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Abstract

Two-dimensional Marangoni convection in binary mixtures is studied in periodic domains with large spatial

period in the horizontal. For negative Soret coefficients convection may set in via growing oscillations which evolve

into standing waves. With increasing amplitude these waves undergo a transition to traveling waves, and then to

more complex waveforms. Out of this state emerge stable stationary spatially localized structures embedded in

a background of small amplitude standing waves. The relation of these states to the time-independent spatially

localized states that characterize the so-called pinning region is investigated by exploring the stability properties of

the latter, and the associated instabilities are studied using direct numerical simulation in time.

Keywords: Marangoni convection; Spatially localized states; Homoclinic snaking

1. Introduction

Surface tension-driven flows are of importance in a variety of applications, and are a consequence of

surface tension inhomogeneities that are either imposed externally or develop spontaneously as a result

of an instability. Typical of these is the Marangoni instability that sets in in liquids with a temperature-

dependent surface tension once the temperature difference, measured by the Marangoni number, exceeds
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a critical value. Such flows occur even in the absence of gravity. In binary mixtures in which the surface

tension depends in addition on concentration, temperature-induced concentration inhomogeneities can

either enhance instability or lead to overstability, depending on the sign of the Soret coefficient (Castillo

and Velarde, 1978, 1982; Bergeon et al., 1994, 1995, 1998; Bergeon and Knobloch, 2004). In the latter

case the resulting overstable convection may coexist with steady overturning convection that sets in at a

larger value of the Marangoni number. Typically the overstable oscillations are supercritical, while steady

convection is subcritical.

In the present paper we are interested in exploring the resulting region of bistability in greater detail.

Recent work on two related systems, binary fluid convection (Batiste et al., 2006) and natural doubly

diffusive convection (Bergeon and Knobloch, 2007) showed that in this regime time-independent spatially

localized convection may be present, and uncovered an unexpectedly rich multiplicity of such states.

Following Blanchflower (1999) we call these states convectons. This behavior has been attributed to the

presence of so-called homoclinic snaking in these systems, a phenomenon that is well understood in

spatially reversible fourth order systems on the real line with variational structure (Champneys, 1998;

Burke and Knobloch, 2006). In particular, in binary mixture convection the convectons emerge from a

state called dispersive chaos as the Rayleigh number is increased via a remarkable sequence of relaxation

oscillations (Batiste et al., 2006; Alonso et al., 2007). These states are stable despite being embedded

within an unstable state, the conduction state, something that is possible when the conduction state is

convectively but not absolutely unstable (Batiste et al., 2006). In contrast, above the snaking region the

fronts bounding the localized states unpin, and the convecting state grows at the expense of the conduction

state, until the whole domain is filled with convection cells.

The system studied here differs from both binary fluid convection and natural doubly diffusive convec-

tion, although like the others it is reversible in space and nonvariational. Specifically, the time-independent

binary fluid system studied in Batiste et al. (2006) and Alonso et al. (2007) is equivariant under the spatial

reflection R : x → −x, where x is the horizontal coordinate, and hence is reversible as a dynamical

system in space, i.e., with x playing the role of a time-like variable. In this case R acts on the fields by +1

(see below). However, the system is in addition also equivariant under a second reflection, the reflection

j in the layer midplane. This symmetry is present as a consequence of the Boussinesq approximation

and the use of identical boundary conditions at the top and bottom of the layer, and is responsible for the

presence in this system of convectons of both even and odd parity. The even convectons, that is, states that

are invariant under Rℓ : x → ℓ−x for a suitably chosen ℓ, are expected to be time-independent solutions

of R-equivariant systems. This is not so of the odd parity convectons. In generic R-equivariant systems

such states are expected to drift in the x-direction, but here their drift is prevented by the symmetry jRℓ

of these states. Thus the binary convection example exhibits two classes of steady localized states, of

opposite parity with respect to R. Since each state can also be reflected in the layer midplane there are in

fact four branches of localized states each of which undergoes homoclinic snaking in the same region of

parameter space.

In contrast, the natural doubly diffusive system studied in Bergeon and Knobloch (2007) possesses

only the symmetry D ≡ jR but the symmetry R is absent. Moreover, the symmetry D acts on the fields by

−1. As a result there are only two branches of steady convectons, and both are invariant under Dℓ ≡ jRℓ

for suitable ℓ.

The Marangoni convection problem studied here shares many properties with the binary convection

system but lacks the additional symmetry j. As a result we expect only two types of time-independent

convectons, both even with respect to Rℓ, but distinguished by the direction of the flow along the line of



symmetry, x = C/2, where C is the dimensionless length of the periodic domain. All odd parity states

now drift, and must be located by solving an appropriate nonlinear eigenvalue problem for the drifting

localized states and their drift speed. Moreover, for the parameter values used here the time-independent

even parity convectons emerge with increasing Marangoni number from a time-dependent state consisting

of a spatially localized structure embedded in a background of small amplitude standing waves.

The paper is organized as follows. In Section 2 we introduce the basic equations of the study, and

review the numerical techniques used to compute the solutions. These include numerical branch following

techniques as well as direct numerical simulation. Our results are presented in Section 3, and interpreted

theoretically in Section 4.

2. Marangoni convection

2.1. Equations and dimensionless parameters

We study two-dimensional Marangoni convection in the presence of a Soret effect in a spatially periodic

domain of period C = nkc, where n is an integer and kc ≈ 3.1 is the critical wavelength for the onset of

convection in a single component liquid. A constant normal heat flux −q > 0 is applied (in the downward

direction) at the free upper surface. The velocity vanishes along the bottom wall, assumed to be no-

slip. The surface tension r along the free upper surface varies linearly with the surface temperature and

concentration: r = r0(1 + cTT + cCC), where r0 is a constant. We assume that to leading order the free

surface remains undeformed by the flow (r is large) and assume that the gas in contact with the free

surface has no influence.

In the following distance, time, temperature, concentration and velocity are nondimensionalized using

H, H 2/m, DT ≡ −qH/k, DC ≡ −DSDT/D and Mam/H , respectively. Here Ma ≡ −qH 2r0cT/kqmjT

is the flux Marangoni number, and q is the density of the fluid, m is its kinematic viscosity, jT is its thermal

diffusivity, and k ≡ CV qjT is the thermal conductivity. In addition D is the concentration diffusivity

and DS is the Soret diffusion coefficient. In zero gravity the system is described by the dimensionless

equations (Bergeon and Knobloch, 2004):

Ltu = − Ma(u · ∇)u − ∇p + ∇
2u, ∇ · u = 0, (1)

LtT = − Ma(u · ∇)T + Pr−1
∇

2T , (2)

LtC = − Ma(u · ∇)C + Sc−1(∇2C − ∇
2T ), (3)

where u, p, T, C are, respectively, the dimensionless velocity, pressure, temperature and concentration,

and Pr ≡ m/jT and Sc ≡ m/D are the Prandtl and Schmidt numbers. The boundary conditions along the

free surface (z = 1) are

Lzu − Pr−1(LxT + SMLxC) = w = LzT − 1 = Lz(C − T ) = 0, (4)

while those along the bottom (z = 0) are

u = w = T = Lz(C − T ) = 0. (5)

Here

SM = −
DScC

DcT



is a dimensionless quantity analogous to the separation ratio familiar from buoyancy-driven convection.

In the following we shall be interested in mixtures with SM < 0. In this case the conduction case may

lose stability with increasing Marangoni number to growing oscillations; the physical mechanism of this

instability is discussed in Bergeon and Knobloch (2004). Note that for liquids with cT < 0 we must reverse

the sign of q, i.e., the surface must be cooled to generate instability instead of being heated.

The above problem has the solution u=0,T0(z)=z,C0(z)=z, present for all values of Ma, corresponding

to the conduction state. In the following we study the states resulting from instability of this state in periodic

domains with moderately large spatial period C. As already explained, in the present case the R-symmetry

acts by +1, and hence R-symmetric states satisfying

u(−x, z)= − u(x, z), w(−x, z)=w(x, z), T (−x, z)=T (x, z), C(−x, z)=C(x, z) (6)

play a prominent role.

2.2. Numerical method

To solve the above equations we use a numerical continuation method based on a Newton solver for the

time-independent version of Eqs. (1)–(3) with the boundary conditions (4)–(5). The implementation of

the method follows that of Tuckerman (1989) and Mamun and Tuckerman (1995), but employs a spectral

element method in which the domain [0, 1] × [0, C] is decomposed into Ne macro-elements of size

[0, 1]×[iC/Ne, (i+1)C/Ne], where Ne is the number of spectral elements and i ∈ {0, . . . , Ne−1}. In each

element, the fields are approximated by a high order interpolant through the Gauss–Lobatto–Legendre

points (Funaro, 1991). The Newton solver uses a first order time-stepping scheme for the equations in

conservation form; we use the scheme proposed by Karniadakis et al. (1991) in which the diffusive linear

part of the equations is treated implicitly. Each time step therefore requires the inversion of four Helmholtz

problems. This is carried out using a Schur factorization procedure on the weak form of the equations

(Deville et al., 2002), a procedure that ensures the periodicity of the unknowns and their first derivative in

the x-direction. The dynamical behavior in time is computed using a second order version of the scheme

(Karniadakis et al., 1991).

Two types of states are of interest: spatially periodic wavetrains and spatially localized states. In

domains of finite spatial period C only the former bifurcate from the conduction state; the latter bifurcate

in secondary pitchfork bifurcations from the periodic states, and do so already at small amplitude when

C is large. All results are computed for Sc = 50, Pr = 1 with C = 6kc or C = 10kc, where kc ≈ 3.1 is the

wavelength of the primary unstable mode.

3. Results

We focus on two representative values of the separation ratio SM , SM =−0.002 and SM =−0.005. We

present the results in the form of bifurcation diagrams showing either the velocity norm E ≡
∫ 1

0

∫ C

0 (u2 +

w2) dx dz or DTm ≡ max |T (x, z) − T0(z)| as functions of Ma. Stability of each branch is indicated

using the notation n − p, where n is the number of unstable real eigenvalues, and p is the number of

pairs of unstable complex eigenvalues. Thus the number of unstable eigenvalues is n+ 2p. In the figures

we use solid (dashed) lines to indicate solutions that are stable (unstable) with respect to R-symmetric

perturbations of period C, and use solid circles, open circles and solid squares to indicate the location of
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Fig. 1. Bifurcation diagram showing DTm ≡ max |T (x, z)−T0(z)| as a function of the Marangoni number Ma. The two branches

labeled B between MaS1 =89.33 and MaS2 =81.78 are almost identical but are not related by symmetry. Parameters are Sc=50,

Pr = 1, SM = −0.002 and C = 6kc. Resolution is Ne = 12 with Nx = 11 and Nz = 17.

pitchfork, Hopf and saddle-node bifurcations; open triangles indicate collisions of complex eigenvalues

on the real axis and hence do not correspond to a change in stability. Stability with respect to R-symmetry

breaking perturbations is discussed in the text as necessary. With the exception of the primary branch of

traveling waves we do not follow branches of time-periodic states. The steady states are all computed by

imposing the reflection symmetry RC/2, i.e., reflection symmetry with respect to the line x = C/2.

3.1. The case SM = −0.002, C = 6kc

We show the results for SM = −0.002, C = 6kc in Fig. 1. The figure shows that for these parameter

values the conduction state loses stability at Ma ≈ 81.24 to exponentially growing oscillations with

wavenumber n=6, followed by two additional Hopf bifurcations; with increasing Marangoni number the

corresponding eigenvalues collide pairwise on the positive real axis and thereafter remain real. The first of

these eigenvalues crosses into the negative half plane at Ma ≈ 90.99 resulting in a pitchfork of revolution

to a spatially periodic steady state with wavenumber n = 6 (Fig. 2). A second pitchfork of revolution, to

states with n=7, follows at Ma ≈ 93.08. The first of the Hopf bifurcations is supercritical and evolves into

a stable standing wave. In contrast, the first pitchfork of revolution is subcritical and the resulting steady

spatially periodic states are therefore initially five times unstable (Fig. 3). These undergo a secondary

pitchfork bifurcation (S1) to a spatially modulated state, followed by a secondary Hopf bifurcation before

undergoing a further pitchfork (S2), after which the periodic solutions are only once unstable; these states

acquire stability at a saddle-node bifurcation at Ma ≈ 81.175, and are thereafter stable.

In Fig. 4 we show sample solutions along one of the branches B created at S1 and destroyed at S2. The

figure reveals a tendency towards modulation with a spatial scale comparable to the imposed period, and

suggests a tendency towards spatial localization. The states shown are correctly described as an n = 1
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Fig. 2. Solution streamlines at several locations along the P1 branch; white regions correspond to clockwise flow while black

regions correspond to counter-clockwise flow. Contour density does not reflect absolute strength of flow. The Marangoni number

Ma =89.0 (E =0.23×10−05) is close to P1, Ma =81.1779 (E =0.15×10−03) is close to the saddle-node, and Ma =95.0312

(E =0.24×10−02) is along the stable part of the branch. Parameters are Sc=50, Pr =1, SM =−0.002 and C=6kc. Resolution

is Ne = 12 with Nx = 11 and Nz = 17.
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Fig. 3. Enlargement of Fig. 1 indicating the stability properties of the different solution branches. Stability is indicated using the

notation n−p, where n is the number of unstable real eigenvalues, and p is the number of pairs of unstable complex eigenvalues.

Thus none of nontrivial solutions is stable. Parameters are Sc = 50, Pr = 1, SM = −0.002 and C = 6kc. Resolution is Ne = 12

with Nx = 11 and Nz = 17.

modulation of a finite amplitude n = 6 state. Each has a line of symmetry at x = C/2, corresponding to

a region of upflow. Solutions with downflow at x = C/2 are also present, but differ in detail: there is no

symmetry that takes an upflow state into a downflow state. Despite this the bifurcations at S1 and S2 are

pitchforks. This is a consequence of the fact that the 1:6 spatial resonance is a weak spatial resonance (Prat

et al., 1998). Although both the upflow and the downflow states undergo two tertiary Hopf bifurcations

each of which decreases their degree of instability, neither ever acquires stability.

We have not explored the branches created in the various bifurcations described above but observe

that the scenario described resembles that identified in doubly diffusive convection in a horizontal layer
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Fig. 4. Solution streamlines at different locations along one of the branches B bifurcating subcritically at S1 from the first primary

periodic branch. The values of Ma decrease from bottom (close to S1) to top (close to S2). Parameters are Sc = 50, Pr = 1,

SM = −0.002 and C = 6kc. Resolution is Ne = 12 with Nx = 11 and Nz = 17.



(Moore and Weiss, 2000) in a smaller domain (and in the presence of the additional reflection symmetry j).

In the following we use the observed behavior as motivation for looking for time-independent spatially

localized states. For this purpose it is advantageous to examine the regime in which the primary steady

state branch is more subcritical, i.e., a smaller value of SM , and to examine the solutions in a larger

domain.

3.2. The case SM = −0.005, C = 10kc

3.2.1. Time-independent states

Figs. 5a–c show the results for SM = −0.005, C = 10kc. This time the figures show the velocity

norm E as a function of Ma, focusing on branches of steady states only. The figures show two primary

branches of spatially periodic states, labeled P1 and P2, that bifurcate from the conduction state in close

succession, with P1 preceding P2. Of these P1 corresponds to states with 11 wavelengths (n= 11) within

the imposed spatial period, while P2 corresponds to 10 wavelengths (n = 10). Both branches bifurcate

strongly subcritically. Fig. 5c shows that P1 undergoes a secondary pitchfork bifurcation already at very

small amplitude, producing a pair of states labeled L1, L2, followed at larger amplitude by two further

pitchfork bifurcations, the second of which produces the branches labeled B1; the P2 branch likewise

undergoes a secondary bifurcation to a pair of branches labeled B2. The two states L1, L2 created in

the first of these bifurcations both have spatial wavenumber n = 11, modulated by wavenumber n = 1,

but once again are not related by symmetry. As a result the two branches of localized states in Fig. 5c

differentiate with decreasing Ma into distinct branches (Fig. 5a); as this occurs the modulation amplitude

increases and the emerging states become more and more spatially localized. Near Ma ≈ 83.4 the two

branches undergo a sequence of saddle-node bifurcations as both branches begin to oscillate back and

forth, in a behavior known as snaking. In this region the localized states grow in extent, each type adding

a roll on each side as one proceeds up the snaking branch in such a way that the symmetry R of the state

is preserved. When the localized states almost fill the domain C the snaking ends and both branches turn

over to connect to a primary branch of periodic states. In the present case both terminate on the branch

P2, once again in a pitchfork bifurcation. Thus the two snaking branches provide a connection between

the two primary branches P1 and P2.

Fig. 6 shows the evolution of the localized states as one proceeds from the secondary pitchfork on

the P1 branch to the secondary pitchfork on the P2 branch. All states shown are R-symmetric; the states

numbered (1)–(6) have minimum amplitude in the center of the domain and lie on the branch labeled L1,

while those numbered (7)–(10) lie on L2 and have maximum amplitude in the center. After translation

by C/2 the L1 states, like the L2 states, are localized in the center of the periodic domain, with L1 (L2)

characterized by an upflow (downflow) at x = C/2. Once again these two states are unrelated by any

symmetry.

Near P1 both L1 and L2 have 11 wavelengths and are weakly modulated over the period C; the upflow

state L1 bifurcates from the P1 state with upflow at x = C/2, while the downflow state L2 bifurcates

from the half-wavelength translate of this P1 state, with downflow at x = C/2. As Ma decreases both

patterns contract, eventually forming states consisting of a few dominant pairs of rolls, with the rest of

the domain filled with the conduction state. At this point both branches start to snake, and the localized

states begin to spread laterally by nucleating rolls pairwise on either side. Once the domain is almost

full the solutions resemble holes in an otherwise periodic state, with the hole becoming shallower and

wider as one approaches the termination of the branch. At this point the solutions therefore resemble
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Fig. 5. (a)–(c) Bifurcation diagrams showing the velocity norm for time-independent solutions in three different ranges of the

Marangoni number Ma, together with the stability assignments with respect to perturbations preserving the reflection symmetry

R. In (b) only some of the branches are shown. (d) Labeled saddle-nodes on the branches L1 and L2 of localized states used in

Fig. 6. Solid (dashed) lines indicate stable (unstable) solutions. Parameters are Sc = 50, Pr = 1, SM =−0.005, C= 10kc, where

kc = 3.1 is the critical wavelength for the onset of convection in a pure fluid. Resolution is Ne = 20.22, Nx = Nz = 17.

large scale modulation of the spatially periodic state P2, and both branches terminate together just below

the saddle-node on the P2 branch (Fig. 5a). Once again the upflow state terminates on the P2 state with

upflow at x = C/2, while the downflow state terminates on the half-wavelength translate of this state,

characterized by downflow at x = C/2.
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Fig. 6. Solutions in the neighborhood of the saddle-nodes on the snaking branches L1 (1)–(6) and L2 (7)–(10). (1) Ma=83.6271,

(2) Ma = 83.5935, (3) Ma = 83.3641, (4) Ma = 83.5138, (5) Ma = 83.3466, (6) Ma = 83.4447, (7) Ma = 83.4166, (8)

Ma = 83.5254, (9) Ma = 83.3536 and (10) Ma = 83.4819. The L2 states are distinct from C/2 translates of the L1 states.

The stability properties of the steady localized states with respect to R-symmetric perturbations are

summarized in Fig. 5a. The figure shows that while throughout most of their region of existence the

localized states are unstable, there are intervals of parameter values within the snaking or pinning region in

which these can indeed be stable. The stable segments lie between adjacent saddle-nodes and have positive

slope, much as occurs in systems with variational structure (Burke and Knobloch, 2006). However, lower

down the snaking branches the localized states lose stability with respect to R-symmetric oscillations,

eliminating some of the stable segments. This situation occurs on the branch L1. The associated Hopf

bifurcation appears to be subcritical since no stable R-symmetric oscillations were located near the Hopf

bifurcation, and the system evolves towards P2 as the final state. The corresponding bifurcation on the L2

branch occurs on a branch segment that is already unstable. In other systems with nonvariational structure

the stability properties are similar but spatially localized oscillations are found instead (Yochelis et al.,

2006).
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Fig. 7. Eigenmodes associated with the saddle-nodes of the snaking branches L1 (1)–(6) and L2 (7)–(10). (1) Ma = 83.6271,

(2) Ma = 83.5794, (3) Ma = 83.3652, (4) Ma = 83.5122, (5) Ma = 83.3512, (6) Ma = 83.4414, (7) Ma = 83.4166, (8)

Ma = 83.5246, (9) Ma = 83.3549 and (10) Ma = 83.4673.

Fig. 7 shows the eigenfunctions close to the saddle-node bifurcations labeled in Fig. 5d, corresponding

to the states in Fig. 6. These eigenfunctions are R-symmetric and correspond to modes that are neutrally

stable at the saddle-nodes. The figure reveals that the eigenfunctions are localized near the fronts at either

end of the localized states, and are responsible for the nucleation of new rolls that lead to the growth of

the structure as one proceeds up the snaking curve.

The stability properties summarized in Fig. 5a depend on the imposed symmetry R. If this requirement

is relaxed the stability properties may change. We find that while the L1 states remain stable between

saddle-nodes (5) and (6), the L2 states are now only stable in a very small interval of Marangoni numbers

between saddle-nodes (9) and (10), bounded on the left by a Hopf bifurcation and on the right by a

parity-breaking bifurcation that produces (unstable) asymmetric localized states that drift either to the

left or the right. Neither bifurcation is shown in the figure. The Hopf bifurcation, like the parity-breaking

bifurcation, breaks the R-symmetry, and results in the appearance of standing oscillations in the wings
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Fig. 8. Bifurcation diagram showing the location of secondary bifurcations, labeled a–g, along (a) branch P1, (b) branch P2.

Parameters are Sc = 50, Pr = 1, SM = −0.005 and C = 10kc. Resolution is Ne = 20, Nx = Nz = 17.

of the solution that are exactly out of phase. Solutions of this type are discussed in greater detail in the

following section.

The linear stability results for the P1 and P2 branches with respect to R-symmetric perturbations,

summarized in Figs. 5a–c, indicate the presence of additional secondary steady state bifurcations. Since

both branches consist of very similar states their stability properties are also similar (Fig. 8). Fig. 9 shows

the marginally stable eigenfunctions along P1. The eigenfunction a is responsible for triggering the small

amplitude instability leading to the snaking branches L1, L2; when added to P1 it produces a pattern

with wavenumber n = 11 modulated by a wavenumber 1 perturbation. The succeeding bifurcations also

lead to wavelength modulation. For example, the bifurcations at c and f mark the beginning and end of

the secondary branches labeled B1 in Fig. 5b. Fig. 10 shows a solution on one of these branches near the

location f. Finally, solution g shows that a secondary branch consisting of nine pairs of rolls bifurcates

from P1 just above the saddle-node. We have not followed all of these secondary branches, nor examined

their stability properties; however, the branches B1 are unstable throughout.

In contrast, the corresponding bifurcation at a on P2 (Fig. 11) produces a pair of branches B2 with

admixture of wavenumber 12, which terminate back on P2 at f. These branches are also unstable through-

out. A sample solution on one of these branches near f is also shown in Fig. 10. The bifurcation at g

corresponds to the termination of the snaking branches L1, L2 (cf. Fig. 9a).

3.2.2. Time-dependent states

We now turn to time-dependent states. For the parameter values used the conduction state loses stability

to a Hopf bifurcation at Ma ≈ 80.92 just before the saddle-node bifurcation on the P2 branch at Ma ≈

82.16. This is very close to the result for the infinite layer (C → ∞), for which the critical Marangoni

number MaH ≈ 80.9003, corresponding to the wavelength kH ≈ 3.152 and frequency xH ≈ 0.3675.



Fig. 9. Eigenmodes associated with the different secondary bifurcations along the P1 branch (Fig. 8a). Parameters are Sc = 50,

Pr = 1, SM = −0.005, C = 10kc, with (a) Ma = 114.2958, (b) Ma = 112.1941, (c) Ma = 107.6806, (d) Ma = 98.4211, (e)

Ma = 90.3703, (f) Ma = 84.1869 and (g) Ma = 83.1399. Resolution is Ne = 20.22, Nx = Nz = 17.

B1

B2

Fig. 10. Solutions on one of the B1 and one of the B2 branches near their termination points closest to the saddle-nodes on P1,

P2. Parameters are Ma = 84.4711 (B1), Ma = 83.6335 (B2), Sc = 50, Pr = 1, SM = −0.005 and C = 10kc. Resolution is

Ne = 20.22, Nx = Nz = 17.

In this regime one must find time-dependent states, and indeed one finds that the Hopf bifurcation

is supercritical and evolves into a pattern of stable standing waves (hereafter SW, see Fig. 12). With

increasing Ma there is a hysteretic transition to stable traveling waves (hereafter TW, see Fig. 13a). Both

branches are produced in the same primary Hopf bifurcation, and both have the same spatial wavenumber

n = 10. The TW branch (not shown) goes through a saddle-node bifurcation at Ma ≈ 82.367 at which

it turns towards smaller values of Ma, but not before losing stability to a spatially modulated state at

Ma ∼ 82.20 (Fig. 13b). With further increase in Ma these states lose stability and the system evolves,

after a long and complex transient involving transitions between both left and right TW and SW to

the spatially periodic n = 10 steady state P2. With increasing Ma these transients involve the episodic



Fig. 11. Eigenmodes associated with the different secondary bifurcations along the P2 branch (Fig. 8b). Parameters are (a)

Ma = 114.8119, (b) Ma=110.1928, (c) Ma = 98.6935, (d) Ma = 92.1226, (e) Ma = 85.2025, (f) Ma = 82.8894 and (g)

Ma = 82.2163. Resolution is Ne = 20.22, Nx = Nz = 17.

creation of spatially localized steady states, but the system eventually always reaches the P2 state. Fig. 14

shows two snapshots of a typical transient observed at Ma = 83.15. Observe that the localized structures

form intermittently and occur spontaneously in various parts of the domain. This is in contrast to the

case of binary fluid mixtures where the small Lewis number results in the presence of a slow field (the

concentration) that produces a memory effect that in turn favors creation of localized structures always

in the same location. Since these states are almost stationary they collapse initially to the unstable SW

which are in turn unstable to TW disturbances, an instability inherited from lower values of Ma (Fig. 13a),

before the process repeats. The observed behavior is undoubtedly a consequence of the absence of the TW

branch at these Marangoni numbers, together with the conjectured absence or instability of the associated

modulated TW. As a result there is an interval in Marangoni number in which all solutions evolve to the

stable steady spatially periodic states P2 on the upper branch, but necessarily do so via a complex transient

of the type shown in Fig. 14. The resulting evolution is similar to that found in binary fluid convection

where the unstable SW decay into dispersive chaos, a state that appears to be locally ‘unstable’ to the

formation of localized structures but globally ‘stable’.

As Ma is increased the incipient localized states persist for longer and longer times, until the localized

structures persist apparently indefinitely. Interestingly, the Marangoni number at which this first occurs

(Ma ≈ 83.175) lies substantially below the value corresponding to the presence of the saddle-node

bifurcations on the L1, L2 branches identified in Fig. 5, viz. Ma ≈ 83.35. It appears that this is so because

the first spatially localized states that appear are not in fact time-independent. Fig. 15 shows two distinct

localized states both found at Ma = 83.20. Both states are embedded in a background of small amplitude
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Fig. 12. Space–time plot showing the vertical velocity in the midplane for a stable standing wave solution at Ma = 82.0.

SW that are preferred over TW in the small domains left over by the localized state. The first of these

states consists of two dominant pairs of rolls with downflow in the middle, while the second consists of

three pairs of rolls with upflow in the middle. Both structures are almost time-independent and appear to

be sustained by the small amplitude background SW. In both cases the overall state is periodic in time,

and numerically stable. Note that the SW on the two sides are exactly out of phase, implying that the
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Fig. 13. Space–time plot showing (a) a stable left-traveling wave and (b) a stable modulated traveling wave solution at Ma=82.10

and 82.35, respectively.

whole structure executes small back and forth oscillations. We conjecture that states of this type become

possible once the SW in the domain outside the localized state acquire stability, i.e., only for convectons

that are sufficiently broad. As Ma increases the bistability between states with odd and even numbers of

roll pairs persists but the localized states gradually broaden. For example, at Ma = 83.35 (Fig. 16) the

state in Fig. 15a has added a roll on either side while the state in Fig. 15b remains qualitatively unchanged.
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Fig. 14. Two segments of a space–time plot of the transient at Ma=83.15, showing the episodic generation of spatially localized

structures followed by their collapse into small amplitude standing waves that are in turn unstable to traveling wave perturbations.

Throughout this process the sustaining waves on either side remain out of phase and periodic in time,

while their amplitude (and period) gradually decreases. Despite the evident hysteresis between the upflow

and downflow states that echoes that present for the time-independent spatially localized states (Fig. 5)

the transitions that preserve upflow or downflow in the center appear to be largely nonhysteretic. The

overall picture suggests the presence of snaking for time-periodic spatially localized states resembling

that already described for time-independent states (Fig. 5).
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Fig. 15. Space–time plots of two distinct convectons in a background of standing waves at Ma = 83.20. State (a) consists of

two roll pairs with downflow in the center; while (b) consists of three roll pairs with upflow in the center. Both states are strictly

periodic in time.

Fig. 17a shows a broader localized structure with downflow in the center obtained at Ma = 83.45,

starting from a narrower solution at Ma = 83.40 resembling Fig. 16a. This structure is still sustained

by the surrounding waves, in agreement with the stability results for steady upflow and downflow states

described in the preceding section, although the amplitude of the waves is now quite small. In contrast,
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Fig. 16. Space–time plots of two distinct convectons in a background of standing waves at Ma = 83.35. Both states are strictly

periodic in time.

when Ma = 83.40 we have found a localized structure with upflow in the center but no sustaining SW

(Fig. 17b). This state is therefore an example of one of the stable localized steady states present on the

L1 branch in Fig. 5, and was obtained here from the narrower wave-sustained upflow state at Ma = 83.35

(Fig. 16b) by increasing Ma. On the other hand starting from this solution and increasing Ma to 83.50

led to an instability in which the pattern rapidly nucleates new rolls at either side and evolves towards
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Fig. 17. Space–time plots of convectons at (a) Ma = 83.45 and (b) Ma = 83.40. In (b) no background waves are present.

the P2 state, a result that is consistent with Figs. 5 and 6. Note in particular that in the pinning region

identified in Fig. 5 the convectons are stable despite connecting to a conduction state that is unstable to

growing oscillations. Despite this for some parameter values (e.g., Ma = 83.40) no waves are visible in

direct numerical simulations (Fig. 17b).

It is noteworthy that as Ma increases the amplitude of the background decreases. This unexpected

aspect of the problem is a consequence of the relatively small spatial period C used in the calculations.



As already mentioned the preferred length Lloc of the localized states decreases with decreasing Ma,

and consequently the length Lw ≡ C − Lloc of the domain supporting waves grows. Since the critical

Marangoni number for the onset of an oscillatory instability in a domain of length Lw decreases with

increasing Lw (Bergeon et al., 2003) the background state is in fact more supercritical for lower values of

Ma than for higher values for which the background region is quite narrow and the threshold Marangoni

number therefore high. Of course once Ma is increased past the snaking region steady localized states no

longer exist, and the convectons grow in length by nucleating rolls symmetrically at either end until the

domain is filled, much as in other systems of this type (Batiste et al., 2006; Bergeon and Knobloch, 2007).

In the following section we provide an interpretation of these results.

4. Discussion and conclusions

In this paper we have identified the presence of stable spatially localized states in Marangoni convection

in a binary mixture when the separation ratio is negative. The requirement SM < 0 is responsible for the

subcriticality of the primary steady branches and hence for the presence of ‘bistability’ between the

conduction state and spatially periodic states required for the existence of a pinning or snaking region in

spatially reversible systems on the real line.

The localized states we have found emerge from a parameter regime associated with long transients,

and are typically embedded in a background of SW, in contrast to similar states present in variational

systems. States of this type are present for 83.175 < Ma < 83.50; related states been seen in experiments

by Kolodner on water–ethanol mixtures in a narrow annulus (Kolodner, 1993; Kolodner et al., 1995), as

well as in numerical simulations of He3–He4 mixtures (Batiste and Knobloch, 2005) and water–ethanol

mixtures (Batiste et al., 2006; Alonso et al., 2007). In these systems, like in the present one, stable

convectons are found in a regime in which the background conduction state is unstable to oscillations.

In binary mixtures this fact is now understood as being due to the fact that the conduction state is only

convectively unstable, while remaining stable with respect to absolute instability. Batiste et al. (2006)

and Alonso et al. (2007) show that when the absolute instability threshold is exceeded the region between

adjacent convectons fills with TW, a consequence of the instability of weakly nonlinear SW to TW. Thus in

binary fluid convection above the absolute instability threshold convectons are embedded in a background

of TW, and this state is present for larger forcing than the TW-free state. In contrast, in the present system

the situation appears to be reversed: when the convectons first appear they are embedded in a background

of SW, and these SW disappear with increasing Marangoni number. However, in the present system the

explanation for the observed behavior is quite different. The convectons are embedded in a background

of SW since these waves are stable with respect to TW perturbations in the domains considered. The

distinction between convective and absolute instability does not enter the discussion since no propagating

disturbances are involved. Instead the SW background gradually disappears for the simple reason that the

localized states broaden and the remainder of the domain becomes subcritical for oscillatory instability.

Whether these conclusions carry over to larger domains requires computations in much larger domains,

and these do not currently permit stability computations that have proved so useful in the present work.

Despite their complexity the phenomena described in the preceding section have a simple explanation.

This explanation is based on the observation that with increasing spatial period C the secondary pitchfork

bifurcation on the P1 branch moves to smaller and smaller amplitude; at the same time the primary

bifurcations corresponding to the branches P1 and P2 approach a common bifurcation value. Thus in the
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of the primary steady state instability on the real line.

limit C → ∞ all these bifurcations coincide with the point Ma ≡ Mac that corresponds to the minimum of

the neutral stability curve for stationary perturbations, and the spatially localized states bifurcate directly

from the conduction state. This minimum in turn defines the (real) wavenumber qc selected by linear theory

in an unbounded domain, and hence the wavelength 2p/qc of the spatially periodic state that results from

the stationary instability. On the other hand this wavenumber need not be the preferred wavenumber in the

nonlinear regime. The behavior at the upper end of the snaking branches is more complex, and depends,

in general, on the choice of the spatial period C (Bergeon et al., 2008): the branches can either terminate

together on the same branch of periodic states as in Fig. 5 and do so below or above the saddle-node, or

separately on different branches periodic states, or indeed not terminate at all.

To show that in an infinite domain the time-independent spatially localized states bifurcate directly

from the conduction state we solve the linear stability problem on the real line, i.e., we look for solutions

proportional to exp qx, and solve for the spatial eigenvalues q. We compute only the four eigenvalues

whose real part passes through zero as Ma passes through Mac ≈ 114.806, the threshold for the onset of

the primary steady state instability on the real line. Fig. 18 shows that near Ma > Mac the four important

eigenvalues all lie on the imaginary axis while for Ma < Mac these eigenvalues form a quartet in the



complex q plane. At the same time the imaginary part (the spatial wavenumber) varies linearly with Ma.

This eigenvalue structure is a consequence of the spatial reversibility R of Eqs. (1)–(5). At Ma = Mac

there is a pair of purely imaginary eigenvalues ±iqc ≈ ±2.18547i of double multiplicity, corresponding

to wavelength kc ≈ 2.8749. Evidently exponentially localized states, i.e., states that depart from the

conduction state as x increases from x = −∞ and return to it as x → ∞ can only be present for

Ma < Mac, where the conduction state is hyperbolic. Under these conditions it is possible to demonstrate

the existence of such states by examining the neighborhood of the 1:1 reversible Hopf bifurcation that

takes place at Ma = Mac (Champneys, 1998; Burke and Knobloch, 2006). The theory shows that both

periodic states and two branches of distinct localized states bifurcate generically from the conduction

state at Ma = Mac, and that both do so in the same direction, in the present case subcritically. Near a

particular codimension two point this approach can capture the snaking region as well (Kozyreff and

Chapman, 2006).

As Ma decreases the localized states produced at Mac contract to an O(1) width and grow to an O(1)

amplitude, before beginning to snake. In the limit of infinitely large C the localized states high up the

‘snake’ resemble a bound state of two fronts, the left one connecting the conduction state to the spatially

periodic state and vice versa on the right. A state of this type corresponds to the simultaneous formation

of a pair of heteroclinic connections, between the conduction state and the periodic state, and back to

the conduction state. These connections are related by the symmetry R, and correspond to the bounding

fronts. Such pairs of heteroclinic connections are present throughout the snaking region. In variational

systems the presence of the resulting time-independent structures can be attributed to the pinning of the

bounding fronts to the periodic structure within. It is this pinning that is responsible for the multiplicity

of time-independent spatially localized states within the snaking region, as well as for its finite extent in

the Marangoni number Ma.

In variational systems the snaking or pinning region is organized around the so-called Maxwell point

at which the spatially periodic state has the same energy as the conduction state. As a result the pinning

region can be thought of as the broadening of the Maxwell point due to the pinning of the fronts at either

end of the localized states to the periodic structure within. Moreover each localized state is characterized

by different energy, although all stable localized states correspond to local energy minima. In the presence

of noise the system can ‘tunnel’ from higher ‘metastable’ minima to minima with lower energy, i.e., from

wider localized states to narrow localized states. The tunneling rate depends of course on the noise level as

well as on the energy difference between adjacent states. As the Marangoni number is decreased shorter,

more compact convectons, become energetically preferred, and the incident waves push the system in

this direction (Sakaguchi and Brand, 1996; Aranson et al., 2000; Clerc et al., 2005). Thus the wave

background is responsible for selecting, at each value of the Marangoni number, a (stable) localized

state with upflow in the center and a (stable) localized state with downflow in the center, each with

a preferred length. Related behavior has been noted in experiments on buoyancy-driven convection in

binary fluids (Kolodner, 1993); indeed, we expect our results to describe qualitatively the corresponding

Marangoni–Bénard problem provided buoyancy effects remain weak. It is of interest to note that in

stochastic variational systems the location of the resulting ‘phase transition’ is also determined by a

Maxwell construction (Sastry and Hijab, 1981).

It is perhaps unexpected that the behavior of the present system is so similar to that of binary fluid

convection and natural doubly diffusive convection. Evidently this is so because all three systems are

spatially reversible in the appropriate sense, all three exhibit subcritical bifurcations to spatially periodic

states thereby generating bistability between the conduction state and a spatially periodic state. All the



systems are also of sufficiently high order in the extended variable that they exhibit a reversible Hopf

bifurcation with 1:1 resonance (in space). An example is described in Fig. 18. Under these conditions

spatially localized states bifurcate from the primary bifurcation point and do so subcritically as well. The

snaking region is the result of a transverse intersection between the unstable manifold of the conduction

state (in space) and the stable manifold (in space) of the periodic state viewed as a periodic orbit in phase

space. Once this structure forms the rest of the behavior follows. Moreover, in cases where the primary

steady state bifurcation is preceded by a Hopf bifurcation, the snaking region is preceded by relaxation

oscillations, and destroyed by the unpinning of the bound fronts as the forcing increases. In some cases

the latter transition may be complicated by the presence of waves between adjacent convectons, but the

presence of such waves is largely benign, and can be understood on the basis of simple linear notions.

Indeed, we may think of the waves as a superposition of left- and right-TW of the form

Re{A(x) eikx+ixt + B(x) e−ikx+ixt }, (7)

where A(x), B(x) are complex amplitudes. The numerical results shown in Figs. 15 and 16 indicate

that away from the convecton |A(x)|, |B(x)| become equal, producing standing oscillations, while near

the left (right) boundary |B(x)| > |A(x)| (|B(x)| < |A(x)|) indicating that right-TW dominate near the

left boundary, while left-TW dominate near the right boundary. Thus the waves always impinge on the

convecton thereby helping to sustain the state even outside the pinning region.
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