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Abstract. Cayley graphs have a number of useful features: the ability
to graphically represent finitely generated group elements and their re-
lations; to name all vertices relative to a point; and the fact that they
have a well-defined notion of translation. We propose a notion of graph
associated to a language, which conserves or generalizes these features.
Whereas Cayley graphs are very regular; associated graphs are arbitrary,
although of a bounded degree. Moreover, it is well-known that cellular
automata can be characterized as the set of translation-invariant con-
tinuous functions for a distance on the set of configurations that makes
it a compact metric space; this point of view makes it easy to extend
their definition from grids to Cayley graphs. Similarly, we extend their
definition to these arbitrary, bounded degree, time-varying graphs. The
obtained notion of Cellular Automata over generalized Cayley graphs is
stable under composition and under inversion.
Keywords. Causal Graph Dynamics, Curtis-Hedlund-Lyndon, Dynam-
ical networks, Boolean networks, Generative networks automata, Graph
Automata, Graph rewriting automata, Parallel graph transformations,
Amalgamated graph transformations, Time-varying graphs, Regge calcu-
lus, Local, No-signalling, Reversibility.

Introduction

Cayley graphs. Cayley graphs are graphs associated to a finitely generated group,
more precisely to a finite set of generators and their inverses. For instance let this
set be π = {a, a−1, b, b−1, . . .}. Then the vertices of the graph can be designated
by words on π, e.g. a, a2, a−1, a.b, . . ., but more precisely they are the equivalence
classes of these words with respect to the group equivalence ≡, e.g. b−1.b.a and
a designate the same vertex. The edges are those pairs (u, u.a). Cayley graphs
have been used intensively because they have a number of useful features:

• Once an origin has been chosen, all other vertices can be named relatively
to the origin.
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• The resulting graph represents the group, i.e. the set of terms and their
equality.

• There is a well-defined notion of translation of the graph, which corresponds
to changing the point representing the origin, or equivalently applying an
element of the group to all vertices.

• The set of configurations over a given Cayley graph (i.e. labellings of the
graph) can be given the structure of a compact metric space, which has
been used in order to define Cellular Automata over them.

In this paper, we propose a notion of graph associated to an adjacency language
L and its equivalence relation ≡L, which conserves or generalizes all of these fea-
tures. Whereas Cayley graphs are very regular, associated graphs are arbitrary,
albeit connected and of a bounded degree.
Cellular Automata. Cellular Automata (CA) consist of a grid of identical square
cells, each of which may take one of a finite number of possible states. The
entire array evolves in discrete time steps. The time evolution is required to
be translation-invariant (it commutes with translations of the grid) and causal
(information cannot be transmitted faster than a fixed number of cells per time
step). Whilst Cellular Automata are usually defined as exactly the functions hav-
ing those physics-like symmetries, it turns out that they can also be character-
ized in purely mathematical terms as the set of translation-invariant continuous
functions [17] for a certain compact metric. As a consequence CA definitions are
quite naturally extended from grids to Cayley graphs, where most of the theory
carries through [25,6]. Moving on, there have been several approaches to gener-
alize Cellular Automata not just to Cayley graphs, but to arbitrary connected
graphs of bounded degree:

• With a fixed topology, in order to describe certain distributed algorithms
[24,7,16], or to generalize the Garden-of-Eden theorem [15,12].

• Through the simulation environments of [13,32,21] which offer the possibility
of applying a local rewriting rule simultaneously in different non-conflicting
places.

• Through concrete instances advocating the concept of CA extended to time-
varying graphs as in [31,20,19], some of which are advanced algorithmic
constructions [30,29].

• Through Amalgamated Graph Transformations [5,22] and Parallel Graph
Transformations [9,27,28], which work out rigorous ways to apply a local
rewriting rule synchronously throughout a graph.

The approach of this paper is different in the sense that it first generalizes
Cayley graphs, and then applies the mathematical characterization of Cellular
Automata as the set of translation-invariant continuous functions in order to
generalize CA. Compared with the above mentioned CA papers, the contribu-
tion is to extend the fundamental structure theorems about Cellular Automata
to arbitrary, connected, bounded degree, time-varying graphs. Compared with
the above mentioned Graph Rewriting papers, the contribution is to deduce as-
pects of Amalgamated/Parallel Graph Transformations from the axiomatic and
topological properties of the global function.



Causal Graph Dynamics. The work [1] by Dowek and one of the authors already
achieves an extension of Cellular Automata to arbitrary, bounded degree, time-
varying graphs, also through a notion of continuity, with the same motivations.
However, graphs in [1] lack a compact metric over graphs, which is left as an
open question. As a consequence all the necessary facts about the topology of
Cayley graphs get reproven. It also leaves open whether causal graph dynamics
are computable. These issues vanish in the new formalism; which suggests that
the new formalism itself is the main contribution of this paper.

This paper. Section 1 provides a generalization of Cayley graphs. This takes
the form of an isomorphism between graphs and languages endowed with an
equivalence. Section 2 provides basic operations upon generalized Cayley graphs.
Section 3 provides facts about the topology of generalized Cayley graphs. It fol-
lows that continuous functions are uniformly continuous. Section 4 establishes
a notion of Cellular Automata over generalized Cayley graphs. A theorem of
equivalence between a mathematical and a constructive approach is given. It
also shows that recognizing valid local rules is a recursive task, as well as that
of computing their effect over finite graphs; this grants our model the status of
a model of computation. Section 5 provides important corollaries: the stability
of the notion of Cellular Automata over over generalized Cayley graphs under
composability and taking the inverse. It quickly mentions the status of the Gar-
den of Eden theorem in this setting, as well as interesting subclasses of graph
dynamics.

1 Generalized Cayley graphs

Basically, generalized Cayley graphs are your usual, connected, undirected, bounded-
degree graphs, but with five added twists:

• Edges are between ports of vertices, rather than vertices themselves, so that
each vertex can distinguish its different neighbours, via the port that con-
nects to it.

• There is a privileged vertex playing the role of an origin, so that any vertex
can be referred to relative to the origin, via a sequence of ports that lead to
it.

• The graphs are considered modulo isomorphism, so that only the relative
position of the vertices can matter.

• The vertices and edges are given labels taken in finite sets, so that they may
carry an internal state just like the cells of a Cellular Automata.

• The labelling functions are partial, so that we may express our partial knowl-
edge about part of a graph. For instance is is common that a local function
may yield a vertex, its internal state, its neighbours, and yet have no opinion
about the internal state of those neighbours.

The present section is a thorough formalization and study of these Generalized
Cayley graphs. A fast-track reading path is given by: the following notations,



the constructive view of Definitions 1-5, the algebraic view of Definitions 9-10,
their equivalence as discussed in Subsection 1.3.

Notations. Let π be a finite set, Π = π2 be its square, and V = P(Π∗) the set
of languages over the alphabet Π. The operator ‘.’ represents the concatenation
of words and ε the empty word, as usual.
The vertices of the graphs (see Figure 1(a)) we consider in this paper are uniquely
identified by a name u in V . Vertices may also be labelled with a state σ(u) in
Σ a finite set. Each vertex has ports in the finite set π. A vertex and its port are
written u :a.
An edge is an unordered pair {u :a, v : b}. Such an edge connects vertices u and
v; we shall consider connected graphs only. The port of a vertex can only appear
in one edge, so that the degree of the graphs is always bounded by |π|. Edges
may also be labelled with a state δ({u :a, v :b}) in ∆ a finite set.

1.1 Graphs as paths

Definitions 1 to 4 are as in [1]. The first two are reminiscent of the many pa-
pers seeking to generalize Cellular Automata to arbitrary, bounded degree, fixed
graphs [24,7,16,15,12,31,20,30,29,5,22,9,27,28]. They are illustrated by Figure
1(a).

Definition 1 (Graph). A graph G is given by

• An at most countable subset V (G) of V , whose elements are called vertices.
• A finite set π, whose elements are called ports.
• A set E(G) of non-intersecting two element subsets of V (G) :π, whose ele-

ments are called edges. In other an edge e is of the form {u : a, v : b}, and
∀e, e′ ∈ E(G), e ∩ e′ 6= ∅ ⇒ e = e′.

The graph is assumed to be connected, i.e. for any two u, v ∈ V (G), there exists
v1, . . . , vn−1 ∈ V (G) such that for all i ∈ {0 . . . n − 1}, one has {vi : ai, vi+1 :
bi} ∈ E(G) with v0 = u and vn = v.

Definition 2 (Labelled graph). A labelled graph is a triple (G, σ, δ), also
denoted simply G when it is unambiguous, where G is a graph, and σ and δ
respectively label the vertices and the edges of G:

• σ is a partial function from V (G) to Σ;
• δ is a partial function from E(G) to ∆.

The set of all graphs with ports π is written Gπ. The set of labelled graphs with
states Σ,∆ and ports π is written GΣ,∆,π. To ease notations, we sometimes write
v ∈ G for v ∈ V (G).

We now want to single out a vertex. The following definition is illustrated by
Figure 1(b).

Definition 3 (Pointed graph). A pointed (labelled) graph is a pair (G, p)
with p ∈ G. The set of pointed graphs with ports π is written Pπ. The set of
pointed labelled graphs with states Σ,∆ and ports π is written PΣ,∆,π.



Definition 4 (Isomorphism). An isomorphism R is a function from Gπ to Gπ
which is specified by a bijection R(.) from V to V . The image of a graph G under
the isomorphism R is a graph RG whose set of vertices is R(V (G)), and whose
set of edges is {{R(u) : a,R(v) : b} | {u : a, v : b} ∈ E(G)}. Similarly, the image
of a pointed graph P = (G, p) is the pointed graph RP = (RG,R(p)). When P
and Q are isomorphic we write P ≈ Q, defining an equivalence relation on the
set of pointed graphs. The definition extends to pointed labelled graphs.

In the particular graphs we are considering, the vertices can be uniquely distin-
guished by the paths that lead to them starting from the pointer vertex. Hence,
we might just as well forget about vertex names. The following definition is
illustrated by Figure 1(c).

Definition 5 (Pointed graph modulo). Let P be a pointed (labelled) graph
(G, p). The pointed (labelled) graph modulo P̃ is the equivalence class of P with
respect to the equivalence relation ≈. The set of pointed graphs modulo with
ports π is written P̃π. The set of pointed labelled graphs modulo with states
Σ,∆ and ports π is written P̃Σ,∆,π.

These pointed graph modulo will constitute the set of configurations (a.k.a. gen-
eralized Cayley graphs) of the generalized Cellular Automata that we will con-
sider in this paper. For now, we want to reach a more algebraic description of
them. Indeed, given such a pointed graph modulo, its set of paths forms a lan-
guage, endowed with a notion of equivalence whenever two paths designate the
same vertex. The language, together with its equivalence, is referred to as a path
structure.

0 1

2

3

:a :b
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:a
:b
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:b

:a

Fig. 1. The different types of graphs. (a) A graph. (b) A pointed graph. (c) A pointed
graph modulo. We will see in the next sections that (c) can also be described as a
language {ε, ab, ab.ba, . . .} and an equivalence relation with equivalence classes corre-
sponding to vertices: ε̃ = {ε, ab.ba, . . .} and ãb = {ab, ab.ba.ab, . . .}

Definition 6 (Path). Given a pointed graph modulo P̃ , we say that α is a path
of P̃ if and only if there is a sequence α of ports aibi such that, starting from
the pointer, it is possible to travel in the graph according to this sequence. More
formally, α is a path if and only if there exists (G, p) ∈ P̃ and v1, . . . , vn ∈ V (G)



such that for all i ∈ {0 . . . n− 1}, one has {vi :ai, vi+1 :bi} ∈ E(G), with v0 = p
and αi = aibi. Notice that the existence of a path does not depend on the choice
of P ∈ P̃ . The language of paths of P̃ is written L(P̃ ), and is set of all the paths
of P̃ .

Definition 7 (Equivalence of paths). Given a pointed graph modulo P̃ , we
define the equivalence of paths relation ≡P̃ on L(P̃ ) such that for all paths

u, u′ ∈ L(P̃ ), u ≡P̃ u′ if and only if, starting from the pointer, u and u′ lead

to the same vertex of P̃ . More formally, u ≡P̃ u′ if and only if there exists

(G, p) ∈ P̃ and v1, . . . , v|u|, v
′
1, . . . , v

′
|u′| ∈ V (G) such that for all i ∈ {0 . . . |u|−1},

i′ ∈ {0 . . . |u′|− 1}, one has {vi :ai, vi+1 :bi} ∈ E(G), {v′i′ :a′i′ , v′i′+1 :b′i′} ∈ E(G),
with v0 = p, v′0 = p, ui = aibi, u

′
i′ = a′i′b

′
i′ and v|u| = v|u′|.

Definition 8 (Path structure). Given a pointed graph modulo P̃ , we define
the structure of paths X(P̃ ) as the structure 〈L(P̃ ),≡P̃ 〉. The set of all path

structures is the set {X(P̃ ) | P̃ ∈ P̃π}. It is written X(P̃π).

Given two pointed graphs modulo, any difference between them shows up in
their path structure.

Proposition 1 (Pointed graphs modulo and path structures isomor-
phism). The function P̃ 7→ X(P̃ ) is a bijection between P̃π and X(P̃π).

Proof. [Surjectivity]. By definition of X(P̃π).
[Injectivity]. Let us suppose that X(P̃ ) = X(Q̃). Then ≡P̃ and ≡Q̃ must have

the same number of equivalence classes and |V (P̃ )| = |V (Q̃)|. Let us choose two
graphs P ∈ P̃ and Q ∈ Q̃. For any vertex u of P , there is a unique equivalence
class c of ≡P̃ such that the paths of c lead to u in P . Since ≡P̃ and ≡Q̃ are
supposed equal, c is also an equivalence class of ≡Q̃. Conversely given c an
equivalence class of ≡Q̃, there is a unique v of Q such that the paths of c lead to
v in Q. Then, the paths which point to u in P are the same as those which point
to v in Q. We can now define a function R which maps each vertex u in P to
its corresponding vertex v in Q. Because this is a bijection, we can then extend
R to be a bijection over the entire set V . Let us consider two vertices u and u′

in P linked by and edge {u : i, u′ : j} and their corresponding vertices v and v′

in Q. As P ∈ P̃ , we have that the equivalence classes ũ.ij = ũ′. As the classes
representing v and v′ are equal to ũ.ij and ũ′. Thus R is a graph isomorphism,
and P and Q are isomorphic. This is true for every P ∈ P̃ and Q ∈ Q̃ thus
P̃ = Q̃. ut

1.2 Paths as languages

Inversely, we could have started by defining a certain class of languages endowed
with an equivalence, namely adjacency structures, and then asked whether the
path structures of graph modulo fall into this class. This is the purpose of the
following definitions and lemma.



Definition 9 (Completeness). Let L ⊆ Π∗ be a language and ≡L an equiv-
alence on this language. The tuple (L,≡L) is said to be complete if and only
if

(i) ∀u, v ∈ Π∗ u.v ∈ L⇒ u ∈ L
(ii) ∀u, u′ ∈ L∀v ∈ Π∗ (u ≡L u′ ∧ u.v ∈ L)⇒ (u′.v ∈ L ∧ u′.v ≡L u.v)

(iii) ∀u ∈ L∀a, b ∈ π u.ab ∈ L⇒ (u.ab.ba ∈ L ∧ u.ab.ba ≡L u)

The completeness conditions aim at making sure that (L,≡L), seen as some
algebra of paths, is complete. Indeed: (i) means that “a shortened path remains
a path”; (ii) means that “Different possible paths from A to B, and then a path
from B to C, must lead to different possible paths from A to C”; (iii) means
that “if a step takes you from A to B, the inverse step takes you from B to A”.

Definition 10 (Adjacency structure). Let L ⊆ Π∗ be a language and ≡L an
equivalence on this language. The tuple (L,≡L) defines an adjacency structure
if and only if it is complete and

∀u, u′ ∈ L∀a, b, c ∈ π (u ≡L u′ ∧ u.ab ∈ L ∧ u′.ac ∈ L)⇒ b = c.

When this is the case, L is referred to as an adjacency language and ≡L as an
adjacency equivalence. We denote by 〈L,≡〉 an adjacency structure of langage
L and equivalence relation ≡. The set of all adjacency structures is written Xπ.
From now on, X will represent an element of Xπ.

The added adjacency structure condition aims at making sure that (L,≡L), seen
as some algebra of paths, is port-unambiguous, meaning that “once at some place
A, taking port a leads to a definite place B”.

Definition 11 (Associated (pointed) graph (modulo)). Let X be some
adjacency structure 〈L,≡L〉. Let P (X) be the pointed graph (G(X), ε̃), with G(X)
such that:

• The set of vertices V (G(X)) is the set of equivalence classes of X;
• The edge {ũ :a, ṽ : b} is in E(G(X)) if and only if u.ab ∈ L and u.ab ≡L v,

for all u ∈ ũ and v ∈ ṽ.

We define the associated graph to be G(X). We define the associated pointed
graph to be P (X). We define the associated pointed graph modulo to be P̃ (X).

Soundness: The properties of adjacency structures ensure that the ports of the
vertices are not used several times. Moreover, G(X) (and thus P (X) are con-
nected as every vertex is path connected to the vertex ε̃.

Definition 12 (Labelled adjacency structure). Let X = 〈L,≡L〉 be a an
adjacency structure. A labelling with states Σ,∆ is given by a labelling for G(X).
The set of labelled adjacency structures with states Σ,∆ and ports π is written
XΣ,∆,π.



These labelled adjacency structure (a.k.a. generalized Cayley graphs) will consti-
tute the set of configurations of the generalized Cellular Automata that we will
consider in this paper. They are the algebraic counterpart of Definition 5, as we
shall now prove.

Lemma 1 (Path structures are adjacency structures). Let P̃ be a pointed
graph modulo. Then X(P̃ ) is an adjacency structure. Hence X(P̃π) ⊆ Xπ.

Proof. [Completeness]. If u.v is a valid path in P̃ , then the truncated path u is
a valid path in P̃ and belongs to L(P̃ ).
If two paths u and v in P̃ lead to the same vertex, i.e. u ≡P̃ v, then extending

u and v by the same path w will still lead to the same vertex i.e. if u.w ∈ L(P̃ )
u.w ≡P̃ v.w.

If u.ab is a valid path in P̃ then the extension u.ab.ba consisting in going back
on the last visited vertex is still a valid path and leads to the vertex pointed by
u.
Summarizing, the completeness properties are verified by construction of the
language of path L(P̃ ) and the relation ≡P̃ .

[Adjacency structure]. Let us consider two paths u and v in L(P̃ ) and three
ports a, b, c such that u ≡P̃ v and u.ab ≡P̃ u.ac. Then, for the graph P̃ to be
well defined we have that b = c. ut

Not only do we have that path structures are adjacency structures, but it also
turns out that any adjacency structure can be generated this way, i.e. it is the
path structure of some pointed graph modulo.

Proposition 2 (Adjacency structures are path structures). Let X be
some adjacency structure. The equality X = X(P̃ (X)) holds. Hence Xπ =
X(P̃π).

Proof. Let X = 〈L,≡L〉 and X ′ = X(P̃ (X)) = 〈L′,≡L′〉. Next, we will write
X ⊆ X ′ if and only if X ⊆ X ′ and ≡L⊆≡L′ , with the relations ≡L, ≡L′ viewed
as subsets of (L ∪ L′)2.

[X ⊆ X(P̃ (X))]:

Let us consider w ∈ L. By construction of P̃ (X), there exists a path w in
P̃ (X). By definition of the function X, we have that this path will be represented
by the word w ∈ L′. Now, let us consider two words u and v in L such that u ≡ v.
By construction of P̃ (X), u and v will be two paths of P̃ (X) leading to the same
vertex. By definition of the function X, the two words u and v in L′ will be
equivalent regarding to the relation ≡′.

[X(P̃ (X)) ⊆ X]:

Let w′ ∈ L′. By definition there exists a path ω′ in P̃ (X) labeled by w′

from the pointed vertex to a vertex u. By definition 12 there exists a word in L
describing the path ω′, hence w′ ∈ L. Similarly we prove the inclusion ≡L′⊆≡L.



1.3 Graphs as languages

Generalized Cayley graphs. Summarizing, X(.) is bijective from Proposition 1
and X ◦P̃ = Id from Proposition 2, thus P̃ is bijective, i.e. the following theorem
comes out as a corollary:

Theorem 1 (Pointed graphs modulo and adjacency structures isomor-
phism). The function P̃ 7→ X(P̃ ) is a bijection between P̃π and Xπ, whose in-
verse is the function X 7→ P̃ (X). It can be extended into a bijection between
P̃Σ,∆,π and XΣ,∆,π.

Therefore, P̃Σ,∆,π and XΣ,∆,π are the same set, namely the set of generalized
Cayley graphs. Our generalization of CA will have its configurations in this set.
Conventions. The above theorem justifies the fact that

• a (labelled) pointed graph modulo P̃ (X) (resp. P̃ ),
• a (labelled) adjacency structure X (resp. X(P̃ )),
• and their associated graph G(X) (resp. G(X(P̃ ))

can be viewed as three presentations of the same mathematical object. Together
with Definitions 8 and 11, it also justifies the fact that the vertices of this math-
ematical object can be designated by

• ũ an equivalence class of X (resp. X(P̃ )), i.e. the set of all paths leading to
this vertex starting from ε̃,

• or more directly by u an element of an equivalence class ũ of X (resp. X(P̃ )),
i.e. a particular path leading to this vertex starting from ε.

These two remarks lead to the following mathematical conventions, which we
adopt for convenience. From now on:

• P̃Σ,∆,π and XΣ,∆,π will no longer be distinguished. The latter notation will
be preferred. We shall speak of a “generalized Cayley graph” X in XΣ,∆,π.

• ũ and u will no longer be distinguished. The latter notation will be given
the meaning of the former. I.e. we shall speak of a “vertex” u in V (X) (or
simply u ∈ X.

• It follows that ‘≡’ and ‘=’ will no longer be distinguished. The latter notation
will be given the meaning of the former. I.e. we shall speak of “equality of
vertices” u = v (when strictly speaking we just have ũ = ṽ).

In any case, we will make sure that a rigorous meaning can always be recovered
by placing tildes back.
Discussion. Generalized Cayley graphs extend Cayley graphs:

Proposition 3 (Recovering Cayley graph). Consider H a group with law
∗ and generators the finite set h = {a, b, . . .}. Let π = {a, a−1 | a ∈ h} be
the generators together with their inverses, π = {(a, a−1), a−1a | a ∈ π} the
generators paired up with their inverses. Notice that L = π∗ ⊂ Π∗ = (π2)∗.
Consider the morphism mapping:



• a in π to a = (a, a−1) in π
• the term a ∗ v in H to a.v in L
• the equivalence u = v over H to the equivalence u ≡L v over L.

Then, X = 〈L,≡L〉 is an adjacency structure, and the generalized Cayley graph
X coincides with the Cayley graph of H.

Proof. All of the adjacency structures conditions are met:

(i) u.v ∈ L⇒ u ∈ L by definition of L.
(ii) u ≡L u′ ⇒ u′.v ≡L u.v, since u = u′ ⇒ u ∗ v = u ∗ v′.
(iii) u.a⇒ u.a.a−1 ≡L u, since u ∗ a ∗ a−1 = u.
(-) (u ≡L u′ ∧ u.(a, b) ∈ L ∧ u′.(a, c) ∈ L)⇒ b = c = a−1 by definition of L.

One might have thought that any adjacency structure over the language 〈L,≡L〉,
with L = π∗ is a Cayley graph, but this is not the case: the fact that ≡L
corresponds to group equality does matter in the above proposition. The Petersen
graph, for instance, can be endowed with such an adjacency structure, while
being famously not a Cayley graph [14].
But generalized Cayley graphs extend Cayley graphs in a much wider way

:a

:a

:a
:a

:a

:a

:a

:a

:a
:a
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:b−1

:b

:b−1

:b :b−1

:b

:b−1

:b

:b−1

:b

:b−1

:b

:b−1

:b:b−1

:b

:b−1
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:b−1

Fig. 2. The Petersen graph as a generalized Cayley graph structure.

than just including Petersen-like graphs. Indeed, whereas Cayley graphs are
highly symmetric, generalized Cayley graphs can be arbitrary connected graphs
of bounded degree. Still, this extension is an advantageous one, since all of the



key features of Cayley graphs remain: We are able to name vertices relative
to a point, through the word describing the path from that point, and in fact
the topology of the graph describes the equivalence structure upon words. We
have a well-defined notion of translation, which is described as part of the basic
operations upon these graphs in Section 2. We can define a distance between
theses graphs, which makes XΣ,∆,π a compact metric space, as done in Section
3.

2 Basic operations

2.1 Operations on generalized Cayley graphs

For a generalized Cayley graph (G, p) non-modulo (see [1] for details):

• the neighbours of radius r are just those vertices which can be reached in r
steps starting from the pointer p;

• the disk of radius r, written Grp, is the subgraph induced by the neighbours
of radius r + 1, with labellings restricted to the neighbours of radius r and
the edges between them, and pointed at p.

Notice that the vertices of Grp continue to have the same names as they used
to have in G. For generalized Cayley graphs, on the other hand, the analogous
operation is:

Definition 13 (Disk). Let X ∈ XΣ,∆,π be a generalized Cayley graph and

(G, ε) its associated pointed graph. Let Xr be X(G̃rε). The generalized Cayley
graph Xr ∈ XΣ,∆,π is referred to as the disk of radius r of X. The set of disks
of radius r with states Σ,∆ and ports π is written XrΣ,∆,π.

A technical remark is that the vertices of Xr no longer have quite the same
names as they used to have in X. This is because, in a generalized Cayley
graph, vertices are designated by those paths that lead to them, starting from
the vertex ε, and there were many more such paths in X than there are in its
subgraph Xr. Still, it is clear that there is a natural inclusion V (Xr) ⊆ V (X),
meaning that u ∈ Xr implies that there exists a unique u′ ∈ X such that u ⊆ u′.
Thus, we will commonly say that a vertex of u ∈ Xr belongs to X, even though
technically we are referring to the corresponding vertex u′ of X. Similarly, we
will commonly say that a vertex of u′ ∈ X belongs to Xr when we actually mean
that there is a unique vertex u of Xr such that u ⊆ u′.

Definition 14 (Size). Let X ∈ XΣ,∆,π be a generalized Cayley graph. We say
that a vertex u ∈ X has size less or equal to r + 1, and write |u| ≤ r + 1, if and
only if u ∈ Xr. We denote V (Xrπ) =

⋃
X∈Xrπ

V (X).

It will help to have a notation for the graph where vertices are named relatively
to some other pointer vertex u.
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ãa

b̃b

b̃b.ac

c̃a

d̃a

d̃a.cb
:a

:a

:b

:b:a

:c

:c

:a

:d

:a

:b

:a:c

:b

:c

:b ε̃

ãa
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Fig. 3. A generalized Cayley graph and its disk of radius 0. Notice that the equivalence
classes describing vertices in X0 are strict subsets of those in X, eventhough their
shortest representative is the same. For instance the path ca.cb is in d̃a in X but is not
a path in X0, and thus does not belong to d̃a in X0.

Definition 15 (Shift). Let X ∈ XΣ,∆,π be a generalized Cayley graph and
(G, ε) its associated pointed graph. Consider u ∈ X or Xr for some r, and con-
sider the pointed graph (G, u), which is the same as (G, ε) but with a different

pointer. Let Xu be X
(

(̃G, u)
)

. The generalized Cayley graph Xu is referred to

as X shifted by u.

Note that it could be said that X and its shifted version Xu are isomorphic,
since both graphs are the same except for vertex naming conventions, but this is
a distinct isomorphism from the isomorphism of Def. 4, which specifically kept
the pointer unchanged.
The composition of a shift, and then a restriction, applied on X, will simply be
written Xr

u. Whilst this is the analogous operation to Gru over pointed graphs
non-modulo, notice that the shift-by-u completely changes the names of the
vertices of Xr

u. As the naming has become relative to u, the disk Xr
u holds no

information about its prior location, u.
We may also want to designate a vertex v by those paths that lead to the
vertex u relative to ε, followed by those paths that lead to v relative to u. The
following definition of concatenation coincides with the one that is induced by
the concatenation of words belonging to the classes u and v:

Definition 16 (Concatenation). Let X ∈ Xπ be a generalized Cayley graph
and (G, ε) its associated pointed graph. Consider u ∈ X and v ∈ Xu or Xr

u for
some r. Let (G′, ε) be the associated pointed graph of (Xu)v, R be an isomorphism
such that G′ = RG, and u.v be R−1(ε). The vertex u.v ∈ X is referred to as u
concatenated with v.

According to Definition 15, G′ and G are isomorphic. Moreover, the restriction
of R−1 to V (G′) is uniquely determined; hence the definition is sound.
It also helps to have a notation for the paths to ε relative to u.



Definition 17 (Inverse). Let X ∈ Xπ be a generalized Cayley graph and (G, ε)
its associated pointed graph. Consider u ∈ X. Let (G′, ε) be the associated pointed
graph of Xu, R be an isomorphism such that G′ = RG, and u be R(ε). The vertex
u ∈ Xu is referred to as the inverse of u.

Notice the following easy facts: (Xu)v = Xu.v, u.u = ε. Notice also that the
isomorphism R such that G(Xu) = RG(X) maps v to u.v. This last property
suggests that we may define shifts upon graphs (non-modulo) as a certain class of
isomorphisms. In order to formalize this notion within the set of graphs without
appealing to graphs modulo, we will need that the vertices of our graphs non-
modulo be of a particular form.

2.2 Operations on graphs

In Section 1 we said that a graph G ∈ Gπ would have vertex names in V .
But now we shall allow vertices to have names in disjoint subsets of V.S, with
S = {ε, 1, 2, . . . , b} a finite set of suffixes. For instance, given some generalized
Cayley graph X, having vertices u, v in V (X), we may build some graph G
having vertices {v}, {u.1}, {u.3, v.1} . . . i.e. subsets of V (X).S. Later, {u.1} will
be interpreted as the vertex which is ‘the first successor of u’, {u.3, v.1} as the
vertex which is ‘the first successor of v and the third successor of u’, {v} as the
vertex which is ‘the continuation of v’. Disjointness is just to keep things tidy:
one cannot have a vertex which is the first successor of u ({u.1}, say) coexisting
with another which is the ‘the first successor of u and the second successor of u’
({u.1, v.2}, say) — although some other convention could have been used. Still,
some form of suffixes is necessary in order to provide just the little, extra naming
space that is needed in order to create new vertices.

Definition 18 (Shift isomorphism). Let X ∈ Xπ be a generalized Cayley
graph. Let G ∈ Gπ be a graph that has vertices that are disjoint subsets of V (X).S
or V (Xr).S for some r. Consider u ∈ X. Let R be the isomorphism from V (X).S
to V (Xu).S mapping v.z 7→ u.v.z, for any v ∈ V (X) or V (Xr), z ∈ S. Extend
this bijection pointwise to act over subsets of V (X).S, and let u.G to be RG.
The graph u.G has vertices that are disjoint subsets of V (Xu).S, it is referred to
as G shifted by u. The definition extends to labelled graphs.

The next two definitions are standard, see [5,22] and [1], although here again
the vertices of G are given names in disjoint subsets of V (X).S for some X.
Basically, we need a notion of union of graphs, and for this purpose we need a
notion of consistency between the operands of the union:

Definition 19 (Consistency). Let X ∈ Xπ be a generalized Cayley graph. Let
G be a labelled graph (G, σ, δ), and G′ be a labelled graph (G′, σ′, δ′), each one
having vertices that are pairwise disjoint subsets of V (X).S. The graphs are said
to be consistent if and only if:

(i) ∀x ∈ G∀x′ ∈ G′ x ∩ x′ 6= ∅ ⇒ x = x′,



(ii) ∀x, y ∈ G∀x′, y′ ∈ G′ ∀a, a′, b, b′ ∈ π ({x :a, y :b} ∈ E(G) ∧ {x′ :a′, y′ :b′} ∈
E(G′) ∧ x = x′ ∧ a = a′)⇒ (b = b′ ∧ y = y′),

(iii) ∀x, y ∈ G∀x′, y′ ∈ G′ ∀a, b ∈ π x = x′ ⇒ δ({x :a, y : b}) = δ′({x′ :a, y′ : b})
when both are defined,

(iv) ∀x ∈ G∀x′ ∈ G′ x = x′ ⇒ σ(x) = σ′(x′) when both are defined.

They are said to be trivially consistent if and only if for all x ∈ G, x′ ∈ G′ we
have x ∩ x′ = ∅.

The consistency conditions aim at making sure that both graphs “do not dis-
agree”. Indeed: (iv) means that “if G says that vertex x has label σ(x), G′ should
either agree or have no label for x”; (iii) means that “if G says that edge e has
label δ(e), G′ should either agree or have no label for e”; (ii) means that “if G
says that starting from vertex x and following port a leads to y via port b, G′

should either agree or have no edge on port x :a”.
Condition (i) is in the same spirit: it requires that G and G′, if they have a vertex
in common, then they must fully agree on its name. Remember that vertices of
G and G′ are disjoint subsets of V (X).S. If one wishes to take the union of G
and G′, one has to enforce that the vertex names will still be disjoint subsets of
V (X).S.
Trivial consistency arises when G and G′ have no vertex in common: thus, they
cannot disagree on any of the above.

Definition 20 (Union). Let X ∈ Xπ be a generalized Cayley graph. Let G
be a labelled graph (G, σ, δ), and G′ be a labelled graph (G′, σ′, δ′), each one
having vertices that are pairwise disjoint subsets of V (X).S. Whenever they are
consistent, their union is defined. The resulting graph G∪G′ is the labelled graph
with vertices V (G)∪V (G′), edges E(G)∪E(G′), labels that are the union of the
labels of G and G′.

Finally, recall that for a pointed graph (G, p) non-modulo Grp, is the sub-
graph induced by the neighbours of radius r+1, with labellings restricted to the
neighbours of radius r and the edges between them, and pointed at p [1].

3 Generalized Cayley graphs: topological properties

Having a well-defined notion of disks allows us to define a topology upon XΣ,∆,π,
which is the natural generalization of the well-studied Cantor metric upon CA
configurations [17].

Definition 21 (Gromov-Hausdorff-Cantor metrics). Consider the func-
tion

d : XΣ,∆,π × XΣ,∆,π −→ R+

(X,Y ) 7→ d(X,Y ) = 0 if X = Y

(X,Y ) 7→ d(X,Y ) = 1/2r otherwise



where r is the minimal radius such that Xr 6= Y r.
The function d(., .) is such that for ε > 0 we have (with r = b− log2(ε)c):

d(X,Y ) < ε⇔ Xr = Y r.

It defines an ultrametric distance.

Soundness: [Nonnegativity, symmetry, identity of indiscernibles] are obvious.
[Equivalence]

d(X,Y ) < ε⇔ d(X,Y ) = 1/2k with k ∈ N ∧ 1/2k < ε

⇔ k = min{r ∈ N | Xr 6= Y r} ∧ 1/2k < ε

⇔r=k−1 X
r = Y r with r ∈ N ∧ 1/2r+1 < ε

⇔ Xr = Y r with r = b− log2(ε)c.

[Ultrametricity] Consider k such that 1/2k = d(X,Z) and l such that 1/2l =
d(X,Y ). By definition of the metric X,Z differ only after index k and X,Y differ
only after index l. Suppose k ≤ l so that Y,Z differ only after index k. But then
d(Y,Z) = 1/2k which is d(X,Z).
[Triangle inequality] is obvious from the ultrametricity.

The fact that generalized Cayley graphs are pointed graphs modulo, i.e. the
fact that they have no “vertex name degree of freedom” is key to proving the
following property. Indeed, compactness crucially relies on the set being “finite-
branching”, meaning that the set of possible generalized Cayley graphs, as one
progressively enlarges the radius of a disk, remains finite. This does not hold for
usual graphs.

Lemma 2 (Compactness). (XΣ,∆,π, d) is a compact metric space, i.e. every
sequence admits a converging subsequence.

Proof. This is essentially König’s Lemma. Let us consider an infinite sequence
of graphs (X(n))n∈N. Because Σ and ∆ are finite, and there is an infinity of
elements of (X(n)), there must exist a graph of radius zero X0 such that there
is an infinity of elements of (X(n)) fulfilling X(n)0 = X0. Choose one of them
to be X(n0), i.e. X(n0)0 = X0. Now iterate: because the degree of the graph is
bounded by π, and because Σ and ∆ are finite but there is an infinity of elements
of (X(n)) having the above property, there must exist a pointed graph of radius
one X1 such that (X1)0 = X0 and such that there is an infinity of elements of
(X(n)) having X(n)1 = X1. Choose one of them as X(n1), i.e. X(n1)1 = X1.
Etc. The limit is the unique graph X ′ having disks X ′k = Xk for all k. ut

Recall the difference in quantifiers between the continuity of a function F over
a metric space (X, d):

∀X ∈ X ∀ε > 0∃η > 0 ∀Y ∈ X, d(X,Y ) < η ⇒ d(F (X), F (Y )) < ε,



and its uniform continuity:

∀ε > 0 ∃η > 0∀X,Y ∈ X, d(X,Y ) < η ⇒ d(F (X), F (Y )) < ε.

Uniform continuity is the physically relevant notion, as it captures the fact that
F does not propagate information too fast. In a compact setting, it is equivalent
to simple continuity, which is easier to check and is the mathematically standard
notion. This is the content of Heine’s Theorem, a well-known result in general
topology [10]: given two X and Y be metric spaces and F : X −→ Y continuous,
if X is compact, then F is uniformly continuous.

The implications of these topological notions for Cellular Automata were
first studied in [17], with self-contained elementary proofs available in [18]. For
Cellular Automata over Cayley graphs a complete reference is [6]. For Causal
Graph Dynamics [1], these implications had to be reproven by hand, due to
the lack of a clear topology in the set of graphs that was considered. Here we
are able rely on the topology of generalized Cayley graphs and reuse Heine’s
Theorem out-of-the-box, which makes the setting of generalized Cayley graphs
a very attractive one in order to generalize CA.

4 Causality and Localizability

Causality. The notion of causality we will propose extends the known mathemat-
ical definition of Cellular Automata over grids and Cayley graphs. The extension
will be a strict one for two reasons: not only the graphs become arbitrary, but
they can also vary in time.

The main difficulty we encountered when elaborating an axiomatic definition
of causality from XΣ,∆,π to XΣ,∆,π, was the need to establish a correspondence
between the vertices of a generalized Cayley graph X, and those of its image
F (X). Indeed, on the one hand it is important to know that a given u ∈ X has
become u′ ∈ F (X), e.g. in order to express shift-invariance F (Xu) = F (X)u′ .
But on the other hand since u′ is named relative to ε, its determination requires
a global knowledge of X.

The following analogy provides a useful way of tackling this issue. Say that
we were able to place a white stone on the vertex u ∈ X that we wish to
follow across evolution F . Later, by observing that the white stone is found at
u′ ∈ F (X), we would be able to conclude that u has become u′. This way of
grasping the correspondence between an image vertex and its antecedent vertex
is a local, operational notion of an observer moving across the dynamics.

Definition 22 (Dynamics). A dynamics (F,R•) is given by

• a function F : XΣ,∆,π → XΣ,∆,π;
• a map R•, with R• : X 7→ RX and RX : V (X)→ V (F (X)).

For all X, the function RX can be pointwise extended to sets, i.e. RX : P(V (X))→
P(V (F (X))) maps S to RX(S) = {RX(u) | u ∈ S}.



The intuition is that RX indicates which vertices {u′, v′, . . .} = RX({u, v, . . .}) ⊆
V (F (X)) will end up being marked as a consequence of {u, v, ... ∈ X} ⊆ V (X)
being marked. Now, clearly, the set {(X,P(V (X))) | X ∈ XΣ,∆,π} is isomorphic
to XΣ′,∆,π with Σ′ = Σ × {0, 1}. Hence, we can define the function F ′ that
maps (X,S) ∼= X ′ ∈ XΣ′,∆,π to (F (X), RX(S)) ∼= F ′(X ′) ∈ XΣ′,∆,π, and think
of a dynamics as just this function F ′ : XΣ′,∆,π → XΣ′,∆,π. This alternative
formalism will turn out to be very useful.

Definition 23 (Shift-invariance). A dynamics (F,R•) is said to be shift-
invariant if and only if for every X and u ∈ X, v ∈ Xu,

• F (Xu) = F (X)RX(u)

• RX(u.v) = RX(u).RXu(v).

The second condition expresses the shift-invariance of R•. Notice that RX(ε) =
RX(ε).RX(ε); hence RX(ε) = ε.
In the F ′ : XΣ′,∆,π → XΣ′,∆,π formalism, the two above conditions are equivalent
to just one: F ′(Xu) = F ′(X)RX(u).

Definition 24 (Continuity). A dynamics (F,R•) is said to be continuous if
and only if:

• F : XΣ,∆,π → XΣ,∆,π is continuous,
• For all X, for all m, there exists n such that for all X ′, X ′n = Xn implies

domRmX′ ⊆ V (X ′n), domRmX ⊆ V (Xn) and RmX′ = RmX .

where RmX denotes the partial map obtained as the restriction of RX to the
codomain F (X)m, using the natural inclusion of F (X)m into F (X).

The second condition expresses the continuity of R•. It can be reinforced into
uniform continuity: for all m, there exists n such that for all X, X ′, X ′n = Xn

implies RmX′ = RmX .
Indeed, in the F ′ : XΣ′,∆,π → XΣ′,∆,π formalism, the two above conditions
are equivalent to just one: F ′ continuous. But since continuity implies uniform
continuity upon the compact space XΣ′,∆,π, it follows that F ′ is uniformly con-
tinuous, and thus the reinforced second condition.
We need one third, last condition:

Definition 25 (Boundedness). A dynamics (F,R•) from XΣ,∆,π to XΣ,∆,π
is said to be bounded if and only if there exists a bound b such that for all X,
for all w′ ∈ F (X), there exist u′ ∈ imRX and v′ ∈ F (X)bu′ such that w′ = u′.v′.

The following is our main definition:

Definition 26 (Causal dynamics). A dynamics is causal if it is shift-invariant,
continuous and bounded.

An example of causal dynamics is the inflating grid dynamics illustrated in
Figure 4. In the inflating grid dynamics each vertex gives birth to four distinct
vertices, such that the structure of the initial graph is preserved, but inflated.
The graph has maximal degree 4, and the set of ports is π = {a, b, c, d}, vertices
and edges are unlabelled.



7→

Fig. 4. The inflating grid dynamics. Each vertex splits into 4 vertices. The structure
of the grid is preserved. Ports are omitted here.

Lemma 3 (Bounded inflation). Consider a causal dynamics F from XΣ,∆,π
to XΣ,∆,π. There exists a bound b such that for all X and u ∈ Xr, we have
|RX(u)| ≤ (r + 1)b.

Proof. Let ac ∈ Π, and let E the subset of XΣ,∆,π of those X such that ac ∈ X.
E is closed — any sequence of elements of E converging in XΣ,∆,π converges
in E — and XΣ,∆,π is compact, therefore E is compact. By continuity modulo,
the function X 7→ |RX(ac)| is continuous from E to N; since E is compact,
it must be bounded. The result then follows from the triangle inequality and
shift-invariance.

Localizability. The notion of localizability of a function F captures the exact
same idea as the constructive definition of a Cellular Automata, namely that F
arises as a single local rule f applied synchronously and homogeneously across
the input graph.
The general idea is that the local rule f looks at part of the generalized Cayley
graph X (a disk Xr) and produces a piece of graph G = f(Xr). The same is done
synchronously at every location u ∈ X producing pieces of graph G′ = f(Xr

u).
The produced pieces must be consistent (see Subsection 2.2) so that we take
their union. Their union is a graph, but taking its modulo leads to a generalized
Cayley graph F (X).
We now formalize this idea. First, we must make sure that a local rule is an
object that adopts the same naming conventions for vertices as those of the
basic graph operations of Subsection 2.2.

Definition 27 (Dynamics non-modulo). A function f from XrΣ,∆,π to GΣ,∆,π
is said to be a dynamics if and only if for all X the vertices of f(X) are disjoint
subsets of V (X).S, and ε ∈ f(X).



Intuitively, the integer z ∈ S stands for the ‘successor number z’. Hence the
vertices designated by {1}, {2} . . . are successors of the vertex ε, whereas {ε} is
its ‘continuation’. The vertices designated by {ab.1}, {ab.2} . . . are successors of
its neighbour ab ∈ Xr. A vertex named {1, ab.3} is understood to be both the
first successor of vertex ε and the third successor of vertex ab. Recall also that
ε, just like ab, are not just words but entire equivalence classes of these words,
i.e. elements of V (X).
Second, we disallow local rules that would suddenly produce an infinite graph.

Definition 28 (Boundedness non-modulo). A function f from XrΣ,∆,π to
GΣ,∆,π is said to be bounded if and only if for all X, the graph f(X) is finite.

Third, we make sure that the pieces of graphs that are produced by the local
rule are consistent with one another.

Definition 29 (Local rule). A function f from XrΣ,∆,π to GΣ,∆,π is a local
rule if and only if it is a bounded dynamics and

• For any disk Xr+1 and any u ∈ X0 we have that f(Xr) and u.f(Xr
u) are

non-trivially consistent.
• For any disk X3r+2 and any u ∈ X2r+1 we have that f(Xr) and u.f(Xr

u)
are consistent.

It is clear that we do not need to formulate any consistency condition beyond
u ∈ X2r+1, because f(Xr) and u.f(Xr

u) then become trivially consistent, as they
share nothing in common, see Figure 5. The only subtlety in the above definition
is to impose that within u ∈ X0, the produced pieces of graphs f(Xr) and
u.f(Xr

u) be non-trivially consistent, i.e. consistent and overlapping, see Figure 5.
The point here is to enforce the connectedness of the union of the pieces of graphs
via a local, syntactic restriction. To illustrate the concept of local rule, we will
now describe a local rule implementing the inflating grid dynamics (see Figure 4).
The local rule is of radius zero: it “sees” the neighbouring vertices and nothing
more. In the standard case the local rule is applied on a vertex surrounded by 4
neighbours. It then generates a graph of 12 vertices, each with particular names
(see Figure 6). In particular cases, when less than 4 neighbours are present, the
rule generates a graph of 10, 8, 6 or 4 vertices, each with particular names (see
Figure 7). The local rule is not exhaustively described here, since there exists 625
different neighbourhoods of radius 0. In any case, all generated vertex names are
carefully chosen, so that when taking the union of all the generated subgraphs,
the name collisions lead to the desired identification of vertices (see Figure 8).

Definition 30 (Localizable function). A function F from XΣ,∆,π to XΣ,∆,π
is said to be localizable if and only if there exists a radius r and a local rule f
from XrΣ,∆,π to GΣ,∆,π such that for all X, F (X) is given by the equivalence
class modulo isomorphism, of the pointed graph

⋃

u∈X
u.f(Xr

u)

with ε taken as the pointer.
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Fig. 5. The consistency conditions for a local rule. The drawing represents disks of
a generalized Cayley graph X upon which a local rule f of radius r will be applied.
f(Xr) and u.f(Xr

u) have to be non-trivially consistent since ε and u are at distance 1.
f(Xr) and v.f(Xr

v ) have to be consistent but their intersection is allowed to be empty.
f(Xr) and w.f(Xr

w) will be trivially consistent as they are to far to interact in one
time step. The disk Xr+1 is enough to check all the non-trivial consistency conditions,
as it comprises first neighbours and their r-disks. The disk X3r+1 is enough to check all
the consistency conditions, as it comprises all the 2r + 1 neighbours and their r-disks.
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Fig. 6. Standard case of the inflating grid local rule. The left-hand-side of the rule is
a generalized Cayley graph of form X0

u (a disk of radius 0). The right-hand-side is a
graph whose vertex names are subsets of V (X0

u).S. Here they are just singletons, curly
brackets are dropped: e.g. we wrote ac.3 for {ac.3}, which should be understood as
“the third successor of my neighbour on edge ac”.

:d:b

:a

:c

ε 1

23

ac.3 ac.2

db.2

db.1

:a

:c

:b :d

:a

:c

:c

:a

:d:b

:a

:c

:d:b

:d:b
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of graphs is performed to obtain the output graph. Lastly, the corresponding pointed
graph modulo is returned.



Equivalence. The following theorem shows that the constructive definition (Lo-
calizable functions) is in fact equivalent to the mathematical, axiomatic defini-
tion (causal dynamics).

Theorem 2 (Causal is localizable). Let F be a function from XΣ,∆,π to
XΣ,∆,π. The function F is localizable if and only if there exists R• such that
(F,R•) is a causal dynamics.

Proof. [Loc.⇒Caus.] Let F : XΣ,∆,π → XΣ,∆,π be a localizable dynamics with
local rule f from XrΣ,∆,π to GΣ,∆,π: F (X) is the equivalence class, with ε taken
as the pointer vertex, of the graph H(X) =

⋃
u.f(Xr

u).
[Dynamics] Using the dynamicity of the local rule f , for all Xr we have ε ∈
f(Xr). Therefore for all u ∈ X, we have u ∈ u.f(Xr) and thus u ∈ H(X).
Let R be an isomorphism such that G(F (X)) = RH(X). Let u ∈ V (X), we
define RX(u) to be R(u′), where u′ is the vertex of H(X) that contains u in

its name. Notice that ˜(H(X), u) = ˜(RXH(X), RX(u)) = ˜(G(F (X)), RX(u)) =
F (X)RX(u).
[Translation-invariance] Take u ∈ X. We have H(Xu) =

⋃
v.f(Xr

u.v). This is
equal to H(Xu) = u.

⋃
u.v.f(Xr

u.v), which in turn is equal to u.H(X). Next,

we have that F (Xu) = ˜(H(Xu), ε) = ˜(u.H(X), u.u) = ˜(H(X), u) = F (X)RX(u).

It follows that F (Xu) = F (X)RX(u), and so G(F (Xu)) = RX(u).G(F (X)). We
have therefore

G(F (X)) = RX(u).G(F (Xu)) = RX(u).RXuH(Xu) = RX(u).RXuu.H(X).

But since the relation G(F (X)) = RH(X) defines RX , we have proven that for
all u ∈ X, RX = (RX(u).RXuu.). It follows that, for all u.v ∈ X, RX(u.v) =
RX(u).RXu(v).
[Boundedness] for all X, for all w′ ∈ F (X), consider w ∈ H(X) such that
w′ = R(w) when G(F (X)) = RH(X), and u ∈ X such that w ∈ u.f(Xr

u). Since
ε ∈ f(Xr

u), we have u ∈ u.f(Xr
u). Since f is bounded, w lies at most at a some

distance b of u in H(X). Since G(F (X) = RH(X), w′ lies at most at a some
distance b of u′ = R(u) = RX(u) in F (X).
[Continuity] The following is illustrated in Figure 9. Let m ∈ N. We must show
that there exists n such that F (X)m = H̃(X)mε is determined by Xn.
Consider a sequence v0 = ε, v1, . . . vm+1 of vertices of H(X) such that for all
i ∈ {0 . . .m} there exists ei = (vi : ai, vi+1 : bi+1) in E(H(X)). For such an
ei to exist, and given Definitions 19 and 20, it must appear in some ui.f(Xr

ui).
Moreover if δ(ei) is defined, it must be defined in some ui.f(Xr

ui). Consider
u0, u1, . . . um a sequence of vertices of X such that this is the case. Also, since
vi+1 is a subset of V (X).S, there exists wi ∈ X, zi ∈ S such that wi.zi ∈ vi.
Again consider w0 = ε, w1, . . . wm+1 a sequence of vertices of X such that this
is the case.
Since ei is in ui.f(Xui), it follows that vi and vi+1 are in ui.f(Xui). This en-

tails that vi and vi+1 are subsets of ui.V (Xui).S, thus in particular wi, wi+1 ∈



v0 = ε v1 v2 vm vm+1

x0 x1 x2 xm

w0 = ε w1 w2 wm wm+1

u0 u1 um

≤ m + 1

≤ r + 1 ≤ r + 1

≤ r + 1

≤ 2(r + 1)

≤ 2(m + 1)(r + 1)

Fig. 9. Proof of continuity.

ui.V (Xui). Therefore we have both wi+1 ∈ ui.Xui and wi+1 ∈ ui+1.Xui+1
. As

a consequence ui and ui+1 lie at distance 2(r + 1) in X, and it follows that⋃
i=0...m ui.X

r
ui ⊆ X

2(m+1)(r+1)−1. HenceX2(m+1)(r+1)−1 determines E(H(X)mε )
and their internal states.
For σ(vi) to be defined, there must exists xi ∈ X such that σ(vi) is defined
in xi.f(Xr

xi). Consider x0, x1, . . . xm a sequence of vertices of X such that this
is the case. But since vi ∈ xi.f(Xr

xi), we must have that wi ∈ xi.X
r
xi . Thus

xj+1 lies at distance at most r + 1 of uj .X
r
uj . Hence xj lies at distance at

most r + 1 of
⋃m−1
i=0 ui.X

r
ui ⊆ X2m(r+1)−1. Hence xj ∈ X2m(r+1)+r, and thus⋃

i=0...m xi.X
r
xi ⊆ X2m(r+1)+2r+1. Hence X2(m+1)(r+1)−1 determines the inter-

nal states of H(X)mε .
Summarizing, Xn, with n = 2(m+ 1)(r + 1)− 1 determines F (X)m = H̃(X)mε .
Consider some v′′ ∈ RmX . This means that v′′ ∈ (RH(X))mε and v′′ = R(v′)
for some v′ ∈ H(X) that contains v ∈ X in its name. Hence v′ ∈ H(X)mε ,
where we used R(ε) = ε. Since this determined by Xn, we have v ∈ Xn. Hence
domRmX ⊆ Xn. Moreover, consider X ′ such that X ′r = Xr. Therefore v ∈ X ′r,
H(X)mε and H(X ′)mε are isomorphic, and this isomorphism sends v′ to the w′ of
H(X ′)mε whose name contains v. Therefore F (X)m and F (X ′)m are equal, and
the same paths designate RmX(v) and RmX′(v), which are thus equal.
[Caus.⇒Loc.] Let (F,R•) be a causal dynamics. Let b0 and b1 be respectively
the bounds given by Definition 25 and Lemma 3, and b = max(b0 + 1, b1). Let
m = 3b + 2. Let r be the radius such that for all X,X ′, Xr = X ′r implies
F (X)m = F (X ′)m and RmX = RmX′ , from Definition 26 and Heine’s Theorem.
We will construct f from Xr to GΣ,∆,π so that for all Xr, the graph f(Xr) is a



well-chosen member of the equivalence class F (Xr)b. Hence we must instantiate
F (Xr)b via a suitable, local naming of its vertices. We use the isomorphism SXr

of Lemma 4 for this purpose, i.e. f(Xr) = SXrG(F (Xr)b).
[Dynamics] For all Xr, f(Xr) has vertices that are subsets of V (Xr).S, by def-
inition. These sets are disjoint, by Lemma 4 (i) applied to pairs of vertices of
F (Xr)b. Moreover ε ∈ f(Xr), since ε ∈ F (Xr)b and SXr (ε) = ε by Lemma 4
(ii).
[Boundedness] For all Xr, the graph f(Xr) is finite, by construction.
[Consistency] In order to show the consistency of f , we will show that for all X,
u ∈ X, we have that u.f(Xr

u) is the subgraph H(X)bu of H(X), where H(X) is
a well-chosen member of the equivalence class F (X). Hence we must instanti-
ate F (X) via a suitable naming of its vertices. We use the isomorphism SX of
Lemma 4 for this purpose, i.e. H(X) = SXG(F (X)).
Start from u.f(Xr

u) = u.SXruG(F (Xr
u)b), which is equal to u.SXuG(F (Xu)b), by

Lemma 4 (iii) and using the fact that F (Y )b = F (Y r)b. This, in turn, is equal

to u.
(
SXuG(F (Xu))

)b
, using the natural inclusion of F (Y )b into F (Y ). This, in

turn, is equal to u.
(
SXuRX(u).G(F (X))

)b
, by shift-invariance, which is equal to

u.
(
u.SXG(F (X))

)b
, by Lemma 4 (iv). This, finally, is

(
SXG(F (X))

)b
u

= H(X)bu,

since it is true that for any graph G and any isomorphism T , TGbu = (TG)bT (u)

and thus Gbu = T−1(TG)bT (u).

Summarizing, u.f(Xr
u) = H(X)bu. Moreover if u ∈ X0, then notice that u ∈

f(Xr) and u ∈ u.f(Xr
u), and hence they are non-trivially consistent.

Since f is consistent, and f(Xr) is a representant of F (Xr)b, it remains only
to remark that F (X) =

⋃
u.F (Xr

u)b, which is true because b was chosen to be
strictly larger the one given by Definition 25, insuring that all the vertices and
edges of F (Xr) are covered, along with their labels. ut

In the proof of Theorem 2, the renaming SX takes a generalized Cayley graph
F (X) into a mere graph H(X). It does so by providing names for the vertices
of F (X), that are subsets of V (X).S. The idea is that w′ in F (X) gets named
SX(w′), which is the set of those u.z, such that u′ = RX(u) is close to w′, and
z is an integer encoding the remaining path between u′ and w′. The following
lemma formalizes this idea as well as some useful, technical although expected
properties.

Lemma 4 (Local renaming properties). Let (F,R•) be a causal dynamics.
Let b be the maximum of the bounds from Definition 25 and Lemma 3. Let
m = 3b + 2. Let r be the radius such that for all X,X ′, Xr = X ′r implies
F (X)m = F (X ′)m and RmX = RmX′ , from Definition 26 and Heine’s Theorem.
Let z be an injection from V (Xbπ)\ε, as in Definition 14, to N. Let z(ε) be the
empty word. Let Y be a generalized Cayley graph. Consider SY such that for all
w′ ∈ F (Y ) we have

SY (w′) = {u.z(v′) |u′.v′ = w′ ∧ u ∈ Y ∧ u′ = RY (u) ∧ v′ ∈ F (Y )bu′}.

We have:



(i) ∀w′1, w′2 ∈ F (Y ), SY (w′1) ∩ SY (w′2) 6= ∅ ⇒ SY (w′1) = SY (w′2).
(ii) ε ∈ SY (ε).

(iii) ∀w′ ∈ F (Xu)b, u.SXru(w′) = u.SXu(w′).
(iv) ∀v′ ∈ F (Xu), SX(RX(u).v′) = u.SXu(v′).

Proof. [(i)] Consider w′1, w
′
2 such that SY (w′1) and SY (w′2) have a common ele-

ment u.z(v′). This entails that w′1 = u′.v′ = w′2 is the same vertex in F (Y ), and
thus that SY (w′1) = SY (w′2).
[(ii)] Since z(ε) = ε, ε.ε = ε, ε = RY (ε) and ε ∈ F (Y )b.
[(iii)] Consider the u = ε case. Let w′ be a vertex of F (X)b, and u′ ∈ F (X)
a vertex such that u′.v′ = w′, with |v′| ≤ b + 1. We necessarily have that u′ ∈
F (X)2b+1. Moreover, since F (X)3b+2 = F (Xr)3b+2, we have F (X)bu′ = F (Xr)bu′ .
Also, using RmX = RmXr , we have that

u′ = RX(u) ⇔ u′ = RmX(u) ⇔ u′ = RmXr (u) ⇔ u′ = RXr (u).

where the middle equivalence uses the natural inclusion of Xr into X. As a
consequence the two sets:

SX(w′) = {u.z(v′) |u′.v′ = w′ ∧ u ∈ X ∧ u′ = RX(u) ∧ v′ ∈ F (X)bu′}
SXr (w

′) = {u.z(v′) |u′.v′ = w′ ∧ u ∈ Xr ∧ u′ = RXr (u) ∧ v′ ∈ F (Xr)bu′}

are equal, up to the natural inclusion of Xr into X. The same holds for SXu and
SXru . Then, since the shift operation (u.) is from V (Xn) to V (X), full equality
holds between u.SXu and u.SXru .
[(iv)] Consider some u′.v′.w′ ∈ F (X) with u′ = RX(u), v′ = RXu(v) and w′ ∈
F (Xu.v)

b.

u.SXu(v′.w′) = u.{x.z(y′) | v′.w′ = x′.y′ ∧ x ∈ Xu

∧ x′ = RXu(x) ∧ y′ ∈ F (Y )′bu }
= {u.x.z(y′) |u′.v′.w′ = u′.x′.y′ ∧ u.x ∈ X

∧ u′.x′ = RX(u.x) ∧ y′ ∈ F (Y )′bu }
= SX(u′.v′.w′)

= SX(RX(u).v′.w′)

ut

Our causal dynamics over generalized Cayley graphs is a candidate model
of computation accounting for space, but without this space being fixed. As
a candidate model of computation, we must check that it is computable. The
following shows that we can decide whether a syntactic object is a valid instance
of the model.

Proposition 4 (Decidability of consistency). Given a dynamics f from
XrΣ,∆,π to GΣ,∆,π, it is decidable whether f is a local rule.



Proof. First of all notice that there is a finite number of disks Xb of radius b,
with labels in finite sets ∆ and Σ. The following informal procedure verifies that
f is a local rule:

• For each Xr check that ε ∈ f(Xr).
• For eachXr+1 check that for all u ∈ X0, f(Xr) and u.f(Xr

u) are non-trivially
consistent.

• For each X3r+2 check that for all u ∈ X2r+1, f(Xr) and u.f(Xr
u) are non-

trivially consistent.
ut

Finally, we prove that if the initial state is finite, its evolution can be computed.

Proposition 5 (Computability of causal functions). Given a local rule f
and a finite generalized Cayley graph X, then F (X) is computable, with F the
causal dynamics induced by f .

Proof. Since f is a local rule, the images of disks of radius r included in X are
all finite, and consistent with one another. Moreover the finite union of finite,
consistent graphs, is computable. ut

5 Properties

Composability. We have characterized causal dynamics as the continuous, shift-
invariant, bounded functions over generalized Cayley graphs. An important ques-
tion is whether this notion is general enough. A good indicator of this robustness
is that it is stable under composition.

Definition 31 (Composition). Consider two dynamics (F,R•) and (G,S•).
Their composition (G,S•) ◦ (F,R•) is (G ◦ F, T•) where TX = SF (X) ◦ RX , i.e.
TX(v) = SF (X)(RX(v)).

Indeed, stability under composition holds for classical and reversible cellular
automata, but has failed to be obtained for the early definitions of probabilistic
cellular automata and quantum cellular automata (see [2] and [8,26,4] for a
discussion).

Theorem 3 (Composability). [1] Consider causal dynamics (F,R•) and (G,S•),
both over XΣ,∆,π. Then their composition is also a causal dynamics.

Proof. [Continuous] In the F ′, G′ : XΣ′,∆,π → XΣ′,∆,π formalism, it suffices to
state that the composition of two continuous functions is continuous. Without
this formalism this decomposes into:

• (G ◦ F ) is continuous because it is the composition of two continuous func-
tions.

• Consider T• = SF (•) ◦ R•. For all X, for all m, there exists n such that for
all X ′, X ′n = Xn implies TmX′ = TmX . Indeed:



Fix some X and m. Since (G,S•) is a causal dynamics, there exists n′ such that
for all X ′, F (X ′)n

′
= D′ = F (X)n

′
implies SmF (X′) = SmD′ = SmF (X). Fix this n′.

Since (F,R•) is a causal dynamics, there exists n a radius such that for all X ′,
Xn = D = X ′n implies F (X)n

′
= F (X ′)n

′
and Rn

′
X = Rn

′
D = Rn

′
X′ . Now, for this

n, TmX′ = SmF (X′) ◦ R
n′
X′ = SmD′ ◦ Rn

′
X′ = SmD′ ◦ Rn

′
D , which, by the symmetrical is

equal to TmX .
[Shift-invariant] We have G(F (Xu)) = G(F (X)RX(u)) = G(F (X))SF (X)(RX(u)),
TX(u.v) = SF (X)(RX(u.v)) = SF (X)(RX(u).RXu(v))) = SF (X)(RX(u)).SF (X)RX (u)

(RXu(v)) =

TX(u).SF (Xu)(RXu(v)) = TX(u).TXu(v).
[Bounded] Since (G,S•) is a causal dynamics, there exists a bound b′′ such
that for all X, for all w′′ ∈ G(F (X)), there exists x′′ = SF (X)(x

′) and v′′ ∈
G(F (X))b

′′
x′′ such that w′′ = x′′.v′′. Since (F,R•) is a causal dynamics, there

exists a bound b′ such that there exists u′ = SF (X)(u) and v′ ∈ F (X)b
′′
u′ such

that x′ = u′.v′. Let u′′ = SF (X)(u
′) = SF (X)(RX(u)) = TX(u). Now, according

to Lemma 3 applied to (G,S•) and points u′ and x′, there exists a bound c such

that there exists t′′ ∈ G(F (X))
c.(b′+1)
u′′ and x′′ = u′′.t′′. Let b = c.(b′ + 1) + b′′,

we now have that for u′′ = SF (X)(u
′) = SF (X)(RX(u)) = TX(u) there exists

v′′.t′′ ∈ G(F (X))bu′′ such that w′′ = u′′.t′′.v′′. ut
The above proof was done via the axiomatic characterization of causal dy-

namics, as this paper enjoys a more straightforward formalization than [1]. In
[1] the same result is proven via the constructive approach to causal graph dy-
namics (localizability), which has the advantage of extra information about the
composed function. It establishes the following. Consider F a causal dynamics
induced by the local rule f of radius r (i.e. diameter d = 2r + 1). Consider G
a causal graph dynamics induced by the local rule g of radius s (i.e. diameter
e = 2s+ 1). Then G ◦ F is a causal graph dynamics induced by the local rule g
of radius t = 2rs + r + s (i.e. diameter f = de) from Dt to GΣ,∆,π which maps
Xt to ⋃

v∈X′
v.g(X ′sv ) with X ′ =

⋃

u∈Xt
u.f(Xr

u).

The same result, with the transposed proof, still holds.
Invertibility implies reversibility. Let us turn our attention to some set-theoretical
properties.

Definition 32 (Shift-invariant invertible). A shift-invariant dynamics (F,R•)
is shift-invariant invertible if and only if F is a bijection, and there is an S• such
that (F−1, S•) is a shift-invariant dynamics.

Notice that there exists some shift-invariant dynamics (F,R•) such that F is a
bijection but there exists no S• such that (F−1, S•) is a shift-invariant dynamics
(Outline: take π = {a, b}, and map the 4-sized directed segment to the 7-sized
directed segment pointed on the first four positions, and the 3-sized directed
segment to the 7-sized directed segment but pointed on the last three positions).
In this paper, we will not consider them. Notice also that there exists some shift-
invariant dynamics (F,R•) such that (F−1, S•) is a shift-invariant dynamics, but



SF (X) is not the inverse of RX . The Turtle example of Figure 10 illustrates this
possibility. Again, in this paper, we will not consider them: we restrict ourselves

:a :a
{ε, aa.ε}

ε 1
:a :a

Fig. 10. The “turtle” dynamics.

to vertex-preserving invertible dynamics.

Definition 33 (Vertex-preserving invertible). A shift-invariant dynamics
(F,R•) is vertex-preserving invertible if and only if F is a bijection and for all
X we have that RX is a bijection.

Those are automatically shift-invariant invertible:

Lemma 5 (Vertex-preserving invertible is shift-invariant invertible). If
(F,R•) is a vertex-preserving invertible shift-invariant dynamics, then (F−1, S•)
is a shift-invariant dynamics, with SY = (RF−1(Y ))

−1.

Proof. Consider Y and u′.v′ ∈ Y . Take X and u.v ∈ X such that F (X) = Y ,
RX(u) = u′ and RX(u.v) = u′.v′. We have:

F−1(Yu′) = F−1(F (X)RX(u)) = F−1(F (Xu)) = X(RX)−1(u′) = F−1(Y )SY (u′).

Moreover, take v ∈ Xu such that RX(u.v) = RX(u).RXu(v) = u′.v′. We have:

SY (u′.v′) = (RX)−1(RX(u.v)) = u.v = (RX)−1(u′).(RXu)−1(v′) = SY (u′).SYu′ (v
′).

Back to the case of a causal dynamics, the classical question to ask is whether
the inverse is also a causal dynamics.

Definition 34 (Reversible). A causal dynamics (F,R•) is reversible if and
only if it is shift-invariant invertible with inverse (F−1, S•) a causal dynamics.



The big question is whether the causality of a forward-time causal evolution
F , entails that of the backward-time evolution F−1. In other words: is causal-
ity stable under inversion? This question was answered positively in the earlier
formalism of [1], with a more lengthy proof.

Theorem 4 (Reversibility). Consider (F,R•) a causal dynamics. If (F,R•)
is vertex-preserving invertible, then it is reversible, with inverse (F−1, S•) where
SY = (RF−1(Y ))

−1.

Proof. For this proof it is convenient to switch to the the F ′ : XΣ′,∆,π → XΣ′,∆,π
formalism, introduced right after Def. 22. Since F ′ = (F,R•) is shift-invariant
invertible we have that F ′−1 = (F−1, S•) is shift-invariant. Since F ′ is continuous
over the compact space XΣ′,∆,π, with Σ′ = Σ × {0, 1}, we have that F ′−1 =
(F−1, S•) is continuous. Since RX is bijective, so is SF (X), and thus so is SY for
any Y . Hence, S is surjective and so (F−1, S•) is bounded with bound 0.

Discussion: Garden-of-Eden. Another important result in Cellular Automata
theory, and which is related to invertibility questions, is the so-called Garden-
of-Eden (a.k.a Moore-Myhill theorem), which states that pre-injectivity (i.e. in-
jectivity over the set of finite configurations) is equivalent to surjectivity (over
the set of configurations). This result has been extended to Cellular Automata
over Cayley graphs, provided that the group which induces the Cayley graph
has a certain property (it must be amenable) see [12]. Extending this result to
a wider class of graphs is impossible for the surjective implies pre-injective part
[], and is the subject of ongoing research for the pre-injective implies surjective
part, see for instance [15].
In the setting of this paper, there are at least two good reasons for the Garden-of-
Eden theorem not to hold. The first reason is that here, Cellular Automata have
been extended to generalized Cayley graphs, encompassing not just amenable
Cayley graphs, but also the non-amenable ones, and may others: in fact all ar-
bitrary finite degree graphs. The second reason is that here, Cellular Automata
have been extended to time-varying graphs, for which pre-injectivity becomes
a much weaker constraint (counting arguments fail as injectivity can be main-
tained by generating extra vertices, instead of saturating the space of internal
states). For instance a causal dynamics which just adds a vertex to every free
port, is injective but not surjective. It could be interesting, however, to look
for non-trivial subclasses of causal dynamics for which the Garden-of-Eden still
holds.

Discussion: Subclasses of causal dynamics.

Finally we mention two natural subclasses of graph dynamics. The first is
that where only the topology of the graph is evolving, i.e. there is no internal
state on vertices nor edges.

Definition 35 (No-state a.k.a graph-only dynamics). A dynamics (F,R•)
is a graph-only a.k.a no-state dynamics if and only if it is defined over Xπ, i.e.
the graphs carry no internal state.



All of our results apply unchanged in this graph-only setting, as there was
nowhere a particular need for an internal state. Moreover, it seems clear that
causal graph-only dynamics can simulate general causal dynamics elegantly. But
it is not so clear whether this still holds in the reversible case, for instance.
The second, dual class is that where only the internal states are evolving, i.e.
the dynamics does not change the graph. This is of course is a widely studied
case [24,7,16,15,12,31,20,30,29,5,22,9,27,28].

Definition 36 (Graph-preserving a.k.a state-only dynamics). A dynam-
ics (F,R•) is a graph-preserving a.k.a state-only dynamics if and only if for all
X, the graphs X and F (X) have the same structure, i.e. they are the same up
to labellings σ, δ.

Again all of our results apply unchanged in this state-only setting, as there
was nowhere a particular need for changing the topology, although changing the
topology is one of the main contributions of this paper. Still, it could be said that
the paper does port the Curtis-Hedlund-Lyndon theorem to Cellular Automata
over arbitrary graphs, and not just Cayley graphs, which had not been done.
Some results could of course be made tighter for state-only causal dynamics,
such as that of the radius of a composition.
This graph-preserving class was defined by demanding that a certain property be
preserved by the graph dynamics. Thus it falls into the broad class of subspace-
preserving dynamics:

Definition 37 (Subspace-preserving dynamics). Consider {X1, . . . ,Xn} a
partition of XΣ′,∆,π. A dynamics (F,R•) is a subspace-preserving dynamics with
respect to the partition if and only if for all i, we have that X ∈ Xi implies that
F (X) ∈ Xi.

On the other hand, the no-state class was defined by restricting the definition
space of the causal dynamics. Thus it falls into the broad class of subspace-
restricted dynamics:

Definition 38 (Subspace-restricted dynamics). Consider Y a subset of XΣ′,∆,π.
A dynamics (F,R•) is a subspace-restricted dynamics with respect to Y if and
only if its definition is restricted to Y.

In both of these broad classes, it seems cautious to demand that the subspaces
be themselves compact spaces, as was the case with the no-state and graph-
preserving classes. Finally, let us mention that in our study of reversibility, we
required that our causal dynamics (F,R•) be vertex-preserving, i.e. that RX be
a bijection between V (X) and V (F (X)). This differs from graph-preservation:
the connectivity may vary. Is is not clear whether this vertex-preserving class
could have been defined through a subspace-preservation construction.

6 Conclusion

Summary. First we have shown that a notion of graphs with ports modulo iso-
morphism (Definitions 1–5) provides a generalization of Cayley graphs, in the



following sense: each vertex can be named relatively to the origin; each graph
represents a language and its equivalence relation (Definitions 9–10, Theorem
1); and they are equipped with a well-defined notion of translation (Definition
15). Second, we have shown that the set of these graphs forms a compact met-
ric space (Definition 21 and Lemma 2), entailing that continuous functions over
this set are also uniformly continuous (Heine’s theorem). Third, this allowed us
to characterize Cellular Automata over those generalized Cayley graphs as the
set of shift-invariant, continuous, bounded dynamics (Definitions 22-26). This
physically-motivated mathematical definition would have remained excessively
abstract without our main result, showing that such causal dynamics are nec-
essarily localizable, i.e. that they can be expressed as the synchronous, homo-
geneous application of a local rule (Definitions 27-30, Theorem 2). Fourth, we
showed that the property of being a local rule is decidable and hence that causal
dynamics are computable (Propositions 4-5). Finally, we showed that the com-
position of two causal dynamics is itself a causal dynamics (Theorem 3), and
that the shift-invariant inverse of a causal dynamics is again a causal dynamics
(Theorem 4).

Further works. The mathematical relation between the causal dynamics of [1]
and ours remains to be clarified – for instance, decidability remains to be proven
for the causal graph dynamics of [1]. Still, they are important features of models
of computation. The fact that they are relatively straightforward to prove in this
paper is a good indicator that the formalism presented is appropriate.
Our short terms plan, however, include: interpreting CA over generalized Cayley
graphs as a dynamics over simplicial complexes as was started in [3]; deepening
the study of the reversible case; formalizing the stochastic case. Moreover, one of
the authors has been studying the intrinsic simulation and intrinsic universality
of causal graph dynamics in [23], an approach which can still be taken further.
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