107

Following Whitham (1974), full linear dispersion is introduced heuristically108

ηt +

{

U0 −
Ωh

2
+ 2
√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4 +

g

Ω
ln

[

1 +
Ω

2g

Ωη + 2(
√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4)

1 + Ω
g (

Ωh
2 +

√

gh+Ω2h2/4)

]

}

ηx +K ∗ ηx = 0

(7)

where K ∗ ηx is a convolution product. The kernel K is given as the inverse109

Fourier transform of the fully linear dispersion relation of gravity waves in110
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finite depth in the presence of constant vorticity Ω: K = F−1(c) with111

c =
√

gh

(
√

tanh(kh)

kh

(

Ω2 tanh(kh)

4gk
+ 1

)

− Ω tanh(kh)

2k
√
gh

)

Equation (7) governs the propagation of nonlinear long gravity waves in a fully112

linear dispersive medium. For Ω = 0 and U0 = 0, (6) reduces to generalised113

equation (13.97) of Whitham (1974).114

For weakly nonlinear (η/h≪ 1) and weakly dispersive (kh≪ 1) waves, equa-115

tion (7) reduces to the KdV equation with vorticity derived by Freeman and116

Johnson (1970) and Choi (2003) who used multiple scale methods, different to117

the approach used herein. To set the KdV equation in dimensionless form, h118

and
√

h/g are chosen as reference length and reference time which corresponds119

to h = 1 and g = 1. The equation reads120

ηt + c0(Ω)ηx + c1(Ω)ηηx + c2(Ω)ηxxx = 0 (8)

with121

c0 = U0−
Ω

2
+
√

1 +Ω2/4 , c1 =
3 +Ω2

√
4 +Ω2

, c2 =
2 +Ω2 −Ω

√
4 +Ω2

6
√
4 +Ω2

122

The equations (6), (7) and (8) are solved numerically in a periodic domain of123

length 2L. The length L is chosen O(400δ) where δ is a characteristic length124

scale of the initial condition. The number of grid points is Nx = 212. Spa-125

tial derivatives are computed in the Fourier space and nonlinear terms in the126

physical space. The link between the two spaces is made by the Fast Fourier127

Transform. For the time integration, a splitting technique is used. The equa-128

tions (6), (7) and (8) could be written as129

ηt + L+N = 0, (9)

where L andN are linear and nonlinear differential operators in η, respectively.130

Note that in general the operators L and N do not commute. If the initial131

condition is η0, the exact solution of the previous equation is132

η(t) = e−(L+N)tη0. (10)
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This equation is discretized as follows. Let tn = n∆t. We have133

η(tn) = e−(L+N)n∆tη0 = (e−L∆t/2e−N∆te−L∆t/2)nη0 +O(∆t2), (11)

and the scheme is globally second order in time. The operator e−L∆t/2 is134

computed exactly in the Fourier space. However, the operator e−N∆t is ap-135

proximated using a Runge-Kutta scheme of order 4. The time step is chosen136

as ∆t = 0.005. Furthermore, the efficiency and accuracy of the numerical137

method has been checked against the nonlinear analytical solution of the St-138

Venant equations for the dam-break problem in the absence of current and139

vorticity (Ω = 0 and U0 = 0). For U0 = 0 and Ω = 0 equation (6) reduces to140

Ht + (3
√

gH − 2
√

gh)Hx = 0, with H = η + h. (12)

For t > 0, the nonlinear analytical solution of equation (12) is141

H(x, t) = h, u(x, t) = 0;
x

t
≥
√

gh

H(x, t) =
h

9

(

2 +
x√
gh t

)2

, u(x, t) = − 2
3

(√
gh− x

t

)

; −2
√

gh ≤
x

t
≤
√

gh

H(x, t) = 0, u(x, t) = 0;
x

t
≤ −2

√

gh (13)

At time t = 0 the initial condition isH(x, 0) = h(1+tanh(2x))/2 and u(x, 0) =142

0 everywhere. A numerical simulation of equation (12) has been carried out143

with g = 1 and h = 1. The numerical and analytical surface profiles at t = 0144

and after the dam has broken are plotted in figure 1.145

Within the framework of the KdV equation in the presence of vorticity, we146

have also checked that solitary waves are propagated with the right velocity147

that depends on Ω.148

2.2 The boundary Integral Element Method149

The problem considered here is identical to the one described in the previous150

section. It is two dimensional, and the current field is assumed to be steady,151

constant in the horizontal direction, and to vary linearly with depth,152

U(z) = U0 +Ωz. (14)
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Fig. 1 Dam-break: comparison between analytical (solid line) and numerical solutions (◦)

after the dam has broken. The dashed line represents the initial condition at t = 0

The three dimensional interaction of water waves propagating obliquely in153

the assumed current are not considered here. The vorticity within the flow is154

thus constant, as previously mentioned. It is straightforward that such current,155

associated with hydrostatic pressure P (z) = p0 − gz is solution of the Euler156

equations when considering a problem of constant depth. This will allow to157

seek for wavy perturbations (u(x, z, t), v(x, z, t)) associated with the pressure158

field p(x, z, t). The total flow fields are then given by159

ũ(x, z, t) = u(x, z, t) + U(z),

ṽ(x, z, t) = v(x, z, t) and (15)

p̃(x, z, t) = p(x, z, t) + P (z).

Using this decomposition, the Euler equations might reduce to160

ut + (U + u)ux + vUz + vuz = −
px
ρ

and (16)

vt + (U + u) vx + vvz + g = −pz
ρ
, (17)

which has to be fulfilled together with the continuity equation161

ux + vz = 0. (18)
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As it is demonstrated in Simmen (1984), and more recently in Nwogu (2009),162

the wavy perturbations propagating in such current conditions are irrotational.163

Indeed, since the second derivative of the background current Uzz is nil, the164

vorticity conservation equation involves no source term, and the vorticity field165

does not exchange any vorticity with the wavy perturbations. Thus, we might166

introduce a velocity potential φ(x, z, t) from which derive the perturbation167

induced velocities (∇φ = (u, v)). It has to be emphasized that the continuity168

equation (18) is automatically satisfied if the velocity potential is solution of169

Laplace’s equation170

∆φ = 0. (19)

The kinematic free surface condition might also be expressed, and if (X,Z)171

denotes the location of a particle at the free surface, this condition might be172

expressed173

dX

dt
= u and

dZ

dt
= v − U(η)

∂η

∂x
, (20)

where d/dt refers to the material derivative d/dt = ∂/∂t + u∂/∂x + v∂/∂z,174

and Z = η(x, t).175

Now, a stream function ψ can also be introduced, so that (∂ψ/∂z,−∂ψ/∂x) =176

(u, v). The Euler equations (16) and (17) can now be integrated in space, and177

it comes178

∂φ

∂t
+ U(z)

∂φ

∂x
+

∇φ2

2
−Ωψ + gz = −p

ρ
(21)

When applied to the free surface, where the pressure is constant, this equation179

provides the classical dynamic boundary condition. Introducing the material180

derivative used in the kinematic condition , this condition reduces to181

dφ

dt
+ U(η)

∂φ

∂x
− ∇φ2

2
−Ωψ + gη = 0, (22)

At this point, the knowledge of the stream function ψ at the free surface is182

still needed. Hopefully, one can notice the relationship183

∂ψ

∂τ
= −∂φ

∂n
, (23)

where (τ ,n) refer respectively to the tangential and normal vectors at the free184

surface. Thus, the stream function ψ can be evaluated at the free surface as185
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soon as the normal derivative of the velocity potential is known.186

Furthermore, if equations (20), (22) and (23) refer to the boundary condition187

at the free surface, the fluid domain still has to be closed. This is done by188

using impermeability conditions on the bottom boundary condition, located189

at z = −h, h being used as the reference length (i.e. h = 1) and on the vertical190

boundary conditions, located respectively at x = 0 and x = 200.191

The numerical approach used here has already been implemented and used192

successfully in the framework of focusing wave groups in the presence of uni-193

form current (Touboul et al (2007); Merkoune et al (2013)). The extension194

allowing to take constant vorticity into account was presented in Touboul and195

Kharif (2016) together with a validation of the approach. It is based on a196

Boundary Integral Element Method (BIEM) coupled with a Mixed Euler La-197

grange (MEL) procedure. At each time step, the Green’s second identity is198

discretized to solve numerically the Laplace equation (19). Thus, the potential199

and its normal derivative are known numerically, and the stream function ψ200

can be deduced by integration of equation (23) along the free surface. This201

numerical integration is performed in the up-wave direction, starting from the202

down-wave end of the basin, and using zero as initial value. Then, the time203

stepping is performed by numerical integration of equations (20) and (22) us-204

ing a fourth order Runge & Kutta scheme. Full details of the implementation205

can be found in Touboul and Kharif (2010). In every simulations, the total206

number of points considered at the free surface was Nfs = 1000, while the207

total number of points used on the solid boundaries was Nbo = 600. The time208

step used for the simulations was dt = 0.01.209

2.3 Initial condition210

Both numerical approaches described in previous subsections were initialised211

with the same intial condition. Following the approach described in Kharif et al212

(2000); Pelinovsky et al (2000), the initial condition is obtained numerically.213

A Gaussian initial wave, with no initial velocity, is allowed to collapse under214
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gravity. This simulation is run in the absence of current and vorticity, using215

the BIEM. Two radiated wave trains, propagating in opposite directions, are216

generated. The wave group propagating in the (−x) direction is isolated, and217

space-time coordinates are reverted. This allows the generation of a focusing218

wave group in shallow water conditions. For the numerical simulations con-219

sidered here, the initial gaussian elevation has a maximum amplitude a = h220

where h still being the reference length, and a width σ = 2h.221

The wave train considered is used as initial condition for both numerical ap-222

proaches. The surface elevation of this focusing wave group is used as initial223

condition for the generalised-Whitham equation with vorticity, and for the224

KdV equation with vorticity as well. Both elevations and velocity potential225

are required to initialise the BIEM.226

The dimensionless value of the maximum surface elevation of the wave group227

obtained, ηmax(t = 0), is 0.0715. The dynamics of this wave packet is illus-228

trated in figure 2, in the framework of BIEM simulations. The initial wave229

packet is propagated, and the effects of both nonlinearity and dispersion lead230

to the formation of a high wave.231

3 Results and discussion232

Among the rogue wave properties, a particular attention is paid to the ampli-233

fication factor of the maximum surface elevation, defined as ηmax(t)/ηmax(t =234

0). The time evolution of this amplification factor is plotted in figures 3-7 for235

several values of the shear Ω. One can see that the evolutions computed with236

the generalised Whitham equation and BIEM are similar even though the237

amplification is overestimated with the generalised Whitham equation with238

vorticity. The amplification factor at the focusing time tf plotted in figure 8239

increases as the shear Ω increases. One can observe that the difference between240

the two curves decreases as the shear Ω increases. In other words, the agree-241

ment is better for positive values of the shear Ω (negative vorticity) than for242

negative values of Ω (positive vorticity). The KdV equation exhibits the same243



12 Christian Kharif et al.

0 50 100 150 200
−0.1

0

0.1

X

η(
x)

 t/T= 0

0 50 100 150 200
−0.1

0
0.1
0.2

X

η(
x)

 t/T= 75

0 50 100 150 200
−0.1

0

0.1

X

η(
x)

 t/T= 150

Fig. 2 Surface elevation of the focusing waves group evolving from initial condition (t/T =

0) to rogue wave occurence (t/T = 75), before defocusing (t/T = 150).

tendency that is an increase of the maximum of amplification with Ω. The fo-244

cusing time tf obtained with both models are very close. On the opposite, the245

KdV equation underestimates the maximum value of the amplification factor246

and the focusing time tf as well. In figures 6 and 7, the BIEM shows for neg-247

ative values of the shear Ω first a reduction of the maximum surface elevation248

and then an amplification. This attenuation of the maximum of the surface249

elevation does not occur for the generalised Whitham and KdV equations. We250

define as extreme wave events or rogue waves those in the group whose surface251

elevation satisfies ηmax(t = 0)/ηmax(t) ≥ 2. In that way, we can introduce the252

rogue wave lifetime which is the duration of the extreme wave event. In figure253

9 is shown this duration as a function of Ω. For positive values of the shear254

Ω the rogue wave duration is increased whereas it is the opposite for negative255

values.256

257
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Fig. 3 (color online) Time evolution of the amplification factor without vorticity effect

(Ω = 0). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV

equation (black solid line)
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Fig. 4 (color online) Time evolution of the amplification factor with vorticity effect (Ω =

0.5). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation

(black solid line)
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Fig. 5 (color online) Time evolution of the amplification factor with vorticity effect

(Ω = 0.25). Generalised Whitam equation (blue solid line), BIEM (red solid line) and

KdV equation (black solid line)
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Fig. 6 (color online) Time evolution of the amplification factor with vorticity effect (Ω =

−0.5). Generalised Whitham equation (blue solid line), BIEM (red solid line) and KdV

equation (black solid line)
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Fig. 7 (color online) Time evolution of the amplification factor with vorticity effect (Ω =

−0.25). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV

equation (black solid line)
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(red solid line)
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Fig. 9 (color online) Rogue wave duration as a function of the shear intensity of the current.

Generalised Whitam equation (blue solid line), BIEM (red solid line)

4 Conclusion258

The effect of an underlying vortical current on two-dimensional rogue wave259

properties has been investigated by using two different approaches in shallow260

water. One is based on a new approximate equation, the generalised Whitham261

equation with constant vorticity which is fully nonlinear and fully linear dis-262

persive whereas the other, the BIEM with constant vorticity, is fully nonlinear263

and fully nonlinear dispersive. Besides the study on vorticity effect on rogue264

waves, it is shown that the results of the generalised Whitham equation with265

vorticity are in agreement with those of the BIEM demonstrating that this266

new single nonlinear equation is an efficient model for the investigation of267

nonlinear long waves on vertically sheared current of constant vorticity.268

The numerical simulations carried out with all the approaches have shown269

that the presence of vorticity modifies the rogue wave properties significantly.270

The maximum of amplification factor of the surface elevation increases as the271

shear intensity of the current increases. The lifetime of extreme wave event272

follows the same tendency.273
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