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An augmented Lagrangian method for equality
constrained optimization with rapid infeasibility
detection capabilities

Paul Armand · Ngoc Nguyen Tran

April 30, 2018

Abstract We present a primal-dual augmented Lagrangian method for solv-
ing an equality constrained minimization problem, which is able to rapidly
detect infeasibility. The method is based on a modification of the algorithm
proposed in [1]. A new parameter is introduced to scale the objective function
and, in case of infeasibility, to force the convergence of the iterates to an infea-
sible stationary point. It is shown, under mild assumptions, that whenever the
algorithm converges to an infeasible stationary point, the rate of convergence
is quadratic. This is a new convergence result for the class of augmented La-
grangian methods. The global convergence of the algorithm is also analysed.
It is also proved that, when the algorithm converges to a stationary point, the
properties of the original algorithm [1] are preserved. The numerical experi-
ments show that our new approach is as good as the original one when the
algorithm converges to a local minimum, but much more efficient in case of
infeasibility.

Keywords Nonlinear optimization · Augmented Lagrangian method ·
Infeasibility detection

1 Introduction

When solving an optimization problem, most of the time it is not known in
advance if the problem is feasible or not. If care is not taken, the numerical
solution of an infeasible nonlinear problem may lead to a long sequence of
iterations until the algorithm stops because a failure is detected. Even if the
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problem is feasible, the sequence of iterates may sometimes converges to an
infeasible stationary point. In that case it would be convenient to quickly detect
the infeasibility of the computed solution, in order to choose a new starting
point and hope to converge to a feasible solution. This issue is particularly
sensitive when solving large sequence of nonlinear optimization problems that
differ from each others by the values of some parameters or by some slight
modifications of the optimization model.

In this paper we concentrate on the rapid detection of the infeasibility in
the framework of the solution of a nonlinear optimization problem by means
of a primal-dual augmented Lagrangian method. The augmented Lagrangian
method was proposed independently by Hestenes [2] and Powell [3]. It is known
to be very robust with respect to the degeneracy due to the linear dependence
of the gradients of the constraints. This method is the basis of some efficient
softwares like LANCELOT-A [4], ALGENCAN [5,6] and SPDOPT [1]. It is
worth noting that the algorithm proposed in [1] departs from the standard
augmented Lagrangian algorithm by its primal-dual nature. The advantage
is to get a superlinear or quadratic rate of convergence of the iterates to an
optimal solution under usual assumptions. In this paper, we propose a mod-
ification of this algorithm which also guarantees a rapid rate of convergence
when the sequence of iterates converges to an infeasible stationary point.

The infeasibility detection has been recently the focus of particular atten-
tion for improving the behavior of augmented Lagrangian algorithms. Mart́ınez
and Prudente [7] proposed an adaptive stopping criterion for the solution of
the subproblems and showed that their new algorithm performs better than
the original version of ALGENCAN. Birgin et al. [8,9] improved also an aug-
mented Lagrangian algorithm within the framework of global optimization and
show better performances than the initial implementation in [10]. Gonçalves
et al. [11] extend the results of [8] to an entire class of penalty functions.
Within the framework of sequential quadratic programming (SQP) methods,
Byrd et al. [12] have proposed an algorithm to quickly detect infeasibility and
have shown that their algorithm has fast local convergence properties. To our
knowledge, this a first work that analyses the local convergence around an
infeasible stationary point. More recently, Burke et al. [13] have improved the
infeasibility detection for an SQP algorithm. They also proved the global and
rapid local convergence properties of their algorithm.

The augmented Lagrangian method of Armand and Omheni [1] may detect
infeasibility when the sequence of dual variables becomes unbounded and the
penalty parameter is forced to zero. The main drawback is that the infeasibil-
ity can take long to detect. We then propose to introduce a new parameter,
called the feasibility parameter, whose role is to control the progress of the
iterates to the feasible set. This parameter scales the objective function rela-
tively to the constraints until a nearly feasible point is detected. The level of
feasibility detection is arbitrary and, for example, can be chosen of the same
order as the overall stopping tolerance. Once this event arises, the algorithm
switches to its normal behavior and continues the minimization process until
convergence. From a formal point of view, the algorithm can be interpreted
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as the numerical solution of the Fritz-John optimality conditions, but with a
perturbation of the constraints due to the augmented Lagrangian parameters
(Lagrange multiplier and quadratic penalty term). The feasibility parameter
is updated dynamically. In particular, its value depends on the norm of the
residual of a primal-dual system related to the minimization of the infeasibility
measure. This leads to a superlinear or quadratic convergence of the sequence
of iterates to an infeasible stationary point. To our knowledge, this is the first
local convergence result in the infeasible case of an augmented Lagrangian
method. The paper concentrates on the equality constraints case, to complete
the capability of the algorithm [1] in detecting infeasibility. A possible exten-
sion to the general case with equalities and inequalities is discussed in the
conclusion section.

The paper is organized as follows. In the remainder of this section, we
summarize our notation and terminology which will be used. The algorithm
is described in the next section. The global convergence is studied in Section
3 and Section 4 is related to the asymptotic analysis. Some numerical experi-
ments are reported in Section 5 to demonstrate the efficiency of new method.
A conclusion section ends the paper.

Notation

For two real vectors x and y of same lengths, x>y is their Euclidean scalar
product and ‖x‖ = (x>x)1/2 is the associated norm. For a real matrix M ,
the induced matrix norm is ‖M‖ = max{‖Md‖ : ‖d‖ ≤ 1}. The inertia of a
real symmetric matrix M , denoted In(M) := (ι+, ι−, ι0), is the numbers of
positive, negative and null eigenvalues. For a function f and an iterate xk, to
simplify the notation we denote fk = f(xk). Likewise, f∗ stands for f(x∗),
and so on. The positive part of a real number r is defined by r+ = max{r, 0}.
Let {ak} and {bk} be nonnegative scalar sequences. We write ak = O(bk), or
equivalently bk = Ω(ak), if there exists a constant c > 0 such that ak ≤ c bk for
all k ∈ N. The notation ak = Θ(bk) means that ak = O(bk) and ak = Ω(bk).
We also write ak = o(bk), if ak = εkbk for all k ∈ N, with lim εk = 0.

2 Algorithm

We consider the equality constrained optimization problem

minimize ρf(x) subject to c(x) = 0, (Pρ)

where f : Rn → R and c : Rn → Rm are smooth, and where ρ ≥ 0. For the
value ρ = 1, the problem (P1) is referred as the original problem, the one to
be initially solved. For the value ρ = 0, any feasible solution is optimal for
(P0). The parameter ρ is then called as the feasibility parameter.

The main contribution of this paper is to propose an updating strategy of
the feasibility parameter, in order to guarantee the global convergence of the
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minimization algorithm to a feasible or an infeasible stationary point of the
original problem and also fast local convergence in both cases.

Let us recall some definitions about stationary points. A point x ∈ Rn is
called a Fritz-John (FJ) point of problem (P1) if there exists (z, y) ∈ R× Rm
with (z, y) 6= 0 such that

c(x) = 0 and zg(x) +A(x)y = 0,

where g(x) = ∇f(x) denotes the gradient of f at x and A(x) = ∇c(x) is
the transpose of the Jacobian matrix of the constraints at x. A FJ point x
is a Karush-Kuhn-Tucker (KKT) point whenever z 6= 0. In that case, y/z is
the vector of Lagrange multipliers related to problem (P1). A FJ point x for
which z = 0 is called a singular stationary point. In other words, a singular
stationary point is a feasible point at which the linear independence constraint
qualification (LICQ) does not hold. A point x ∈ Rn is called an infeasible
stationary point of problem (P1) if

c(x) 6= 0 and A(x)c(x) = 0.

In other words, an infeasible stationary point is not feasible for the problem
(P1) and is a stationary point for the feasibility problem

minimizex∈Rn
1
2‖c(x)‖2. (1)

The augmented Lagrangian associated with (Pρ) is defined as

Lρ,σ(x, λ) := ρf(x) + λ>c(x) + 1
2σ‖c(x)‖2, (2)

where λ ∈ Rm is an estimate of the vector of Lagrange multipliers associated
with the equality constraints and σ > 0 is a quadratic penalty parameter.
Recall that when x∗ is a KKT point for (Pρ), with an associated vector of
Lagrange multipliers λ∗, if the sufficient second order optimality conditions
hold at x∗, then x∗ is a strict local minimum of Lρ,σ(·, λ∗) provided that
σ is large enough, see, e.g., [14, Proposition 1.26]. This result serves as a
basis of augmented Lagrangian methods, in which the augmented Lagrangian
is minimized while the parameters λ and σ are updated in an appropriate
manner, see, e.g., [15, Chapter 17].

The first order optimality conditions for minimizing Lρ,σ(·, λ) are

ρg(x) +A(x)
(
λ+ 1

σ c(x)
)

= 0.

By introducing the dual variable y ∈ Rm and the notation w := (x, y), these
optimality conditions can be reformulated as

Φ(w, λ, ρ, σ) :=

(
ρg(x) +A(x)y
c(x) + σ(λ− y)

)
= 0.

These formulation of the optimality conditions for minimizing (2) serves as a
basis of our algorithm. Note that by setting λ = y, we retrieve the optimality
conditions of problem (Pρ).
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Let us define the regularized Jacobian matrix of the function Φ with respect
to w by

Jρ,σ,θ(w) =

(
Hρ,θ(w) A(x)
A(x)> −σI

)
,

where θ ≥ 0 is a regularization parameter and where

Hρ,θ(w) = ρ∇2f(x) +

m∑
i=1

yi∇2ci(x) + θI

is the regularized Hessian of the Lagrangian associated with (Pρ). During
the iterations, the regularization parameter is chosen to control the inertia
of regularized Jacobian matrix of Φ. It is well known that In(Jρ,σ,θ(w)) =
(n,m, 0) if and only if the matrix

Kρ,σ,θ(w) := Hρ,θ(w) + 1
σA(x)A(x)>

is positive definite (see, e.g., [16, Lemma A.16]). A link with the augmented
Lagrangian is given by the following formula:

Kρ,σ,θ(w) = ∇2
xxLρ,σ(x, y − 1

σ c(x)) + θI.

The algorithm is a Newton-type method for the solution of the optimality
system Φ = 0 and it follows the one proposed in [1]. The globalization scheme
of the algorithm uses two kinds of iteration. At a main iteration, called outer
iteration, all the parameters λ, ρ and σ are updated and a full Newton step
for the solution of Φ = 0 is performed. If the norm of the residual ‖Φ‖ at
the trial iterate is deemed sufficiently small, then the new iterate is updated
and a new outer iteration is called, otherwise the parameters are fixed to
their current values and a sequence of inner iterations is applied in order to
reduce sufficiently ‖Φ‖. The inner iteration algorithm is a backtracking line
search applied to a primal-dual merit function, whose first order optimality
conditions correspond to Φ = 0.

We now describe the outer iteration algorithm in detail. Initially, a starting
point w0 = (x0, y0) ∈ Rn+m is chosen, then we set λ0 = y0, choose ρ0 > 0,
σ0 > 0 and three constants a ∈ (0, 1), ` ∈ N and τ ∈ (0, 1). The iteration
counter is set to k = 0 and an additional index is set to i0 = 0. Let F be a flag
to indicate if the algorithm is in the feasibility detection phase or not. Initially
the flag is set to F = 1. A feasibility tolerance ε > 0 is chosen.

The algorithm is quite similar to [1, Algorithm 1], except for the first four
steps which are related to the updating of the parameters.

At the first step, the algorithm tests if a nearly feasible point has been de-
tected. If it is the case, the algorithm switches into the normal operating mode
of [1, Algorithm 1]. This means in particular that the feasibility parameter ρk
will remain constant for all further iterations.

This switching mechanism is necessary to avoid the undesirable situation
where the feasibility measure goes to zero very slowly, while the condition (3)
is alternatively satisfied and not satisfied an infinite number of times, leading
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Algorithm 1 (kth outer iteration)

1. If ‖ck‖ ≤ ε, then set F = 0.
2. Choose ζk > 0 such that {ζk} → 0. If k = 0 or

‖ck‖ ≤ amax{‖cij ‖ : (k − `)+ ≤ j ≤ k}+ ζk (3)

then set ik+1 = k and go to Step 4, otherwise set ik+1 = ik.
3. If F = 1, then choose 0 < ρk+1 ≤ τρk and set σk+1 = σk, else choose 0 < σk+1 ≤ τσk

and set ρk+1 = ρk. Set λk+1 =
ρk+1

ρk
λk and go to Step 5.

4. Choose 0 < σk+1 ≤ σk. Set ρk+1 = ρk and λk+1 = yk.
5. Define Jk = Jρk+1,σk+1,θk (wk). Choose the regularization parameter θk ≥ 0 such that

In(Jk) = (n,m, 0). Compute w+
k by solving the linear system

Jk(w+
k − wk) = −Φ(wk, λk+1, ρk+1, σk+1).

6. Choose εk > 0 such that {εk} → 0. If

‖Φ(w+
k , λk+1, ρk+1, σk+1)‖ ≤ εk, (4)

then set wk+1 = w+
k . Otherwise, apply a sequence of inner iterations to find wk+1 such

that
‖Φ(wk+1, λk+1, ρk+1, σk+1)‖ ≤ εk. (5)

to a decrease of the feasibility parameter to zero. Moreover, in this situation,
it would be impossible to make the distinction between the satisfaction of the
KKT conditions and the regularity of the constraints.

At the second step, the algorithm tests if a sufficient reduction of the
feasibility measure has been obtained. If it is the case, the feasibility parameter
is kept constant, the Lagrange multiplier estimate is set to the current value
of the dual variable and a new value of the quadratic penalty parameter is
chosen. For k ≥ 1, the index ik is the number of the last iteration prior to
k at which inequality (3) holds. Note that, at Step 4, the quadratic penalty
parameter is chosen in such a way that it could remain constant all along the
iterations. But in that case, the convergence to a KKT point is only linear and
the numerical experiments in [1] have shown that, in practice, it is better to
force the convergence of σk to zero.

If the algorithm detects that the constraints have not decreased sufficiently,
because condition (3) is not satisfied, then there are two situations. If F = 1,
then the algorithm is still in the feasibility detection phase. In that case, the
feasibility parameter is sufficiently decreased, the quadratic penalty parameter
is kept constant and the Lagrange multiplier estimate is rescaled. This scaling
is important to force the convergence to zero of {λk} when this step is always
executed from some iteration (see Lemma 2.1-(ii)), ensuring that the sequence
of iterates approaches stationarity of the feasibility problem (see Theorem 3.1-
(ii)). The second situation is when F = 0. In that case the algorithm has left the
feasibility detection phase. Then the feasibility parameter is kept constant, but
the quadratic penalty parameter is decreased to penalize the constraints and
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the Lagrange multiplier estimate is kept constant as in a classical augmented
Lagrangian algorithm.

The following lemma summarizes the behavior of the algorithm regarding
the feasibility detection strategy and the update rules of the parameters.

Lemma 2.1 Assume that Algorithm 1 generates an infinite sequence {wk}.
Let K ⊂ N be the set of iteration indices for which the condition (3) is satisfied.

(i) If K is infinite, then the subsequence {ck}k∈K converges to zero and {ρk}
is eventually constant.

(ii) If K is finite, then lim inf ‖ck‖ > 0 and both sequences {σkρk} and {σkλk}
converge to zero.

Proof For k ∈ N, set βk = ‖cik‖. We then have for all k ∈ K,

βk+1 ≤ amax{βj : (k − l)+ ≤ j ≤ k}+ ζk

and for all k /∈ K, βk+1 = βk. It has been shown in [1, Lemma 3.1] that such
a sequence converges to zero. This proves the first conclusion of assertion (i).
Since {ck}k∈K converges to zero, then there exists k0 ∈ K such that ‖ck0‖ ≤ ε
and thus F = 0 for all further iterations. The update rules of the feasibility
parameter at Step 3 and Step 4 imply that ρk = ρk0 for all k ≥ k0, which
proves the second conclusion of assertion (i).

To prove conclusion (ii), suppose that K is finite and let k0 = maxK. For
all k ≥ k0 +1, ik = k0 and Step 3 is executed. It follows that for all k ≥ k0 + `,
we have ‖ck‖ > a‖ck0‖, therefore lim inf ‖ck‖ > 0. We consider two cases. If at
some iteration k, ‖ck‖ ≤ ε, then F = 0 for all further iterations. The update
of the parameters at Step 3 implies that both sequences {ρk} and {λk} are
eventually constant and {σk} tends to zero. It follows that {σkρk} and {σkλk}
tend to zero. The second case is when ‖ck‖ > ε for all k ∈ N, which implies
that F = 1 at each iteration. In that case, for all k ≥ k0 + 1, ρk+1 ≤ τρk,
σk+1 = σk and λk+1 = ρk+1

ρk0
yk0 . We deduce that {ρk} goes to zero, {σk} is

eventually constant and {λk} goes to zero, which implies that both sequences
{σkρk} and {σkλk} tend to zero. ut

At Step 5 of Algorithm 1, the parameter θk is selected to control the inertia
of the matrix Jk. This issue is important to avoid that the outer iterates
converge to a stationary point which is not a local minimum, see [17].

At Step 6, a tolerance εk > 0 is chosen to check if a sufficient reduction of
the norm of the optimality conditions at the candidate iterate w+

k has been
obtained. An example of choice of εk is detailed in Section 5. If the residual
norm is not smaller than this tolerance, then a sequence of inner iterations is
called to compute the new iterate.

The inner iteration algorithm consists of a minimization procedure of the
primal-dual merit function defined by

ϕλ,ρ,σ,ν(w) = Lρ,σ(x, λ) + ν
2σ‖c(x) + σ(λ− y)‖2,
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where ν > 0 is a scaling parameter. It is easy to see that w is a stationary point
of this function if and if only Φ(w, λ, ρ, σ) = 0. The minimization procedure is
a backtracking line search algorithm quite similar to [1, Algorithm 2] and we
refer the interested reader to this paper for a full description of this algorithm.
The only difference is that in our description of Algorithm 1, the quadratic
parameter σk+1 is kept constant during the inner iterations, while in [1] it can
be increased. This choice has no impact from a theoretical point of view and
simplifies the presentation of the algorithm. In our numerical experiments, the
value of the quadratic penalty parameter is also kept constant during the inner
iterations.

3 Global convergence analysis

The global convergence of the inner iteration algorithm has been studied in
[1, Theorem 2.3]. It has been shown that if the function f is bounded from
below, a usual assumption in a global convergence analysis, if the gradient of
the constraints and the regularized Hessian of the Lagrangian stay bounded
during the inner iterations, then the iterate wk+1 can be computed in a finite
number of inner iterations. In view of this result, it will be assumed that the
inner iteration algorithm succeeds in a finite number of iterations in finding
wk+1 each time it is called at Step 6 of Algorithm 1.

Theorem 3.1 Assume that Algorithm 1 generates an infinite sequence {wk}.
Assume also that the sequence {(gk, Ak)} is bounded. In any case, the iterates
approach feasible or infeasible stationarity of problem (P1). More precisely, let
K ⊂ N be the set of iteration indices for which the condition (3) is satisfied.
Then, at least one of the following situations occurs.

(i) If K is infinite, then the subsequence {ck}K tends to zero. In addition, if
{yk}K is bounded, then the sequence {(gk, Ak)} has a limit point (ḡ, Ā)
such that ḡ + Āȳ = 0 for some ȳ ∈ Rm. If {yk}K is unbounded, then
{Ak} has a limit point Ā which is rank deficient.

(ii) If K is finite, then {‖ck‖} is bounded away from zero and {Akck} tends
to zero.

Proof First note that the convergence to zero of the sequence {ρkgk + Akyk}
is a direct consequence of Step 6 of Algorithm 1.

Let us prove outcome (i). Lemma 2.1-(i) implies that limK ck = 0 and {ρk}
is eventually constant. If {yk}K is bounded, then the assumptions imply that
the whole sequence {(gk, Ak, yk/ρk)}K is bounded and so has a limit point
(ḡ, Ā, ȳ) such that ḡ + Āȳ = 0, which proves the first part of outcome (i).
Suppose now that {yk}K is unbounded. There exists K′ ⊂ K such that yk 6= 0
for all k ∈ K′ and limK′ ‖yk‖ =∞. For k ∈ K′, we have

‖Akuk‖ ≤ 1
‖yk‖‖ρkgk +Akyk‖+ ρk

‖yk‖‖gk‖,

where uk = yk/‖yk‖. Because {(Ak, uk)}K′ is bounded, this sequence has a
limit point (Ā, ū), with ū 6= 0. By taking the limit in the previous inequality,
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knowing that the two terms of the right-hand side tend to zero, we deduce
that Āū = 0, which proves the second part of outcome (i).

For outcome (ii), suppose that K is finite. Lemma 2.1-(ii) implies that
{‖ck‖} is bounded away from zero and {σkρk, σkλk} tends to zero. For all
k ∈ N, we have

Akck = Ak(ck + σk(λk − yk))− σkAkλk + σk(ρkgk +Akyk)− σkρkgk.

By taking the norm on both sides, for all k we have

‖Akck‖
≤ ‖Ak‖‖ck + σk(λk − yk)‖+ σk‖Ak‖‖λk‖+ σk‖ρkgk +Akyk‖+ σkρk‖gk‖
≤ max{‖Ak‖, σk, ‖gk‖}(2‖Φ(wk, λk, yk, σk)‖+ σk‖λk‖+ σkρk).

Because the first term of the right-hand side of this inequality is bounded
above and all the terms in the parenthesis tend to zero, we have limAkck = 0,
which concludes the proof. ut

To sum up, the next result shows the behavior of the algorithm when the
sequence of primal iterates remains bounded, a usual and mild assumption in
a global convergence analysis.

Theorem 3.2 Assume that Algorithm 1 generates an infinite sequence {wk}
such that the sequence {xk} lies in a compact set.

(i) Any feasible limit point of the sequence {xk} is a Fritz-John point of
problem (P1).

(ii) If the sequence {xk} has no feasible limit point, then any limit point is
an infeasible stationary point of problem (P1).

Proof The compactness assumption implies that the sequences {gk} and {Ak}
are bounded and so Theorem 3.1 applies.

Let x̄ be a limit point of {xk} such that c̄ = 0. From Lemma 2.1-(ii) we
have that the condition (3) is satisfied an infinite number of times. It follows
from Lemma 2.1-(i) that there exists k0 ∈ N such that for all k ≥ k0, ρk = ρk0 .
Let J ⊂ N such that the subsequence {xk}J tends to x̄. Step 6 of Algorithm 1
implies that the sequence {ρk0gk+Akyk} tends to zero. Dividing by ‖(ρk0 , yk)‖
and because ρk0 6= 0, we have

lim
k→∞
k∈J

ρk0gk +Akyk
‖(ρk0 , yk)‖ = 0.

By compactness, the sequence {(ρk0 , yk)/‖(ρk0 , yk)‖}J has a limit point (ρ̄, ȳ),
such that ‖(ρ̄, ȳ)‖ = 1 and ρ̄ḡ + Āȳ = 0, which proves assertion (i).

Suppose now that {xk} has no feasible limit point. From Lemma 2.1-(i)
we have that the condition (3) is only satisfied a finite number of times. The-
orem 3.1-(ii) implies that Āc̄ = 0 for any limit point x̄ of {xk}, which proves
assertion (ii). ut
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4 Asymptotic analysis

We have to distinguish two cases for the asymptotic analysis. The first one is
when the sequence {wk} converges to a primal-dual solution of the problem.
In this case, because {ck} converges to zero, the feasibility parameter becomes
constant after a finite number of iterations and the algorithm is reduced to
Algorithm 1 in [1] applied to the solution of problem (Pρ) with a fixed value of
ρ. It has been show that under the classical assumptions of linear independence
constraint qualification and second order sufficient conditions at the optimal
limit point, a suitable choice of the parameters allows to get a superlinear
or quadratic rate of convergence of {wk}, see [1, Theorems 4.4 and 4.5]. The
second case to analyse is when the sequence {xk} converges to an infeasible
stationary point. This is what we will develop in detail in this section.

The first assumption is that the sequence of iterates converges to an infea-
sible stationary point.

Assumption 1 Algorithm 1 generates an infinite sequence {wk} which con-
verges to w∗ = (x∗, y∗) ∈ Rn+m, where x∗ is an infeasible stationary point of
problem (P1).

This assumption is very usual for the analysis of the rate of convergence of a
numerical optimization algorithm. Note that it equivalent to assume that {xk}
converges to an infeasible stationary point x∗ and the algorithm always stays
in the feasibility detection phase, i.e., F = 1 for all iteration. This indicates
that the choice of the value of the feasibility tolerance ε is an important issue
related to the behavior of the algorithm. In practice, ε is chosen equal to, or
smaller than, the stopping tolerance of the overall algorithm.

Lemma 4.1 Under Assumption 1, the inequality (3) is satisfied a finite num-
ber of times, the sequence {ρk} converges to zero, {σk} is eventually constant
and ‖λk‖ = O(ρk).

Proof Assumption 1 implies that {ck} converges to a non-zero value. There-
fore, by virtue of Lemma 2.1-(i), the inequality (3) is satisfied only a finite
number of times. It follows that Step 3 of Algorithm 1 is always executed for
k sufficiently large and that F = 1 for all iteration. Indeed, for all k ∈ N we
have

‖ck‖ ≤ ‖ck + σk(λk − yk)‖+ σk‖λk‖+ σk‖yk‖.
Step 6 and Lemma 2.1-(ii) imply that the first two terms of the right-hand side
of the inequality tend to zero. Because {yk} is supposed to be convergent, we
deduce that the sequence {σk} does not converge to zero, which implies that
F = 1 for all iteration. Therefore, there exists k0 ∈ N such that for all k ≥ k0,
ρk ≤ τk−k0ρk0 , σk = σk0 and λk/ρk = λk0/ρk0 , the conclusion follows. ut

Let σ > 0 be the limit value of {σk}. For w = (x, y) ∈ Rn+m, let us define

F (w) =

(
A(x)y

c(x)− σy

)
. (6)
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We have limΦ(wk, λk, ρk, σk) = Φ(w∗, 0, 0, σ) = F (w∗), therefore y∗ = 1
σ c
∗.

Assumption 2 The function f and c are twice continuously differentiable and
their second derivatives are Lipschitz continuous over an open neighborhood of
x∗.

The Hessian matrix of the function 1
2‖c‖2 is defined as

C :=
∑
i ci∇2ci +AA>.

Assumption 3 The sufficient second order optimality conditions hold at x∗

for the feasibility problem (1), i.e., the matrix C∗ is positive definite.

The following lemma is a direct consequence of these assumptions.

Lemma 4.2 Under Assumptions 2 and 3, there exist a neighborhood W of
w∗, M > 0, L > 0 and 0 < a1 ≤ a2 such that for all w,w′ ∈W we have

(i) ||F ′(w)−1|| ≤M,
(ii) ||F (w′)− F (w)− F ′(w)(w′ − w)‖ ≤ L

2 ‖w − w′‖2,
(iii) a1‖w − w′‖ ≤ ‖F (w)− F (w′)‖ ≤ a2‖w − w′‖.

Proof To prove (i) it suffices to show that F ′(w∗) is nonsingular. By using the
fact that y∗ = 1

σ c
∗, we have

F ′(w∗) =

(
1
σ

∑
i c
∗
i∇2c∗i A∗

A∗> −σI

)
.

It is well known that F ′(w∗) is nonsingular if and only if the matrix 1
σC
∗, the

Schur complement of −σI of the matrix F ′(w∗), is positive definite (see, e.g.,
[18, Lemma 4.1]). Assumption 2 implies that F ′ is Lipschitz continuous on W
with the Lipschitz constant L. Property (ii) then follows from the Lipschitz
continuity of F ′ and from [19, Lemma 4.1.12]. The assertion (iii) follows from
[19, Lemma 4.1.16]. ut

The next lemma shows that the matrix Jk used at Step 5 of Algorithm 1 is
a good approximation of the Jacobian matrix of F at wk when the feasibility
parameter goes to zero.

Lemma 4.3 Under Assumptions 1-3, there exists β > 0 such that for all
k ∈ N large enough,

‖Jk − F ′k‖ ≤ βρk+1 and ‖J−1k ‖ ≤ 2M,

where M is defined by Lemma 4.2.

Proof From the definition of Jk, for all k ∈ N we have

‖Jk − F ′k‖ = ‖ρk+1∇2fk + θkI‖.

Because of the convergence of {xk} and of Assumption 2, the first inequality
will follow if we show that θk = 0 for k large enough. This happens if In(Jk) =
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(n,m, 0) or, equivalently, if Kρk+1,σ,0(wk) is positive definite for k large enough.
For all k ∈ N we have

Kρk+1,σ,0(wk) = Hρk+1,0(wk) + 1
σAkA

>
k

= 1
σC
∗ + 1

σ (Ck − C∗) +Hρk+1,0(xk, yk − 1
σ ck)

By assumption C∗ is positive definite and the two other matrices tend to zero
when k tends to infinity. It follows that Kρk+1,σ,0(wk) is positive definite for k
large enough, which proves the first inequality of the statements.

Using Lemma 4.2-(i), the inequality just proved and the fact that {ρk}
tends to zero, for k large enough we have

‖F ′−1k (Jk − F ′k)‖ ≤ ‖F ′−1k ‖‖Jk − F ′k‖
≤ Mβρk+1

≤ 1
2 .

It then suffices to apply [19, Theorem 3.1.4] to prove the second inequality of
the statements. ut

The last lemma gives an estimate of the distance of the Newton iterate w+
k

to the solution w∗.

Lemma 4.4 Assume that Assumptions 1-3 hold. The sequence of iterates gen-
erated by Algorithm 1 satisfies

‖w+
k − w∗‖ = O(‖wk − w∗‖2) + O(ρk+1).

Proof Let k ∈ N. From the definition of the trial iterate w+
k at Step 5 of

Algorithm 1, we have

w+
k − w∗ = wk − w∗ − J−1k Φ(wk, λk+1, ρk+1, σ)

= J−1k
(
(Jk − F ′k)(wk − w∗) + F ′k(wk − w∗)− Fk

+ Fk − Φ(wk, λk+1, ρk+1, σ)
)
.

By using F ∗ = 0, by taking the norm on both sides, then by applying Lemma 4.3,
Lemma 4.2-(ii), finally by using the convergence of {wk} to w∗, the bounded-
ness of {gk} and ‖λk‖ = O(ρk) from Lemma 4.1, we obtain

‖w+
k − w∗‖
≤ ‖J−1k ‖

(
‖Jk − F ′k‖‖wk − w∗‖+ ‖F ∗ − Fk − F ′k(w∗ − wk)‖

+ ‖Fk − Φ(wk, λk+1, ρk+1, σ)‖
)

≤ 2M
(
βρk+1‖wk − w∗‖+ L

2 ‖wk − w∗‖2 + ρk+1‖gk‖+ σ‖λk+1‖
)

= O(ρk+1) + O(‖wk − w∗‖2),

which concludes the proof. ut

We now state the main result of this section
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Theorem 4.1 Assume that Assumptions 1-3 hold. Let t ∈ (0, 2]. If the fea-
sibility parameter of Algorithm 1 is chosen so that ρk+1 = O(‖Fk‖t), then

‖wk+1 − w∗‖ = O(‖wk − w∗‖t). (7)

In addition, if ρk+1 = Θ(‖Fk‖t) and if εk = Ω(ρt
′

k ) for 0 < t′ < t, then for k
large enough there is no inner iterations, i.e., wk+1 = w+

k .

Proof The assumption on the value of ρk+1 and the Lipschitz property of F
from Lemma 4.2-(iii) imply that

ρk+1 = O(‖wk − w∗‖t). (8)

Using this estimate in Lemma 4.4, we deduce that

‖w+
k − w∗‖ = O(‖wk − w∗‖t). (9)

At Step 6 of Algorithm 1, we have either wk+1 = w+
k or wk+1 is computed

by means of the inner iterations. In the first case, it is clear that (7) follows
from (9). Suppose now that the second case holds, i.e., the inequality (4) is
not satisfied at iteration k. We then have

‖Φ(wk+1, λk+1, ρk+1, σ)‖ ≤ εk < ‖Φ(w+
k , λk+1, ρk+1, σ)‖. (10)

From (9), the sequence {w+
k } tends to w∗, therefore {g+k } is bounded. Using

the second inequality of Lemma 4.2-(iii) and Lemma 4.1, then (8) and (9), we
deduce that

‖Φ(w+
k , λk+1, ρk+1, σ)‖ ≤ ‖F+

k − F ∗‖+ ρk+1‖g+k ‖+ σ‖λk+1‖
= O(‖w+

k − w∗‖) + O(ρk+1)

= O(‖wk − w∗‖t). (11)

Combining (10) and(11) we obtain

‖Φ(wk+1, λk+1, ρk+1, σ)‖ = O(‖wk − w∗‖t).

Finally, from the first inequality of Lemma 4.2-(iii), the last estimate, the
boundedness of {gk}, Lemma 4.1 and the estimate (8), we have

a1‖wk+1 − w∗‖ ≤ ‖Fk+1 − F ∗‖
= ‖Fk+1‖
≤ ‖Φ(wk+1, λk+1, ρk+1, σ)‖+ ρk+1‖gk+1‖+ σ‖λk+1‖
= O(‖wk − w∗‖t) + O(ρk+1)

= O(‖wk − w∗‖t),

which proves (7).
Let us now prove the second assertion of the theorem. On one hand,

Lemma 4.2-(iii) and (7) imply that ‖Fk+1‖ = O(‖Fk‖t). By assumption,
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we have ρk+1 = Θ(‖Fk‖t), thus ρk+1 = O(ρtk). Since t′ < t, we then have

ρk+1 = o(ρt
′

k ). On the other hand, the estimate (11) implies that

‖Φ(w+
k , λk+1, ρk+1, σ)‖ = O(‖Fk‖t) = O(ρk+1).

By assumption, εk = Ω(ρt
′

k ), therefore for k large enough, the inequality (4)
is satisfied. ut

5 Numerical experiments

Our algorithm is called SPDOPT-ID (Strongly Primal-Dual Optimization with
Infeasibility Detection) and has been implemented in C. The performances of
SPDOPT-ID are compared with those of SPDOPT-AL [1] on a set of 130
standard problems from the CUTEr collection [20]. The selected problems are
those with equality constraints and a solution time less than 300 seconds. To
create a second set of 130 infeasible problems, the constraint c21 +1 = 0, where
c1 is the first component of c, has been added to each problem. Note that the
addition of this new constraint leads to a twofold difficulty. Indeed, not only
the constraints are infeasible, but their gradients are linearly dependent.

We also compare the condition used to update the parameters in Step 2
of Algorithm 1, with the one used in [1, Algorithm 1]. The algorithm called
SPDOPT-IDOld, is Algorithm 1, but with the inequality (3) replaced by

‖ck‖ ≤ amax{‖cij‖+ ζij : (k − `)+ ≤ j ≤ k}. (12)

We will show that this modification is of importance when solving an infeasible
problem and that the use of (3) in place of (12), leads to better numerical
performances.

The feasibility parameter is initially set to ρ0 = 1. When F = 1, the
feasibility parameter in Step 3 is updated by the formula

ρk+1 = min{0.2ρk, 0.2‖Fk‖2, 1/(k + 1)}.

The assumption on ρk+1 in the statements of Theorem 4.1 are satisfied with
t = 2. The rate of convergence of {wk} to w∗ is then quadratic. A lower bound
of 10−16 is applied on this parameter.

The parameters σk and θk are updated at Step 4 and Step 5 as in [1,
Algorithm 1].

To be able to solve a quadratic problem in only one iteration, we adopt
the same procedure as in [21] for the choice of the starting point. Let w̄ =
(x̄, ȳ), where x̄ is the default starting point and ȳ = (1, . . . , 1)>. Initially, the
following linear system J1,0,0(w̄)d = −Φ(w̄, ȳ, 1, 0) is solved. If the inequality
‖Φ(w̄+d, 0, 1, 0)‖∞ ≤ ‖Φ(w̄, 0, 1, 0)‖∞ is satisfied, then w0 = w̄+d, otherwise
w0 = w̄.

The algorithm is terminated and an optimal solution is declared to be found
if ‖(gk+Akyk/ρk, ck)‖∞ ≤ εtol with εtol = 10−8. Otherwise, if ρk ≤ εtol, ‖ck‖ >
εtol and ‖Φ(wk, 0, 0, σk)‖∞ ≤ εtol, the algorithm returns a notification that an
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The linear solver MA57 [17] is used for all the algorithms. The maximum
number of iterations3 (both inner and outer iterations) is limited to 3000.
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Figure 1: Performance profiles comparing 3 algorithms on the set of standard
problems

For the standard problems, only 129 problems solved by at least one of
three algorithms are selected for the comparison purpose4 (problem dixchlng

was not solved). Figure 1 shows the performance profiles of Dolan and Moré
[16] on the number of function evaluations and on the number of gradient
evaluations. The left figure shows that SPDOPT-ID and SPDOPT-IDOld
are very slightly more e�cient than SPDOPT-AL, but the di↵erence is not
significant. In term of robustness, the three algorithms solve successfully
the same number of problems (128 problems). The similar observations can
be made for a comparison on the number of gradient evaluations (the right
figure). From these first experiments, we can conclude that the new strategy
does not reduce the good performance of the original algorithm (SPDOPT-
AL) on the set of standard problems.

3Inner? Outer? Inerr+Outer?
4What is the problem not solved by any algorithm?

17

Fig. 1 Performance profiles comparing the three algorithms on the set of standard problems

infeasible stationary point has been found. For SPDOPT-AL, we also add the
stopping condition ‖ck‖ > εtol, ‖Akck‖ ≤ εtol and σk ≤ εtol to terminate this
algorithm at an infeasible stationary point.

As mentioned in Section 4, the feasibility tolerance at Step 1 is set to
ε = εtol, to get a fast local convergence when the algorithm converges to an
infeasible stationary point.

At Step 2 of Algorithm 1, we choose a = 0.9, ` = 2 and ζk = 10σkρk for all
iteration k.

The sequence of tolerance {εk} in Step 6 is defined by the following formula

εk = 0.9 max{‖Φ(wi, λi, ρi, σi)‖ : (k − 4)+ ≤ i ≤ k}+ ζk.

The convergence to zero of the sequence {εk} is a consequence of [21, Propo-
sition 1]. This choice meets the requirements to get a fast convergence in both
feasible case, i.e., εk = Ω(σk+1), and in the infeasible case, i.e., εk = Ω(ρt

′

k ),
with t′ = 1.

The linear solver MA57 [22] is used for all the algorithms. The maximum
number of iterations, counting both the inner and the outer iterations, is lim-
ited to 3000.

For the standard problems, only 129 problems solved by at least one of
three algorithms are selected for the comparison purpose (problem dixchlng

has not been solved). Figure 1 shows the performance profiles of Dolan and
Moré [23] on the numbers of function and gradient evaluations. These pro-
files show that the performances of the three algorithms are very similar, the
difference is not significant. In term of robustness, the three algorithms solve
successfully the same number of problems (128 problems). We can conclude
that the infeasibility detection does not reduce the performances of the algo-
rithm for solving standard problems.

Figure 2 shows the performances of these algorithms in terms of numbers
of function and gradient evaluations on a set of 126 infeasible problems (the
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Figure 2: Performance profiles comparing 3 algorithms on the set of infeasible
problems

Figure 2 shows the performances of these algorithms on the set of 126 in-
feasible problems (4 problems gilbert, hager3, porous1, porous2 have
been eliminated since three algorithms can not detect the infeasibility). We
observe that SPDOPT-ID is the most e�cient algorithm for detecting infea-
sible problems, with an e�ciency rate of approximately 90%. In any case, the
e�ciency of SPDOPT-ID and SPDOPT-IDOld is very significant comparing
to SPDOPT-AL. In term of robustness, our two algorithms are more robust
than SPDOPT-AL since they can detect more than 95% of problems, whereas
SPDOPT-AL only detects less than 60%. This figure also demonstrates the
domination of SPDOPT-ID comparing to SPDOPT-IDOld, justifying the
choice of new criterion for updating parameters.

Figure 3 gives a general overview about the performances of these al-
gorithms on the set of 255 problems including both standard and infeasible
problems. It emphasizes the better performances in e�ciency and robustness
of SPDOPT-ID.
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Fig. 2 Performance profiles comparing the three algorithms on the set of infeasible problems

problems gilbert, hager3, porous1, porous2 have been eliminated since
three algorithms cannot detect the infeasibility). We observe that SPDOPT-
ID is the most efficient algorithm for detecting infeasible problems, with an
efficiency rate of approximately 90%. In any case, the efficiency of SPDOPT-
ID and SPDOPT-IDOld is very significant comparing to SPDOPT-AL. In
term of robustness, our two algorithms are more robust than SPDOPT-AL
since they can detect more than 95% of problems, whereas SPDOPT-AL only
detects less than 60%. This figure also shows that SPDOPT-ID is better com-
paring to SPDOPT-IDOld, justifying the choice of new criterion for updating
parameters.
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Figure 3: Performance profiles comparing 3 algorithms on the set of standard
and infeasible problems

6 Conclusions

5 6 In this paper, we have introduced and studied an augmented Lagrangian
algorithm capable of detecting infeasible problems with the appearance of a
new parameter called the feasibility parameter. The global and local con-
vergence analyses along with the numerical results on some problems show
that this method is reliable for solving feasible optimization problems and
for detecting rapidly the infeasibility. This is due to the inclusion of the
feasibility parameter. Indeed, augmented Lagrangian methods, in particular
SPDOPT-AL, handle the infeasibility by decreasing the penalty parameter
to zero. This leads to some numerical di�culties which are not the case in the
new algorithm. Therefore, this new approach is applicable to other methods
such as SQP or interior point. Nevertheless, more sophisticated conditions to
update parameters should be proposed to improve the robustness of our new
algorithm. On the other hand, the fast local convergence is assured under
the assumption that the infeasible stationary point is su�ciently infeasible,
i.e. kc⇤k > ✏, for some ✏ > 0. We observed some examples in which the al-

5To finish.
6In a conclusion, avoid to repeat what is already said in the introduction. In the first

paragraph there are too many repetitions, facts that are already said. Rewrite this part.
Conclude on the reliability of the proposed method. What are the benefits and drawbacks?
Possible improvements.

19

Fig. 3 Comparison of the three algorithms on the set of standard and infeasible problems
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Figure 3 gives a general overview about the performances of these algo-
rithms on the set of 255 problems including both standard and infeasible
problems. It emphasizes the better performances in efficiency and robustness
of SPDOPT-ID.
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Fig. 4 Values of log10 ‖Akck‖ and log10 ‖Fk‖ for the last ten iterations of SPDOPT-AL
and SPDOPT-ID. T represents the index of the stopping iteration for each run.

We conclude this section by a comparison of a numerical estimate of the
rate of convergence of the new algorithm SPDOPT-ID and of the original one
SPDOPT-AL, when the sequence of iterates converges to an infeasible station-
ary point. We used a graphical representation inspired by [13]. We selected a
set of 58 problems among the collection of infeasible problems, for which both
algorithms generate a sequence converging to an infeasible stationary point.
Figure 4 shows the last ten values of ‖Akck‖ for SPDOPT-AL and of ‖Fk‖
for SPDOPT-ID. We cannot plot the values ‖Fk‖ for SPDOPT-AL, because
when the sequence of iterates converges to an infeasible stationary point, {σk}
goes to zero and {yk} becomes unbounded. Under some regularity assump-
tions, we obviously have ‖Akck‖ = Θ(‖xk − x∗‖) and ‖Fk‖ = Θ(‖wk − w∗‖).
These curves empirically show that there is a true improvement of the rate of
convergence of the algorithm, from linear to quadratic.

6 Conclusions

During the solution of an optimization problem, a rapid detection of the in-
feasibility is a difficult task. In the framework of an augmented Lagrangian
method, we have proposed to add a new parameter, which has to scale down
the objective function when the infeasibility measure is not sufficiently re-
duced. The global and local convergence analyses, as well as the numerical
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results, show that this method is reliable for both solving a feasible optimiza-
tion problem and quickly detecting the infeasibility.

The quadratic convergence to an infeasible stationary point is an original
result for an augmented Lagrangian algorithm. However, the fast local conver-
gence is only guaranteed under the assumption that the infeasible stationary
point, the limit point of the sequence of iterates, is sufficiently infeasible, i.e.,
‖c∗‖ > ε, for some ε > 0. On some examples, we observed that the algorithm
converges with a linear rate to an infeasible stationary point, because the norm
of the constraints evaluated at this point is very close to the stopping tolerance.
Hence, an open question is to design an algorithm with rapid convergence in
the infeasible case, regardless the norm of the constraints at the limit point.

Another natural question is the extension of this approach to the solution
of general optimization problem with equality and inequality constraints. One
possibility is to introduce slack variables to inequality constraints and apply
augmented Lagrangian method in the case of simple bounds as in [5]. On the
other hand, we note that infeasibility detection has been used in the frame-
work of interior point methods [24,25]. However, these works did not report
complete global and local convergence analyses of their methods, despite good
numerical results. To our knowledge, there is no local convergence result for
nonlinear interior points methods in the infeasible case. To extend our ap-
proach, a possibility is to combine an augmented Lagrangian method and a
log-barrier penalty to handle inequalities as in [26]. But the introduction of a
feasibility parameter makes the convergence analysis quite different. Indeed,
in that case the feasibility parameter becomes a scaling factor between the log-
barrier function and the quadratic penalty term, therefore when the sequence
of iterates converges to an infeasible stationary point, this sequence follows
a path of solutions parameterized by the log-barrier penalty parameter. This
work is underway.
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