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Abstract. Lines are particularly important features for different tasks
such as calibration, structure from motion, 3D reconstruction in com-
puter vision. However, line detection in catadioptric images is not trivial
because the projection of a 3D line is a conic eventually degenerated.
If the sensor is calibrated, it has been already demonstrated that each
conic can be described by two parameters. In this way, some methods
based on the adaptation of conventional line detection methods have
been proposed. However, most of these methods suffer from the same
disadvantages than in the perspective case (computing time, accuracy,
robustness, ...). In this paper, we then propose a new method for line
detection in central catadioptric image comparable to the polygonal ap-
proximation approach. With this method, only two points of a chain
allows to extract with a very high accuracy a catadioptric line. More-
over, this algorithm is particularly fast and is applicable in realtime. We
also present experimental results with some quantitative and qualitative
evaluations in order to show the quality of the results and the perspec-
tives of this method.

1 Introduction

Catadioptric vision sensors (associations of a camera with a mirror) are now
broadly used in many applications such as robot navigation, 3D scene recon-
struction or video surveillance [1]. Their large field of view is indubitably the
major reason of this success. Baker and Nayer classified these sensors in two
respective categories [2]. First, sensors with a single viewpoint, named central
catadioptric sensors are made of parabolic mirror associated to orthographic
camera and hyperbolic, elliptic and plane mirrors with perspective camera. The
second category with different viewpoints has geometric properties less signifi-
cant and is made of the other possibilities of association between mirrors and
cameras. In this paper, we are only interested in central sensors which permit
a geometrically correct reconstruction of the perspective image from the orig-
inal catadioptric image. However, their employment presents some drawbacks
because of the deformations induced by the mirror. For example, some very
useful classical treatments in perspective image processing can be no more per-
formed on catadioptric images because they are inadequate. One of these major
treatments deals with line extraction. Thus, while in the perspective case line
detection is perfectly known and efficiently solved, with catadioptric images the
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problem is absolutely not trivial. Indeed, the projection of any 3D real line is
a conic eventually degenerate. Thus, in the case of an uncalibrated sensor, it is
necessary to estimate five parameters for each line while only two parameters
are sufficient for a calibrated sensor. If we consider the projection of a 3D point
by the way of the unitary sphere (fig. 1(a)) as proposed in [3] [4] [5] with the
formalism defined in [3] [4], we can define oriented projective ray P1 passing by
3D point xw and the center of the sphere. This ray intersects the surface of the
sphere in xs. We then consider oriented projective ray P2 passing by xs and a
point situated on the z-axis between the center of the sphere and the north pole.
This point is at distance ξ from the center of the sphere and depends only on the
mirror geometric characteristics. P2 intersects plane at infinity in point xi. Fi-
nally, homography H defined between the plane at infinity and the catadioptric
image plane projects point xi into point xc. H includes intrinsic parameters of
the camera, possible rotations between the sphere frame and the camera frame,
and finally the parameters of the mirror. According to this model, we can de-
velop the projection of a 3D line into the catadioptric image plane (fig. 1(b)).
We consider plane ΠR which contains the real 3D line and the center of the
sphere. This plane intersects the sphere and then defines a great circle onto its
surface. The set of oriented projective rays passing by the points of the great
circle and point O2 define then a cone which intersects plane at infinity into
conic Ci. Finally, homography H transforms Ci into conic Cc in the catadioptric
image plane. In plane at infinity, we know that the equation of conic Ci is equal
to :
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with (nx, ny, nz)
T the vector which describes the normal to plane Pw which

contains the 3D line. We obtain the equation of conic Cc in image plane thanks
to the following relation :

Cc = H−T CiH
−1 (2)

Finally, a pixel xc = (u v 1)T belongs to the conic Cc if the equality xT
c Ccxc =

0 is verified.
In this paper, we propose a new method for calibrated catadioptric line de-

tection which permits a very fast, robust and accurate detection. The proposed
approach consists in roughly estimating the possible catadioptric lines in the
image and in verifying if each possible line is a real catadioptric line. The rest
of the paper is organized as follows. Section II is devoted to the related works
which deal with catadioptric line detection in calibrated and uncalibrated cases.
In section III, we present a complete description of the algorithm. Section IV is
devoted to experimental results with quantitative and qualitative evaluations.
We finally conclude in section V on different perspectives.

2 Related Works

The methods of catadioptric line detection and estimation can be divided in three
categories. The first class deals with methods applicable as well in the calibrated
case as in the uncalibrated case and includes the algorithms of conic fitting
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(a) (b)

Fig. 1. (a) Image formation model. Example of projection via the unitary sphere for
a 3D point. (b) Projection of a 3D line via the unitary sphere into the catadioptric
image plane.

[6]. The second category concerns calibrated sensors and most of the proposed
techniques in this category are based on adaptation of Hough transform [7] [8]
[9]. Methods for uncalibrated sensors form the third category. These methods
use particular geometric constraints of catadioptric sensors and are generally
dedicated to paracatadioptric sensors [10] [11]. In the rest of this section, we
only develop the two first categories because the third is not enough general and
concerns only paracatadioptric cameras.

Conic fitting algorithms determine the curve that best fits the data points
according to a certain distance metric [6]. In [10], the authors present a com-
parison of the normal least squares (LMS), approximate mean square (AMS),
Fitzgibbon and Fisher (FF) [12], gradient weighted least square fitting (GRAD)
and orthogonal distances (ORTHO) methods for the specific problem of para-
catadioptric line detection. Their conclusions are that GRAD and ORTHO are
the most robust to noise and that all methods perform poorly when the ampli-
tude of the occlusion is above 240◦. Since most of the catadioptric lines have an
amplitude less than 45◦, it appears clearly that these methods are unsuitable
for general central catadioptric line detection and estimation. Moreover, these
methods suppose that the pixels from the edges have been already classified into
chains representing the different possible catadioptric lines.

In the calibrated case, homography H and parameter ξ are known. In this
way, a 3D line is determined thanks to a vector (nx, ny, nz)

T . This vector rep-
resents the normal of the great circle on the unitary sphere obtained by the
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intersection of the plane which contains the center of the sphere and the 3D real
line (fig. 1(b)). A 3D real line can be also represented by two angles φ and θ
which respectively are the elevation angle and the azimuth angle of the normal
vector. Each catadioptric line is then represented by only two parameters and a
simple adaptation of the Hough transform can solved the problem. This is this
kind of approach which is proposed in [8] and [7]. The mean difference between
these methods deals with the space in which the treatments are performed. In
[7], the image is projected on the unitary sphere and the 3D coordinates of the
pixels are then used while in [8], they apply the algorithm directly in the image.
Although these two approaches present interesting results, it is worth noting
that they present the classic defects of the Hough transform such as the best
sampling step for φ and θ for example. In order to avoid these drawbacks, we
can note that if two pixels of a catadioptric line are known, it is then possible
to compute the normal of the great circle and then to obtain the corresponding
values of φ and θ. In [9], the authors propose a randomized Hough transform
which selects randomly two points in the image of edges in order to compute the
φ and θ angles. These angles are then used in an accumulator for the detection
of the most confident catadioptric lines.

3 Central Catadioptric Line Detection Algorithm

Our line detection algorithm for central catadioptric sensor consists first in ap-
plying a Canny edge detector (Fig 4(b)). Then, we proceed to an edge chaining
which consists in extracting connected pixels from edges in order to form lists
with a length superior or equal to a threshold (NbPixels) (Fig 4(c)). To detect
the lines in the scene consists then in verifying if these chains are the projections
of 3D lines. In this way, we apply a split and merge algorithm of the chains.
First, an adaptation of the polygonal approximation of the classical perspective
case is proposed in order to find which chains or parts of chains are catadiop-
tric projections of lines. This process is performed thanks to a division criterion
which cuts the chains at a particular position if the chain is not verified as a
catadioptric line. Next, we use a fusion criterion in order to group the different
chains in the image which represents the same central catadioptric lines. These
both criteria are discussed in the following of the paper.

3.1 Division Criterion

Consider the two endpoints of a chain of N pixels with coordinates P1 =
(X1, Y1, Z1) and P2 = (X2, Y2, Z2) on the unitary sphere S2. These points define
a single central catadioptric line in the image and then a great circle C on the
sphere (cf fig(1(a)(b)). This circle results from the intersection of the unitary
sphere and a plane which contains the sphere origin 01 and whose a normal
vector is −→n =

−−−→
O1P1 ×

−−−→
O1P2 = (nx, ny, nz)

T . Then, the equation of C is :
{

nxX + nyY + nzZ = 0
(X, Y, Z) ∈ S2



Fast Central Catadioptric Line Extraction 5

We consider that a point on the sphere with coordinates (Xi, Yi, Zi) of the chain
belongs to the great circle if the distance between this point and the plane defined
by the great circle is less than a threshold:

|nxXi + nyYi + nzZi| ≤ DivThreshold.

This chain is then considered as a central catadioptric line if at least 95% of its
points belong to the great circle.

In the opposite case, we cut the chain into two sub-chains at the point
(Xj , Yj , Zj) which maximizes the following error ||(Xi, Yi, Zi).−→n ||, i = 1 · · ·n
(the furthest point from the plane).

This division step stops when the chain is considered as a central catadioptric
line or when the length of the sub-chains is less than the threshold (NbPixels).
At the end of this step, we then obtain the whole set of central catadioptric
lines in the image. However this method may generate a multi-detection of the
same lines. In order to compensate this drawback, we then propose to merge the
similar catadioptric lines.

3.2 Fusion Criterion

Let define two catadioptric lines d1 and d2 detected with the previous method.
These lines respectively characterized by −→n1 and −→n2 define two planes in the 3D
space passing through the origin of the unitary sphere, Π1 = {U = (X, Y, Z) ∈
R

3,−→n 1.U = 0} and Π2 = {U = (X, Y, Z) ∈ R
3,−→n 2.U = 0} . We consider that

these detected catadioptric lines are similar if they define the same 3D plane,
that is to say if :

1 − |−→n 1.−→n 2| ≤ FusThreshold.

In this case, the two catadioptric lines are merged into a single line. The cata-
dioptric line equation is then updated from the pixels of the chains which belong
to d1 and d2 as follows. Let note respectively M1 = (X1

i , Y 1

i , Z1

i )i=1···N1
and

M2 = (X2

i , Y 2

i , Z2

i )i=1···N2
, the pixels of catadioptric line d1 (resp. d2). Let M ,

the matrix of dimension (N1 + N2) × 3,
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The normal vector −→n = (nx, ny, nz)
T of the great circle associated to the cata-

dioptric line is then solution of :

M.−→n = (0, · · · , 0)T . (3)

The solution of (3) is obtained from the SVD of matrix M [13].
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4 Experimentations

We have tested our central catadioptric line detector on different kinds of om-
nidirectional images. We first propose some results with synthesis images for
which we perfectly know the line equations in order to show the accuracy of the
approach. Then, some results on real images are also proposed. In the whole
set of experimentations except in one indicated case, the different thresholds are
fixed as follows : NbPixels =100, DivThreshold = 0.0005, FusThreshold = 1◦.

4.1 Synthesis Images

We have generated two synthesis images for which we perfectly know the cali-
bration parameters and line equations. The first image contains five catadioptric
lines (fig 2(a)). The five lines are obviously easily detected (fig 2(b)). However,
results show a very high accuracy of the catadioptric line estimation. Indeed,
contrary to Hough based methods which require a sampling of the search space
and for which the accuracy depends on this sampling, in the proposed method
the catadioptric line estimation is performed analytically. Thus, let note Hi

c the

3× 3 matrix of the conic associated to a catadioptric line i (i = 1 · · · 5) and Ĥi
c,

the estimation of this matrix from the proposed method. For the five catadioptric
lines of the first image Fig 2(a), the mean error :

1

5

5∑

i=1

||Hi
c/Hi

c(3, 3) − Ĥi
c/Ĥi

c(3, 3)||

||Hi
c||

= 5.10−5.

(a) (b)

Fig. 2. (a)Original image, (b) Detected catadioptric lines.

The second synthesis image is composed of eight catadioptric lines and two
’false’ catadioptric lines (fig 3(a)). Results show that the eight catadioptric lines
are correctly detected Les résultats montrent bien que les 8 droites sont cor-
rectement détectées while the two ellipses which are ’false’ catadioptric lines are
not detected (fig 3(b)). Nevertheless, if the minimal length NbPixel decreases (in
this example, NbPixel=50), we can note that some parts of these ellipses may
correspond to catadioptric lines (fig 3(c)).



Fast Central Catadioptric Line Extraction 7

(a) (b) (c)

Fig. 3. (a)Original image, (b) Red catadioptric lines correspond to detected catadiop-
tric lines, (c) False catadioptric lines whan the length NbPixel is too low.

4.2 Real Catadioptric Images

We present here result for a real catadioptric image. In this case, sensor has
been calibrated with the method described in [4]. This image (fig 4(a)) is a
paracatadioptric image issued from the calibration toolbox proposed by Barreto
[4]. In figure 4(b), we present the result of Canny edge detector and consecutively
the detected chains of pixels extracted for the catadioptric line verification (fig
4(c)). Figure 4(d) shows the catadioptric line detection before the fusion step
while figure 4(e) presents the final result after the fusion step. In figure 4(f), we
propose a more detailed view of a part of the image in order to show the accuracy
of the results. Finally, from a computational time point of view, the method takes
near 3 seconds with Matlab. A real time implementation constitutes the next
perspective of this work.

5 Conclusion

In this paper, we deal with the problem of line detection in central catadioptric
images. Our method is valid for calibrated sensor and is comparable to the polyg-
onal approximation algorithm. Indeed, it consists in looking for pixels in chains
of edges which correspond to catadioptric lines thanks to an analytic approach
contrary to previous methods based on Hough transform which depends on the
sampling of the search space. Moreover, we then obtain a very fast algorithm
which could be implemented for real time applications.
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3. Barreto, J.P., Araújo, H.: Geometric properties of central catadioptric line images.
In Heyden, A., Sparr, G., Nielsen, M., Johansen, P., eds.: ECCV (4). Volume 2353
of Lecture Notes in Computer Science., Springer (2002) 237–251

4. Barreto, J.P.: General Central Projection Systems: Modeling, Calibration and
Visual Servoing. PhD Thesis, University of Coimbra (2003)

5. Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal
of Computer Vision 45(3) (2001) 223–243

6. Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic
fitting. Image Vision Comput. 15(1) (1997) 59–76

7. Vasseur, P., Mouaddib, E.M.: Central catadioptric line detection. In: BMVC04.
(2004) xx–yy

8. Ying, X., Hu, Z.: Catadioptric line features detection using hough transform. In:
ICPR (4), IEEE Computer Society (2004) 839–842

9. Mei, C., Malis, E.: Fast central catadioptric line extraction, estimation, tracking
and structure from motion. In: IROS. (2006)
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