
HAL Id: hal-01785462
https://hal.science/hal-01785462

Submitted on 4 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensitivity to synchronism in some boolean automata
networks

Marco Montalva Medel, Kévin Perrot, Pedro De Oliveira, Eurico Ruivo

To cite this version:
Marco Montalva Medel, Kévin Perrot, Pedro De Oliveira, Eurico Ruivo. Sensitivity to synchronism in
some boolean automata networks. AUTOMATA 2017 23rd annual international workshop on cellular
automata and discrete complex systems , Jun 2017, Milan, Italy. �hal-01785462�

https://hal.science/hal-01785462
https://hal.archives-ouvertes.fr


Sensitivity to synchronism in some Boolean
automata networks

M. Montalva-Medel1, K. Perrot2, P.P.B. de Oliveira3, and E.P. Ruivo3

1 FIC, Universidad Adolfo Ibáñez, Santiago, Chile
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Abstract. We study the sensitivity of some Boolean automata networks
to changes in their dynamics against deterministic update perturbations.
Due to their large number of different dynamics, they can be extremely
sensitive to update schedule perturbations, which renders them not ro-
bust in this sense, a feature often undesirable in many applications. Here,
we study the maximum number of different dynamics in elementary cel-
lular automata, with fixed, cyclic lattices. First, we formally prove the
estimate 3n + 2−2n+1 for such a number, empirically proposed in a pre-
vious work, as well as its sharpness, by proving that some rules actually
reach it. Finally, we discuss possible key follow-ups to the present study.

1 Introduction

Given a Boolean automata network (BAN) with n nodes, the determination of
all its different dynamics out of deterministic update schedules can be a com-
putationally intensive process, since both the number of deterministic update
schedules and the number of configurations grow exponentially as n increases.
Given that these networks may display a large number of different dynamics,
they can be extremely sensitive to update schedule perturbations, which is a
form of lack of robustness, often undesirable in many applications.

Nevertheless, in [3] an upper bound was established for the number |D(G)|
of different dynamics (details in Section 2), that depends only on the interaction
digraph G, and involves the concept of update digraph (introduced in [4]) and the
set U(G) that groups them. Put it simply, an update digraph defines for each arc
whether the tail is updated before or after the head of the arc. This information is
sufficient to completely define the dynamics of a BAN [4]. In this context, it is an
open problem to determine a mathematical expression for |D(G)|, although some
exact formulas do exist for |U(G)| when the interaction digraph has particular
topologies [3, 2, 1]. In [5], computational experiments were presented that allowed
to observe two important facts for elementary cellular automata (ECAs) with
fixed cyclic lattice size n; the number |U(G)| evolves as 3n + 2− 2n+1 and about
57% of the 256 ECA rules showed that |D(G)| = |U(G)| = 3n + 2− 2n+1. This
paper is the starting point to demonstrate the two previous facts; for the first
one, we established the (main) Theorem 3 that formally prove it and, for the
second fact, still in-progress, we give its current status.



2 Definitions, notations and preliminary results

Definition 1. A Boolean automata network (BAN) N of size n is defined by a
set of n local transition functions {fi : {0, 1}n → {0, 1}}0≤i≤n−1, one for each
automaton of the network. A configuration x is an element of {0, 1}n which gives
the Boolean state of each automaton.

Let x = (x0, . . . , xn−1) ∈ {0, 1}n be a Boolean vector of size n, we denote xi

the vector such that xi
j = xj for all j 6= i, and xi

i = 1− xi.

Definition 2. The interaction digraph of a BAN N is the digraph G = (V,A),
with V = {0, . . . , n − 1}, and such that (i, j) ∈ A if and only if there exists x
such that fj(x

i) 6= fj(x) (i.e., i has an influence on j).

Definition 3. An update schedule s is a function s : {0, . . . , n−1} → {0, . . . , n−
1} telling the order in which the automata are updated. To begin, every automaton
i such that s(i) = 0 has its Boolean state updated according to x, yielding y, then
every automaton i such that s(i) = 1 is updated according to y, etc. We denote
F s(x) the image of configuration x under update schedule s.

Definition 4. Given an interaction digraph G = (V,A) and an update schedule
s, we define the label function labs : A→ {	,⊕} as follows:

∀(i, j) ∈ A, labs(i, j) =

{
⊕ if s(i) ≥ s(j)
	 if s(i) < s(j).

Definition 5. The update digraph of G with update schedule s is defined as
the labeled digraph (G, labs). We denote by U(G) the set of update digraphs
associated to G.

The above concept was introduced in [4] where the following result was proved
in order to group equal dynamics:

Theorem 1. Let (N , s1) and (N , s2) be two BANs, with interaction graph G,
that differ only in the update schedule. If (G, labs1) = (G, labs2), then (N , s1)
and (N , s1) have the same dynamics.

Definition 6. Given an interaction digraph G of a BAN N , we define D(G) as
the set of dynamics (transition graphs) of N obtained with every (deterministic)
update schedule.

As a direct consequence of Theorem 1, we have the following result that
establishes an upper bound for the number of different (deterministic) dynamics
of a BAN N .

Corollary 1. |D(G)| ≤ |U(G)|
Definition 7. An Elementary Cellular Automaton (ECA) is a BAN with inter-
action digraph in the form of a circle digraph, with all its local functions being
the same f : {0, 1}3 → {0, 1}, (xi−1, xi, xi+1)→ f(xi−1, xi, xi+1). Function f is
sometimes referred to as Wolfram rule r (or simply, rule r), with r ∈ {0, ..., 255},
since there are 28 = 256 possible ECAs.



3 Bounding |U(G)| for ECAs

The interaction digraph G = (V,A) of an ECA of size n is composed of n
vertices V = {0, . . . , n− 1} and 2n arcs A = {(i, i + 1 mod n) | i ∈ V } ∪ {(i + 1
mod n, i) | i ∈ V }, as depicted in Figure 1.

Fig. 1. Interaction digraph of an ECA of size 8. Note that some ECA may have only
a subset of the depicted arcs (for example rule 0 has no arc, and rule 1 has all these
arcs).

Theorem 2 ([3]). (Glabs) is an update digraph if and only if the same graph
where the orientation of all negative arcs is reversed does not contain any nega-
tive cycle.

Theorem 3. For any ECA, it holds that |U(G)| ≤ 3n +2−2n+1, and the bound
is tight.

Proof. Let us consider the valid labelings of the interaction digraph of an ECA.

– According to Theorem 2, the pattern

	

	

is forbidden and, as a consequence, there are three possibilities for each cycle
of size two: ⊕⊕, ⊕	 and 	⊕ (but not 		); hence 3n possibilities of labels for
the whole interaction digraph so far (without considering the combinations
creating forbidden patterns).

– Forbidden cycles of Theorem 2 are of length two or n for ECAs, because if
the cycle is 	⊕ or ⊕	, then one of the two following subgraphs is created
when the orientation of minus arcs are reversed (notice that if no cycle ex-
ists, then the update digraph has all ⊕⊕ and is valid):



⊕

	

	

⊕

This prevents any negative cycle that does not make a whole tour around
the graph (that is, a negative cycle around the n vertices).
As a consequence, the two following lemmas hold.

Lemma 1. If the pattern P below appears in the update digraph, then there
are no forbidden patterns for Theorem 2.

P =
⊕		 ⊕

.

Lemma 2. If the pattern P does not appear in the update digraph and at
least one ⊕	 or one 	⊕ is present, then there exists a forbidden pattern for
Theorem 2.

– Thanks to the two above lemmas we can count, among the 3n possibilities
of labels, which ones create forbidden patterns:
1. Choose an orientation for the 	 (either clockwise or counter-clockwise),

because they all have to point in the same direction.
2. Then choose which of the n cycles of size two are 	⊕ (or ⊕	 for the other

orientation), and which are ⊕⊕. Here, at least one 	⊕ (respectively ⊕	)
is required; hence the choice all ⊕⊕ is discarded.

– This leads to 2(2n − 1) possibilities of creating forbidden patterns.
– Finaly, we get 3n − 2(2n − 1) = 3n + 2− 2n+1 valid update digraphs.

4 ECAs for which |D(G)| = |U(G)|

The general idea is to prove that, given two update schedules s1 6= s2, we can
construct a configuration x ∈ {0, 1}n (at least for n > 4) such that F s1(x) 6=
F s2(x), which implies that |D(G)| = |U(G)|.

4.1 ECA rule 1

Let s1 and s2 be two update schedules such that labs1(i, i+1) = ⊕ and labs2(i, i+
1) = 	 for some i.

The goal is to find a configuration x ∈ {0, 1}n such that



– in s1 we have xi = 0∧xi+1 = 0∧xi+2 = 0 at “time” s1(i+ 1), which implies
xi+1 7→ 1 ;

– in s2 we have xi = 1 at “time” s2(i + 1), which implies xi+1 7→ 0,

so that F s1(x) 6= F s2(x).

– Part ≥ i + 1:
• Constraints given by s1:
∗ xi+1 = 0

∗ xi+2 =

{
0 if labs1(i + 2, i + 1) = ⊕
1 if labs1(i + 2, i + 1) = 	

=⇒ xi+1 = 0 ∧ xi+2 = 0 at “time” s1(i + 1).
– Part ≤ i:
• Constraints given by s1:
∗ xi = 0 =⇒ xi = 0 at “time” s1(i + 1).

• Constraints given by s2:
∗ xi = 0 (to comply with s1)

∗ xi−1 =

{
0 if labs2(i− 1, i) = ⊕
1 if labs2(i− 1, i) = 	

=⇒ xi = 1 at “time” s2(i + 1).

4.2 ECA rule 2

Let s1 and s2 be two update schedules such that labs1(i, i+1) = ⊕ and labs2(i, i+
1) = 	 for some i.

The goal is to find a configuration x ∈ {0, 1}n such that

– in s1 we have xi = 1 at “time” s1(i + 1), which implies xi+1 7→ 0 ;
– in s2 we have xi = 0∧xi+1 = 0∧xi+2 = 1 at “time” s2(i+ 1), which implies

xi+1 7→ 1,

so that F s1(x) 6= F s2(x).

– Part ≥ i + 1:
• Constraints given by s2:
∗ xi+1 = 0

∗ xi+2 =

1 if labs2(i + 2, i + 1) = ⊕
0 if labs2(i + 2, i + 1) = 	, and xi+3 =

{
1 if labs2(i + 3, i + 2) = ⊕
0 if labs2(i + 3, i + 2) = 	†

† etc, having all 	 is impossible so it eventually stops and we get a
configuration.

=⇒ xi+1 = 0 ∧ xi+2 = 1 at “time” s2(i + 1).
– Part ≤ i:
• Constraints given by s1:
∗ xi = 1 =⇒ xi = 1 at “time” s1(i + 1).

• Constraints given by s2:
∗ xi = 1 (to comply with s1) =⇒ xi = 0 at “time” s2(i + 1).



so that F s1(x) 6= F s2(x).

– Part ≥ i + 1:
• Constraints given by s2:
∗ xi+1 = 0

∗ xi+2 =

1 if labs2(i + 2, i + 1) = ⊕
0 if labs2(i + 2, i + 1) = 	, and xi+3 =

{
1 if labs2(i + 3, i + 2) = ⊕
0 if labs2(i + 3, i + 2) = 	†

† etc, having all 	 is impossible so it eventually stops and we get a
configuration.

=⇒ xi+1 = 0 ∧ xi+2 = 1 at “time” s2(i + 1).
– Part ≤ i:
• Constraints given by s1:
∗ xi = 1 =⇒ xi = 1 at “time” s1(i + 1).

• Constraints given by s2:
∗ xi = 1 (to comply with s1) =⇒ xi = 0 at “time” s2(i + 1).

Let s1 and s2 be two update schedules such that labs1(i + 1, i) = ⊕ and
labs2(i + 1, i) = 	 for some i.

The goal is to find a configuration x ∈ {0, 1}n such that

– in s1 we have xi−1 = 0 ∧ xi = 0 ∧ xi+1 = 1 at “time” s1(i), which implies
xi 7→ 1,

– in s2 we have xi+1 = 0 at “time” s2(i), which implies xi 7→ 0 ;

so that F s1(x) 6= F s2(x).

– Part ≤ i:
• Constraints given by s1:
∗ xi = 0
∗ xi−1 = 0

=⇒ xi−1 = 0 ∧ xi = 0 at “time” s1(i).
– Part ≥ i + 1:
• Constraints given by s1:
∗ xi+1 = 1 =⇒ xi+1 = 1 at “time” s1(i).

• Constraints given by s2:
∗ xi+1 = 1 (to comply with s1) =⇒ xi+1 = 0 at “time” s2(i).

4.3 ECA rule 110

Let s1 and s2 be two update schedules such that labs1(i, i+1) = ⊕ and labs2(i, i+
1) = 	 for some i.

The goal is to find a configuration x ∈ {0, 1}n such that

– in s1 we have xi = 1∧xi+1 = 1∧xi+2 = 1 at “time” s1(i+ 1), which implies
xi+1 7→ 0,

– in s2 we have xi = 0∧xi+1 = 1∧xi+2 = 1 at “time” s2(i+ 1), which implies
xi+1 7→ 1 ;



so that F s1(x) 6= F s2(x).

– Part ≥ i + 1:

• Constraints given by s1 and s2:

∗ xi+1 = 1
∗ xi+2 = 1 ∧ xi+3 = 0 ∧ xi+4 = 0 ∧ xi+5 = 0 ∧ · · · ∧ xi+j = 0

while labs1(i + j + 1, i + j) = 	 or labs2(i + j + 1, i + j) = 	 (and
xi+j+1 = 0 for max{min{j | labs(i + j + 1, i + j) = ⊕} | s = s1, s2}).

=⇒ xi+2 = 1 at “time” s1(i + 1) and s2(i + 1).

– Part ≤ i:

• Constraints given by s1:

∗ xi = 1

• Constraints given by s2:

∗ xi = 1 (to comply with s1)
∗ we need xi−1 = 1 at “time” s2(i)

xi−1 =

{
1 if labs2(i− 1, i) = ⊕
0 if labs2(i− 1, i) = 	

Let s1 and s2 be two update schedules such that labs1(i + 1, i) = ⊕ and
labs2(i + 1, i) = 	 for some i.

5 Discussion and perspectives

We have formally proved in the (main) Theorem 3 the estimation of |U(G)| for
ECAs proposed in [5] and also proved that it is tight, by showing some ECA
rules that reach such a bound. Is quite obvious that ineffective links imply that
|D(G)| < 3n + 2 − 2n+1 because the ‘real’ bound for |U(G)| is strictly smaller;
but what causes such a decrease? The answer is not trivial and intuition might
suggest that the presence of fixed points somehow ‘kills’ the sensitivity to update
schedule, because they remain the same, whatever the update schedule; however,
this is not the case. In fact, ECA rule 73, for n = 4k, is such that it

1. has at least one fixed point, namely, (0011)k; and
2. reaches the bound |D(G)| = |U(G)| (at least for n ≤ 4).

On a different perspective, we know that the influence of the link effectiveness
is a necessary condition; but, is it sufficient? Again, the answer is negative, since
ECA rule 8, for n ≤ 4,

1. has all effective links (hence |U(G)| = 3n + 2− 2n+1); and
2. does not reach the bound, i.e., |D(G)| < |U(G)|.

All above gives insights that drives us to continue with the study of the
number of different dynamics in ECAs; in fact, we are presently working on the
proofs of the remaining ECA rules not referred to in the present paper.
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