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REGULARITY OF SOLUTIONS OF THE STEIN EQUATION AND RATES IN

THE MULTIVARIATE CENTRAL LIMIT THEOREM

T. O. GALLOUET, G. MIJOULE, AND Y. SWAN

Abstract. Consider the multivariate Stein equation ∆f − x · ∇f = h(x)−Eh(Z), where Z is a stan-
dard d-dimensional Gaussian random vector, and let fh be the solution given by Barbour’s generator
approach. We prove that, when h is α-Hölder (0 < α 6 1), all derivatives of order 2 of fh are α-Hölder
up to a log factor; in particular they are β-Hölder for all β ∈ (0, α), hereby improving existing regularity
results on the solution of the multivariate Gaussian Stein equation. For α = 1, the regularity we obtain
is optimal, as shown by an example given by Raič [18]. As an application, we prove a near-optimal
Berry-Esseen bound of the order log n/

√
n in the classical multivariate CLT in 1-Wasserstein distance,

as long as the underlying random variables have finite moment of order 3. When only a finite moment

of order 2+ δ is assumed (0 < δ < 1), we obtain the optimal rate in O(n− δ

2 ). All constants are explicit
and their dependence on the dimension d is studied when d is large.

Keywords. Berry-esseen bounds; Stein’s method; Elliptic regularity;

AMS subjects classification.

1. Introduction

1.1. Multivariate Stein’s method. Stein’s method is a powerful tool for estimating distances be-
tween probability distributions. It first appeared in [22], where the method was introduced for the
purpose of comparison with a (univariate) Gaussian target. The idea, which still provides the back-
bone for the contemporary instantiations of the method, is as follows. If Z is a standard Gaussian
random variable, then

(1) E[f ′(Z)− Zf(Z)] = 0

for all absolutely continuous functions f with E|f ′(Z)| < +∞. Let X be another random variable, and
consider the integral probability distance between the laws of X and Z given by

(2) dH(X,Z) = sup
h∈H

E[h(X) − h(Z)],

for H a class of tests functions which are integrable with respect to the laws of both X and Z.
Many classical distances admit a representation of the form (2), including the Kolmogorov (with H
the characteristic functions of half-lines), total variation (with H the characteristic functions of Borel
sets), and 1-Wasserstein a.k.a. Kantorovitch (with H the 1-Lipschitz real functions) distances; see e.g.
[15]. Letting ω denote the standard Gaussian pdf, we define for every h ∈ H the function

(3) fh(x) =
1

ω(x)

∫ x

−∞
(h(y)− Eh(Z))ω(y)dy.

This function is a solution to the ODE (called a Stein equation)

(4) f ′
h(x)− xfh(x) = h(x)− Eh(Z), x ∈ R,

which allows to rewrite integral probability metrics (2) as

dH(X,Z) = sup
h∈H

E[f ′
h(X) −Xfh(X)].

Stein’s intuition was to exploit this last identity to estimate the distance between the laws of X and
Z. One of the reasons for which the method works is the fact that the function fh defined in (3) enjoys
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many regularity properties. For instance, one can show (see e.g. [17, pp. 65-67]) that if h is absolutely
continuous then

(5) ‖fh‖∞ ≤ 2‖h′‖∞, ‖f ′
h‖∞ ≤

√

2/π‖h′‖∞ and ‖f ′′
h‖∞ ≤ 2‖h′‖∞,

‖ . ‖∞ holding for the supremum norm. This offers a wide variety of handles on dH(X,Z) – typically
via low order Taylor expansion arguments – for all important choices of test functions H and under
weak assumptions on X. This observation has been used, for instance, to obtain Berry-Esseen-type
bounds in the classical central limit theorem in 1-Wasserstein distance, Kolmogorov or total variation
distances, see [8, 17].

Consider now a d-dimensional Gaussian target Z ∼ N (0, Id). The d-dimensional equivalent to
identity (1) was identified in [1, 13] as

E[∆f(Z)− Z · ∇f(Z)] = 0,

which holds for a “large class” of functions f : Rd → R (x ·y denotes the usual scalar product between
vectors x, y ∈ R

d). We will define the “large class” of functions precisely in Proposition 2.1 below. For
h a function with finite Gaussian mean, the multivariate Stein equation then reads

(6) ∆f(x)− x · ∇f(x) = h(x)− Eh(Z), x ∈ R
d.

Note that (6) is a second order equation in the unknown function f ; in dimension d = 1, (6) reduces
to f ′′(x) − xf ′(x) = h(x) − Eh(Z) which is obtained by applying (4) to f ′. Barbour [1] identified a
solution of (6) to be

(7) fh(x) = −
∫ 1

0

1

2t
E[h(

√
tx+

√
1− tZ)− h(Z)] dt,

and the same argument as in the 1-dimensional setting leads to the identity

(8) dH(X,Z) = sup
h∈H

E [∆fh(X) −X · ∇fh(X)] ,

which is the starting point for multivariate Gaussian approximation via Stein’s method. The explicit
representation (7) is suitable to obtain regularity properties of fh in terms of those of h; for instance
(see e.g. [19, Lemma 2.6]) it is known that if h is n times differentiable then fh is n times differentiable
and

(9)

∣

∣

∣

∣

∣

∂kfh(x)
∏k

j=1 ∂xij

∣

∣

∣

∣

∣

≤ 1

k

∣

∣

∣

∣

∣

∂kh(x)
∏k

j=1 ∂xij

∣

∣

∣

∣

∣

,

for every x ∈ R
d. Hence, contrarily to the univariate case where first order assumption on h was

sufficient to deduce second order regularity for fh (recall (5)), a bound such as (9) only shows the same
regularity for h and fh. In most practical implementations of the method, however, Taylor expansion-
type arguments are used to obtain the convergence rates from the rhs of (8); hence regularity of fh
is necessary in order for the argument to work. This restricts the choice of class H in which the
statements are made and therefore weakens the strength – be it only in terms of the choice of distance
– of the resulting statements.

An important improvement in this regard is due to Chatterjee and Meckes [7] who obtained (among
other regularity results) that

(10) sup
x∈Rd

∥

∥∇2fh(x)
∥

∥

H.S
6 ‖∇h‖∞,

(‖M‖H.S. stands for the Hilbert-Schmidt norm of a matrix M and ∇2fh for the Hessian of fh); see
also [19]. Gaunt [12] later showed a generalization of this result, namely a version of (9) where the
derivatives of order k of fh can be bounded by derivatives of order k−1 of h. This still does not concur
with the univariate case as we know that, in this case and when h′ is bounded, one can bound one

higher derivative of fh: indeed, it holds |f (3)
h | 6 2|h′| (here the function fh is the solution (7) to the
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univariate version of the second order equation (6)). This loss of regularity is, however, not an artefact
of the method of proof but is inherent to the method itself: Raič [18] exhibits a counterexample, namely
a Lipschitz-continuous function such that the second derivative of fh is not Lipschitz-continuous. We
will discuss this example in detail later on.

1.2. Multivariate Berry-Esseen bounds. Let (Xi)i>1 be an i.i.d. sequence of random vectors in

R
d, and for simplicity take them centered with identity covariance matrix. Let W = n−1/2

∑n
i=1Xi,

Z ∼ N (0, Id) and consider the problem of estimating D(W,Z), some probability distance between the
law of Z and that of W . According to [13], the earliest results on this problem in dimension d ≥ 2
concern distances of the form (2) with H indicator functions of measurable convex sets in R

d (which is
a multivariate generalization of the Kolmogorov distance). The best result for this choice of distance

is due to [2] where an estimate of the form dH(W,Z) ≤ 400 d1/4n−1/2E[|X1|3] is shown (| · | is the
Euclidean norm); the dependence on the dimension is explicit and the best available for these moment
assumptions and this distance. More recently, a high dimensional version of the same problem was
studied in [9], with H the class of indicators of hyper-rectangles in R

d; we also refer to the latter paper
for an extensive and up-to-date literature review on such results.

Another important natural family of probability distances are the Wasserstein distances of order p
(a.k.a. Mallows distances) defined as

(11) Wp(W,Z) = (inf E [|X1 − Y1|p])1/p

where the infimum is taken over all joint distributions of the random vectors X1 and Y1 with respective
marginals the laws of W and Z. Except in the case p = 1, such distances cannot be written under
the form (2); as previously mentionned, when p = 1 the distance W := W1 in (11) is of the form (8)
with H the class of Lipschitz function with constant 1. Because Wp(·, ·) ≥ Wp′(·, ·) for all p ≥ p′,
bounds in p-Wasserstein distance are stronger than those in p′-Wasserstein distance; in particular
Wp(·, ·) ≥ W1(·, ·) for all p ≥ 1. We refer to [24] for more information on p-Wasserstein distances.
CLT’s in Wasserstein distance have been studied, particularly in dimension 1, where we refer to the
works [4, 20, 21] as well as [5] (and references therein) for convergence rates in p-Wasserstein for all
p ≥ 1 under the condition of existence of moments of order 2 + p; in all cases the rate obtained is
of optimal order O(1/

√
n). In higher dimensions, results are also available in 2-Wasserstein distance,

under more stringent assumptions on the Xi. For instance, Zhai [25] shows that when Xi is almost
surely bounded, then a near-optimal rate of convergence in O(log n/

√
n) holds (this improves a result

by Valiant et al. [23]). More recently, Courtade et al. [10] attained the optimal rate of convergence

O(n−1/2), again in Wasserstein distance of order 2, under the assumption that Xi satisfies a Poincaré-
type inequality; see also [11] for a similar result under assumption of log-concavity. Finally we mention
the work of Bonis [6] where similar estimates are investigated (in Wasserstein-2 distance) under moment
assumptions only; dependence of these estimates on the dimension is unclear (see [10, page 12]).

One of the key ingredients in many of the more recent above-mentioned references is the multivariate
Stein’s method. Rates of convergence in the multivariate CLT were first obtained Stein’s method by
Barbour in [1] (see also Götze [13]) whose methods (which rest on viewing the normal distribution as
the stationary distribution of an Ornstein-Uhlenbeck diffusion, and using the generator of this diffusion
as a characterizing operator) led to the so-called generator approach to Stein’s method with starting
point equation (6) and its solution given by the classical formula (7). Such an approach readily provides
rates of convergence in smooth-k-Wasserstein distances, i.e. integral probability metrics of the form (2)
with H (= H(k)) a set of smooth functions with derivatives up to some order k bounded by 1. Of
course, the smaller the order k, the stronger the distance; in particular the case k = 1 coincides with
the classical 1-Wasserstein distance (and therefore also (11) with p = 1). In [7, Theorem 3.1] it is
proved that if Xi has a finite moment of order 4 then, for any smooth h,

(12) E[h(W )− h(Z)] 6
1√
n

(

1

2

√

E|Xi|4 − d ‖∇h‖∞ +

√
2π

3
E|Xi|3 sup

x∈Rd

∥

∥∇2h(x)
∥

∥

op

)

,
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where ‖M‖op denotes the operator norm of a matrix M and |x| the Euclidean norm of a vector x ∈ R
d.

The rate O(1/
√
n) is optimal. The fourth moment conditions are not optimal, nor is the restriction to

twice differentiable test functions which implies that (12) does not lead to rates of convergence in the
1-Wasserstein distance. Similarly, the bounds on 2-Wasserstein distance recently obtained in [10, 11]
are inspired by concepts related to Stein’s method which were introduced in [14]; such an approach
necessarily requires regularity assumptions on the density of the Xi. Hence no simple extension of
their approach can lead to rates of convergence in Wasserstein distance with only moment conditions
on the Xi (and in particular no smoothness assumptions on the densities). In other words, no optimal
rates of convergence in Wasserstein distance are available under moment assumptions, and they seem
out of reach if based on current available regularity results of Stein’s equation.

1.3. Contribution. In this paper, we study Barbour’s solution (7) to the Stein equation (6) and prove

new regularity results: namely, if h is α-Hölder for some 0 < α 6 1, then for all i, j, ∂2fh
∂xi∂xj

is β-Hölder

for 0 < β < α. Actually, we show the stronger estimate

(13)

∣

∣

∣

∣

∂2fh
∂xi∂xj

(x)− ∂2fh
∂xi∂xj

(y)

∣

∣

∣

∣

= O (|x− y|α log |x− y|) ,

for |x−y| small. A precise statement, with explicit constants (which depend on α and on the dimension
d), is given in Proposition 2.2. Note that from Shauder’s theory, in the multivariate case (and contrary
to the univariate one), one cannot hope in general for the second derivative of fh to inherit the
Lipschitz-regularity of h. Actually, Raič [18] gives a counter-example: if

h(x, y) = max{min{x, y}, 0},

then fh defined by (7) is twice differentiable but ∂2fh
∂x∂y is not Lipschitz (whereas h is). We study this

example in more detail in Proposition 2.4, which shows that (at least for α = 1), the regularity (13)
cannot be improved in general.

In a second step, we apply those regularity results to estimate the rate of convergence in the CLT,
in Wasserstein distance.

Theorem 1.1. Let (Xi)i>1 be an i.i.d. sequence of random vectors with unit covariance matrix, and

Z ∼ N (0, Id). Assume that there exists δ ∈ (0, 1) such that E[|Xi|2+δ] < ∞. Then

W
(

n−1/2
n
∑

i=1

Xi, Z

)

6
1

n
δ
2

[

(K1 + 2 (1 − δ)−1)E|Xi|2+δ + (K2 + 2d (1− δ)−1)E|Xi|δ
]

,

where W stands for the 1-Wasserstein distance, and

K1 = 23/2
2d+ 1

d

Γ(1+d
2 )

Γ(d/2)

K2 = 2

√

2

π

√
d.

Note that the rate in O(n−δ/2) is optimal when only assuming moments of order 2 + δ; see [3] or
[16]. As mentioned previously, the bounds in Theorem 1.1 are to our knowledge the first optimal rates
in 1-Wasserstein distance in the multidimensional case when assuming finite moments of order 2 + δ
only.

From the previous Theorem is easily derived the following Corollary, which gives a near-optimal rate
of order O(log n/

√
n) when Xi has finite moment of order 3.
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Corollary 1.2. Let (Xi)i>1 be an i.i.d. sequence of d-dimensional random vectors with unit covariance

matrix. Assume that E[|Xi|3] < ∞. Then for n > 3 ,

W
(

n−1/2
n
∑

i=1

Xi, Z

)

6 e
C(d) + 2(1 + d) log n√

n
E|Xi|3,

where C(d) = 23/2 2d+1
d

Γ( 1+d
2

)

Γ(d/2) + 2
√

2
π

√
d.

Compared to [25], our assumption on the distribution of Xi is much weaker; however the distance

used in [25] is stronger and the constants are sharper ([25] obtains a constant in O(
√
d)). [10] has

the advantage of stronger rate of convergence (it is optimal when ours is near-optimal) and stronger
distance, but the drawback of a less tractable assumption on the distribution of Xi (it should satisfy
a Poincaré or weighted Poincaré inequality).

2. Regularity of solutions of Stein’s equation

Throughout the rest of the paper, for x, y ∈ R
d, we denote by x · y the Euclidean scalar product

between x and y, and |x| the Euclidean norm of x. For a matrix M of size d× d, its operator norm is
defined as

‖M‖op = sup
x∈Rd; |x|=1

|Mx|.

Define the α-Hölder semi-norm, for α ∈ (0, 1], by

[h]α = sup
x 6=y

|h(x) − h(x)|
|x− y|α .

For a multi-index i = (i1, . . . , id) ∈ N
d, the multivariate Hermite polynomial Hi is defined by

Hi(x) = (−1)|i|e|x|
2/2 ∂|i|

∂xi11 . . . ∂xidd
e−|x|2/2,

where |i| = i1 + . . .+ id.
Let h : R

d → R, and fh be defined by (when the integral makes sense)

(14) fh(x) = −
∫ 1

0

1

2t
E h̄(Zx,t) dt,

where

h̄(x) = h(x)− Eh(Z),

and

Zx,t =
√
t x+

√
1− t Z.

Recall that, when h is smooth with compact support, then (14) defines a solution to the Stein
equation (6), see [1, 7]. We shall prove that this is still the case when only assuming Hölder-regularity
of h.

Proposition 2.1. Let h : R
d → R be a α-Hölder function; that is, [h]α < ∞. Let fh be the function

given by (14). Then:

• fh is twice differentiable and for i = (i1, . . . , id) ∈ N
d such that 1 6 |i| 6 2,

(15)
∂|i|fh

∂xi11 . . . ∂xidd
= −

∫ 1

0

t
|i|
2
−1

2(1− t)
|i|
2

E[Hi(Z)h̄(Zx,t)]dt.

• fh is a solution to the Stein equation (6).
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Proof. Fix t ∈ (0, 1). Recall ω(x) = (2π)−d/2e−|x|2/2 is the density of the standard d-dimensional
gaussian measure. Since

E h̄(Zx,t) =

∫

Rd

h̄(
√
t x+

√
1− t z) ω(z) dz = (−1)dtd/2(1− t)−d/2

∫

Rd

h̄(u)ω

(

u−
√
t x√

1− t

)

du,

we have, from Lebesgue’s derivation theorem, and another change of variable,

(16)
∂|i|

∂xi11 . . . ∂xidd
E h̄(Zx,t) =

t
|i|
2

(1− t)
|i|
2

E[Hi(Z)h̄(Zx,t)].

Now note that by α-Hölder regularity, and using the fact that EHi(Z1, . . . , Zd) = 0,

|EHi(Z)h̄(Zx,t)| = |EHi(Z)(h̄(Zx,t)− h̄(
√
t x))|

6 E [|Hi(Z)| |Z|α] (1− t)α/2.(17)

Thus we can apply again Lebesgue’s derivation theorem to obtain (15).

Now let ωt(x) = t−d/2ω
(

x√
t

)

; ω1−t is the density of
√
1− t Z. It is well known (and can be easily

checked) that ωt solves the heat equation

∂t ωt =
1

2
∆ωt.

We deduce (again applying Lebesgue’s derivation theorem, valid since h̄ has polynomial growth at
infinity) that

∂tE h̄(Zx,t) = ∂t

∫

Rd

h̄(u)ω1−t(u−
√
t x) du

= −
∫

Rd

h̄(u) ∂tω1−t(u−
√
t x) du− 1

2
√
t

∫

Rd

h̄(u)∇ω1−t(u−
√
t x) · x du

= −1

2

∫

Rd

h̄(u)∆ω1−t(u−
√
t x) du− 1

2
√
t

∫

Rd

h̄(u)∇ω1−t(u−
√
t x) · x du

= − 1

2t
∆x

∫

Rd

h̄(u)ω1−t(u−
√
t x) du+

1

2t
∇x

[
∫

Rd

h̄(u)ω1−t(u−
√
t x) du

]

· x

= − 1

2t
(∆− x · ∇)E h̄(Zx,t).

Finally,

h̄(x) =

∫ 1

0
∂tE h̄(Zx,t)dt = −

∫ 1

0

1

2t
(∆− x · ∇)E h̄(Zx,t) dt = (∆− x · ∇)fh,

the last equality being justified by (16) and the bound (17). �

Before stating our main regularity results, let us give the idea behind the proof. Starting from (15),
we have that

∂2fh
∂xi∂xj

(x)− ∂2fh
∂xi∂xj

(y) = −
∫ 1

0

1

2(1− t)
E[(ZiZj − δij)(h̄(Zx,t)− h̄(Zy,t))]dt.

Using the α-Hölder regularity of h, the modulus of the integrand in last integral can be bounded by

1

2(1− t)
E[|ZiZj − δij | |h̄(Zx,t)− h̄(Zy,t)|] 6 Cij

tα/2

1− t
|x− y|α,

Cij being some constant. However, the function in the right hand-side is not integrable for t close to
1. Thus, for η > 0, we split the integral between 0 and 1− η on the one hand (where we can use lour
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previous bound), and between 1−η and 1 on the other hand. To bound the second integral, we remark
that since E[ZiZj − δij ] = 0, we have that

E[(ZiZj − δij)h̄(Zx,t)] = E[(ZiZj − δij)(h̄(Zx,t)− h̄(
√
tx))],

which, in modulus, is less than (again using the regularity of h)

E[|ZiZj − δij | ‖Z‖α](1 − t)α/2.

The power (1− t)α/2 that is gained makes the integral converge. Finally, we optimize in η > 0.
We are concerned, however, in obtaining the best constants possible (seen as functions of the di-

mension d and α); this tends to make the proofs more technical that needed if one is only concerned
with showing regularity. For this reason, the detailed exposition of the proof in full detail is deferred
to Section 5.

We start with the regularity in terms of the operator norm of the Hessian of fh.

Proposition 2.2. Let h : R
d → R be a α-Hölder function for some α ∈ (0, 1]. Then the solution fh

(7) of the Stein equation (6) satisfies:

(18)
‖∇2f|x −∇2f|y‖op 6 [h]α|x− y|α (C1(α, d) − 2 log |x− y|) , if |x− y| 6 1

6 C1(α, d) [h]α if |x− y| > 1,

where

(19) C1(α, d) = 2
α
2
+1α+ 2d

αd

Γ(α+d
2 )

Γ(d/2)
.

In particular, for all 0 < β < α , ∂2fh
∂xi∂xj

is globally β-Hölder:

(20) ‖∇2f|x −∇2f|y‖op 6

(

C1(α, d) +
2

α− β

)

|x− y|β [h]α.

It also holds the (1 + log) α-Hölder regularity

(21) ‖∇2f|x −∇2f|y‖op 6 |x− y|α (C1(α, d) + | log |x− y| |) [h]α.
Now we turn to the regularity of the Laplacian.

Proposition 2.3. Let h : R
d → R be a α-Hölder function for some α ∈ (0, 1]. Then the solution fh

(7) of the Stein equation (6) satisfies:
∣

∣∆f|x −∆f|y
∣

∣ 6 [h]α|x− y|α (C2(α, d) − 2 d log |x− y|) , if |x− y| 6 1

6 C2(α, d) [h]α if |x− y| > 1,

where

(22)
C2(α, d) = 2

α
2
+1 (α+2d) Γ(α+d

2
)

α Γ(d/2) if α ∈ (0, 1),

C2(1, d) = 2
√

2
π

√
d.

In particular, for all 0 < β < α,

(23) |∆f|x −∆f|y| 6
(

C2(α, d) + d
2

α− β

)

|x− y|β [h]α.

Note that Proposition 2.2 implies that, for α = 1, when |x− y| is small, then
∣

∣

∣

∣

∂2fh
∂xi∂xj

(x)− ∂2fh
∂xi∂xj

(y)

∣

∣

∣

∣

= O (|x− y| log |x− y|) .

The example given by Raič [18] shows that this rate is optimal; indeed, we have the following result.
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Proposition 2.4. Let h : R
2 → R be the Lipschitz function defined by h(x, y) = max(0,min(x, y)).

Then
∂2fh
∂x∂y

(u, u)− ∂2fh
∂x∂y

(0, 0) ∼
u→0+

1√
2π

u log u.

The proof can be found in the Appendix.

3. Multivariate Berry-Esseen bounds in Wasserstein distance

As anticipated, we apply the regularity results obtained in previous section to obtain Berry-Esseen
bounds in the CLT, in 1-Wasserstein distance.

Let X1,X2, ... be an i.i.d. sequence of centered, square-integrable and isotropic random vectors; that
is, E[X1] = 0 and E[X1X

T
1 ] = Id. Let W = n−1/2

∑n
i=1 Xi. We are interested in Wα(W,Z) for

α ∈ (0, 1], where the α-Wasserstein distance is defined as

Wα(X,Y ) = sup
{h∈C(Rn,R)|[h]α61}

Eh(X)− Eh(Y ).

As in the introduction, for α = 1, the resulting distance is W := W1, the classical 1-Wasserstein
distance (that is, W(X,Y ) = supHEh(X) − Eh(Y ) with H the collection of 1-Lipschitz functions).

We are now in a position to prove our main Theorem. We first give a more general version of it in
α-Wasserstein distances; Theorem 1.1 is just the following Theorem applied to α = 1.

Theorem 3.1. Let α ∈ (0, 1] and (Xi)i>1 be an i.i.d. sequence of d-dimensional random vectors with

unit covariance matrix. Assume that there exists δ ∈ (0, α) such that E[|Xi|2+δ] < ∞. Then

Wα

(

n−1/2
n
∑

i=1

Xi, Z

)

6
1

n
δ
2

[(

C1(α, d) +
2

α− δ

)

E|Xi|2+δ +

(

C2(α, d) + d
2

α− δ

)

E|Xi|δ
]

,

where C1(α, d) and C2(α, d) are respectively defined in (19) and (22).

Remark 3.2. From Stirling’s formula, C1(α, d) = O(
√
d), C2(α, d) = O(d1+α/2) for α ∈ (0, 1) and

C2(1, d) = O(
√
d).

Proof of Theorems 1.1 and 3.1 . Let h be α-Hölder (with [h]α 6 1) and fh be the solution of the
Stein equation defined by Proposition 2.1. Then,

E[h(W )− h(Z)] = E[∆fh(W )−W · ∇fh(W )]

=
1

n

n
∑

i=1

[

E[∆fh(W )−√
nXi · ∇fh(W )

]

.

The following calculations already appeared in the literature (see e.g. [18]), we include them here for
completeness. Let Wi = W −Xi/

√
n = 1√

n

∑

j 6=iXj. By Taylor’s formula, we have for some uniformly

distributed in [0, 1] (and independent of everything else) θ

E[Xi · ∇fh(W )] =
1√
n
E

[

XT
i ∇2fh

(

Wi + θ
Xi√
n

)

Xi

]

,

leading to

E[h(W )− h(Z)] =
1

n

n
∑

i=1

E

[

∆fh(W )−XT
i ∇2fh

(

Wi + θ
Xi√
n

)

Xi

]

.

Let Xi,j be the jth coordinate of Xi. Since Wi is independent of Xi, and Xi has unit covariance
matrix, we have

E
[

XT
i ∇2fh (Wi)Xi

]

=

d
∑

j,k=1

E

[

Xi,jXi,k
∂2fh

∂xj∂xk
(Wi)

]

=

d
∑

j=1

E

[

∂2fh
∂x2j

(Wi)

]

= E[∆fh(Wi)].
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Finally,

E[h(W )− h(Z)] =
1

n

n
∑

i=1

E

[

∆fh(W )−∆fh(Wi)−XT
i

(

∇2fh

(

Wi + θ
Xi√
n

)

−∇2fh(Wi)

)

Xi

]

.

Note then that
∣

∣

∣

∣

XT
i

(

∇2fh

(

Wi + θ
Xi√
n

)

−∇2fh(Wi)

)

Xi

∣

∣

∣

∣

6 |Xi|2
∥

∥

∥

∥

∇2fh

(

Wi + θ
Xi√
n

)

−∇2fh(Wi)

∥

∥

∥

∥

op

.

We now use Propositions 2.2 and 2.3 with β = δ 6 α to obtain:

E[h(W )− h(Z)] 6
1

n

n
∑

i=1

[(

C2(α, d) + d
2

α− δ

)

E[|Xi|δθδ]
nδ/2

+

(

C1(α, d) +
2

α− δ

)

E[|Xi|2+δθδ]

nδ/2

]

.

Noting that E[θβ] 6 1 and rearranging, we obtain the result. �

Corollary 3.3. Let α ∈ (0, 1], and (Xi)i>1 be an i.i.d. sequence of d-dimensional random vectors with

unit covariance matrix. Assume that E[|Xi|2+α] < ∞. Then for n > exp(2/α) ,

Wα

(

n−1/2
n
∑

i=1

Xi, Z

)

6 e
C1(α, d) + C2(α, d) + 2(1 + d) log n

n
α
2

E|Xi|2+α,

where C1(α, d) and C2(α, d) are respectively defined in (19) and (22).

Proof. By Hölder’s and the Cauchy-Schwarz inequalities, for any δ 6 α, E|Xi|δ 6
(

E|Xi|2+α
)δ/(2+α)

.

But by Jensen’s inequality, E|Xi|2+α > (E|Xi|2)(2+α)/2 = d(2+α)/2 > 1, so that, since δ/(2 + α) < 1,
(

E|Xi|2+α
)δ/(2+α)

6 E|Xi|2+α. Similarly, E|Xi|2+δ 6
(

E|Xi|2+α
)1−α−δ

2+α 6 E|Xi|2+α. Note now that
the bound of Theorem 3.1 holds for any 0 < δ < α. Choosing α− δ = 2/ log n achieves the proof since

n− 1
logn = 1/e. �

When applied to α = 1, previous corollary leads to Corollary 1.2, which we recall here: as long as
E|Xi|3 < ∞,

W
(

n−1/2
n
∑

i=1

Xi, Z

)

6 e
C(d) + 2(1 + d) log n√

n
E|Xi|3,

where C(d) = 23/2
(2d+1) Γ(d+1

2
)

dΓ(d
2
)

+ 2
√

2
π

√
d. [25] also obtains a near-optimal rate of convergence in

O(log n/
√
n), but under the much stronger assumption that |Xi| 6 β almost surely; nevertheless, the

distance used in [25] (the quadratic Wasserstein distance) is stronger than ours, the behaviour of the

constant on the higher order term is O(
√
d), here we obtain O(d).

4. Extension to higher order derivatives

The regularity result easily extends to higher order derivatives.

Proposition 4.1. Let h : R
d → R be a smooth, compactly supported function, and denote by [h]α,p

a common α-Hölder constant for all derivatives of order p of h. Then the solution fh (7) of the Stein

equation (6) satisfies, for all (i1, . . . , ip+2) ∈ {1, . . . , d}p+2:
∣

∣

∣

∣

∂p+2f
∏p+2

j=1 ∂xij
(x)− ∂p+2f

∏p+2
j=1 ∂xij

(y)

∣

∣

∣

∣

6 [h]α,p|x− y|α (A− 2 log |x− y|) , if |x− y| 6 1

6 A [h]α,p if |x− y| > 1,

where

A = 2α/2+1α+ d+ 1

α

Γ(α+d
2 )

Γ(d/2)
.
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In particular, all derivatives of the order p+ 2 of fh are β-Hölder for any 0 < β < α and we have
∣

∣

∣

∣

∂p+2f
∏p+2

j=1 ∂xij
(x)− ∂p+2f

∏p+2
j=1 ∂xij

(y)

∣

∣

∣

∣

6 [h]α,p

(

A+
2

α− β

)

|x− y|β.

Proof. Taking derivatives in (7), we have

∂p+2f
∏p+2

j=1 ∂xij
(x) =

∫ 1

0

tp

2
E

[

∂p+2h̄
∏p+2

j=1 ∂xij
(Zx,t)

]

dt.

Next perform two Gaussian integration by parts against two indices ip+1 and ip+2, say, to get

∂p+2f
∏p+2

j=1 ∂xij
(x) =

∫ 1

0

tp

2(1− t)
E

[

(Zip+1
Zip+2

− δip+1ip+2
)

∂ph̄
∏p

j=1 ∂xij
(Zx,t)

]

dt.

Then, using the same method as in the proof of Proposition 2.2 (we do not give all the details here),
we have

∣

∣

∣

∣

∂p+2f
∏p+2

j=1 ∂xij
(x)− ∂p+2f

∏p+2
j=1 ∂xij

(y)

∣

∣

∣

∣

6 −[h]α,p log η + [h]α,p2
α/2+1α+ d+ 1

α

Γ(α+d
2 )

Γ(d/2)
ηα/2.

Choose η = |x−y| if |x−y| 6 1, 1 otherwise, to get the first result, and the fact that − log u 6 1
α−βu

β−α

if u 6 1 for the second one. �

We stress that one possible application of this Proposition would be a multivariate Berry-Esseen
bound in the CLT with matching moments (i.e. assuming that the underlying random variables Xi

share the same first k moments with the Gaussian). In this case, faster rates of convergence are
expected, see [12].

5. The remaining proofs

Proof of Proposition 2.2. Recall that

∂2fh
∂xi∂xj

= −
∫ 1

0

1

2(1− t)
E[(ZiZj − δij)h̄(Zx,t)]dt.

Since E[ZiZj − δij ] = 0, we have E[(ZiZj − δij)h̄(
√
tx)] = 0, so that

E[(ZiZj − δij)h̄(Zx,t)] = E[(ZiZj − δij)(h̄(Zx,t)− h̄(
√
tx))].(24)

Thus,

∇2fh(x) = −
∫ 1

0

1

2(1 − t)
E[(ZZT − Id)(h̄(Zx,t)− h̄(

√
tx))] dt,

where ZT denotes the transpose of Z. Let a = (a1, . . . , ad)
T ∈ R

d and assume that |a| = 1. We have

aT∇2fh(x)a = −
∫ 1

0

1

2(1 − t)
E[aT (ZZT − Id) a (h̄(Zx,t)− h̄(

√
tx))]dt

= −
∫ 1

0

1

2(1 − t)
E[((Z · a)2 − 1) (h̄(Zx,t)− h̄(

√
tx))]dt.

Since |h̄(Zx,t)− h̄(
√
tx)| 6 [h]α(1− t)α/2‖Z‖α, we also have

|E[((Z · a)2 − 1) (h̄(Zx,t)− h̄(
√
tx))] | 6 [h]αE[|(a · Z)2 − 1| ‖Z‖α](1− t)α/2.(25)
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Let us bound E[|(a · Z)2 − 1| ‖Z‖α]. Let (a, e2, . . . , ed) be an orthonormal basis and Z̃ = (a · Z, e2 ·
Z, . . . , ed · Z)T . Then Z̃ ∼ N (0, Id). Moreover, E[|(a · Z)2 − 1| ‖Z‖α] = E[|Z̃2

1 − 1|‖Z̃‖α]. Thus,

E[|(a · Z)2 − 1| ‖Z‖α] = E[|Z̃2
1 − 1|‖Z̃‖α]

6 E[(Z̃2
1 + 1)‖Z̃‖α]

=
1

d

d
∑

i=1

E[(Z̃2
i + 1)‖Z̃‖α]

=
1

d
E[(‖Z̃‖2 + d)‖Z̃‖α].

For all β > 0, E‖Z‖β =
2
β
2 Γ(β+d

2
)

Γ(d/2) . We define

(26) C =
1

d
E[(‖Z̃‖2 + d) ‖Z̃‖α] = 2

α
2
α+ 2d

d

Γ(α+d
2 )

Γ(d/2)
.

This shows in particular that ‖∇2fh(x)‖op is bounded.
Now we consider

∣

∣aT
(

∇2fh(x)−∇2fh(y)
)

a
∣

∣ and split the integral into two parts. Let η ∈ [0, 1].
We have

|aT
(

∇2fh(x)−∇2fh(y)
)

a|

=

∣

∣

∣

∣

∫ 1

0

1

2(1− t)
E
[

aT (ZZT − Id) a(h̄(Zx,t)− h̄(Zy,t)
]

dt

∣

∣

∣

∣

6

∫ 1−η

0

1

2(1− t)
E
[

|aT (ZZT − Id) a| |h̄(Zx,t)− h̄(Zy,t)|
]

dt

+

∣

∣

∣

∣

∫ 1

1−η

1

2(1− t)
E
[

aT (ZZT − Id) a(h̄(Zx,t)− h̄(Zy,t))
]

∣

∣

∣

∣

dt.

Using the α-Hölder regularity of h for the first part of the integral and (24) twice in the second part
together with (25) and (26), we can bound the previous quantity by

[h]α|x− y|αE
[

|(a · Z)2 − 1|
]

∫ 1−η

0

tα/2

2(1 − t)
dt+ [h]αC

∫ 1

1−η
(1− t)−1+α/2dt(27)

6[h]α

(

−|x− y|α log η +
2C

α
ηα/2

)

,(28)

where to obtain (28), we used the facts that E
[

|(a · Z)2 − 1|
]

6 2 and tα/2 6 1. Choose η = |x− y|2
if |x − y| 6 1, η = 1 otherwise to get (18). Equation (21) is a straightforward reformulation since
1 + | log(u)| > 1. To get (20), simply note that for 0 < β < α and 0 < u 6 1, − log u 6 1

α−βu
β−α and

for 1 6 u, 1 6 uβ. �
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Proof of Proposition 2.3. The regularity of the Laplacian is proved in a similar manner as for the
operator norm of the Hessian; we do not detail the computations here. Let α ∈ (0, 1). We have

|∆f|x −∆f|y|

=

∣

∣

∣

∣

∫ 1

0

1

2(1− t)
E

[

d
∑

i=1

(Z2
i − 1)(h̄(Zx,t)− h̄(Zy,t)

]

dt

∣

∣

∣

∣

6

∫ 1−η

0

1

2(1− t)
E

[

∣

∣

∣

∣

d
∑

i=1

(Z2
i − 1)

∣

∣

∣

∣

|h̄(Zx,t)− h̄(Zy,t)|
]

dt

+

∫ 1

1−η

∣

∣

∣

∣

1

2(1− t)
E

[

d
∑

i=1

(Z2
i − 1)(h̄(Zx,t)− h̄(Zy,t))

]

∣

∣

∣

∣

dt

6[h]α|x− y|αE
[

‖Z‖2 + d
]

∫ 1−η

0

tα/2

2(1− t)
dt+ [h]αE[(‖Z‖2 + d)‖Z‖α]

∫ 1

1−η
(1− t)−1+α/2dt

6[h]α

(

−d |x− y|α log η + 2E[(‖Z‖2 + d)‖Z‖α]
α

ηα/2
)

.

Note that

E[(‖Z‖2 + d)‖Z‖α] = 2
α
2
+1Γ(α+d

2 + 1) + d 2
α
2 Γ(α+d

2 )

Γ(d/2)
= 2

α
2 (α+ 2d)

Γ(α+d
2 )

Γ(d/2)
,

and choose again η = |x− y|2 if |x− y| 6 1, η = 1 otherwise.
We can obtain better constants in the case α = 1. Indeed, note that by using only one integration

by parts,

E

[

d
∑

i=1

(Z2
i − 1)(h̄(Zx,t)− h̄(Zy,t))

]

=
√
1− tE

[

d
∑

i=1

Zi(∂ih̄(Zx,t)− ∂ih̄(Zy,t))

]

=
√
1− tE [Z · (∇h(Zt,x)−∇h(Zt,y)] ,

whose modulus can be thus bounded by

2
√
1− tE[‖Z‖] =

√
1− t

2
√
2√
π

√
d.

Using this bound in the integral between 1− η and 1, and choosing η as in Proposition 2.2, we obtain
the results. �

Proof of Proposition 2.4. Let u > 0. Denote Zt,u
i =

√
t u+

√
1− t Zi. We have

∂2fh
∂x∂y

(u, u) = −
∫ 1

0

1

2(1 − t)
E[Z1Z2h(Z

t,u
1 , Zt,u

2 )] dt

= −
∫ 1

0

1

2(1 − t)
E

[

Z1Z2(1Zt,u
2 >Zt,u

1 >0Z
t,u
1 + 1Zt,u

1 >Zt,u
2 >0Z

t,u
2 )
]

dt

= −
∫ 1

0

1

1− t
E

[

Z1Z21Zt,u
2 >Zt,u

1 >0 Z
t,u
1

]

dt

= − 1√
2π

∫ 1

0

1

1− t
E

[

Z1e
−Z2

1
2 1Zt,u

1 >0 (
√
t u+

√
1− t Z1)

]

dt,
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since E[Z21Zt,u
2 >Zt,u

1
| Z1] =

1√
2π

∫ +∞
Z1

z e−z2/2dz = 1√
2π
e−Z2

1/2. Now,

∫ 1

0

1

1− t
E

[

Z1e
−Z2

1
2 1Zt,u

1 >0

√
t u

]

dt

= u

∫ 1

0

√
t

1− t
E

[

Z1e
−Z2

1
2 1

Z1>−
√

t
1−t

u

]

dt

= u

∫ 1

0

√
t

1− t

∫ +∞

−
√

t
1−t

u
ze−z2 dz dt

=
u

2

∫ 1

0

√
t

1− t
e−

t
1−t

u2

dt

=
eu

2

u

2

∫ 1/u2

0

√
1− u2 t

t
e−

1
t dt.

It is readily checked that the last integral is equivalent to −2 log u, when u → 0+. On the other hand,
by Fubini’s theorem, we have

∫ 1

0

1√
1− t

E

[

Z2
1e

−Z2
1
2 (1Zt,u

1 >0 − 1Zt,0
1 >0)

]

dt

=

∫ 1

0

1√
1− t

∫ 0

−
√

t
1−t

u
z2e−z2dz dt

=

∫ 0

−∞
z2e−z2

∫ 1

z2

u2+z2

1√
1− t

dt dz

=
u

2

∫ 0

−∞

z2√
u2 + z2

e−z2 dz,

which is a O(u) as u → 0+. This achieves the proof. �
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