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Introduction

Catadioptric vision sensors (associations of a camera with a mirror) are now broadly used in many applications such as robot navigation, 3D scene reconstruction or video surveillance [START_REF] Benosman | Panoramic Vision: Sensors, Theory, Applications[END_REF]. Their large field of view is indubitably the major reason of this success. Baker and Nayer classified these sensors in two respective categories [START_REF] Baker | A theory of single-viewpoint catadioptric image formation[END_REF]. First, sensors with a single viewpoint, named central catadioptric sensors are made of parabolic mirror associated to orthographic camera and hyperbolic, elliptic and plane mirrors with perspective camera. The second category with different viewpoints has geometric properties less significant and is made of the other possibilities of association between mirrors and cameras. In this paper, we are only interested in central sensors which permit a geometrically correct reconstruction of the perspective image from the original catadioptric image. However, their employment presents some drawbacks because of the deformations induced by the mirror. For example, some very useful classical treatments in perspective image processing can be no more performed on catadioptric images because they are inadequate. One of these major treatments deals with line extraction. Thus, while in the perspective case line detection is perfectly known and efficiently solved, with catadioptric images the problem is absolutely not trivial. Indeed, the projection of any 3D real line is a conic eventually degenerate. Thus, in the case of an uncalibrated sensor, it is necessary to estimate five parameters for each line while only two parameters are sufficient for a calibrated sensor. If we consider the projection of a 3D point by the way of the unitary sphere (fig. 1(a)) as proposed in [START_REF] Barreto | Geometric properties of central catadioptric line images[END_REF] [4] [START_REF] Geyer | Catadioptric projective geometry[END_REF] with the formalism defined in [START_REF] Barreto | Geometric properties of central catadioptric line images[END_REF] [4], we can define oriented projective ray P 1 passing by 3D point x w and the center of the sphere. This ray intersects the surface of the sphere in x s . We then consider oriented projective ray P 2 passing by x s and a point situated on the z-axis between the center of the sphere and the north pole. This point is at distance ξ from the center of the sphere and depends only on the mirror geometric characteristics. P 2 intersects plane at infinity in point x i . Finally, homography H defined between the plane at infinity and the catadioptric image plane projects point x i into point x c . H includes intrinsic parameters of the camera, possible rotations between the sphere frame and the camera frame, and finally the parameters of the mirror. According to this model, we can develop the projection of a 3D line into the catadioptric image plane (fig. 1(b)). We consider plane Π R which contains the real 3D line and the center of the sphere. This plane intersects the sphere and then defines a great circle onto its surface. The set of oriented projective rays passing by the points of the great circle and point O 2 define then a cone which intersects plane at infinity into conic C i . Finally, homography H transforms C i into conic C c in the catadioptric image plane. In plane at infinity, we know that the equation of conic C i is equal to :

Ci = 2 4 n 2 x (1 -ξ 2 ) -n 2 z ξ 2 nxny(1 -ξ 2 ) nxnz nxny(1 -ξ 2 ) n 2 y (1 -ξ 2 ) -n 2 z ξ 2 nynz nxnz nynz n 2 z 3 5 (1) 
with (n x , n y , n z ) T the vector which describes the normal to plane P w which contains the 3D line. We obtain the equation of conic C c in image plane thanks to the following relation :

C c = H -T C i H -1 (2) 
Finally, a pixel x c = (u v 1) T belongs to the conic C c if the equality x T c C c x c = 0 is verified.

In this paper, we propose a new method for calibrated catadioptric line detection which permits a very fast, robust and accurate detection. The proposed approach consists in roughly estimating the possible catadioptric lines in the image and in verifying if each possible line is a real catadioptric line. The rest of the paper is organized as follows. Section II is devoted to the related works which deal with catadioptric line detection in calibrated and uncalibrated cases. In section III, we present a complete description of the algorithm. Section IV is devoted to experimental results with quantitative and qualitative evaluations. We finally conclude in section V on different perspectives.

Related Works

The methods of catadioptric line detection and estimation can be divided in three categories. The first class deals with methods applicable as well in the calibrated case as in the uncalibrated case and includes the algorithms of conic fitting In the rest of this section, we only develop the two first categories because the third is not enough general and concerns only paracatadioptric cameras. Conic fitting algorithms determine the curve that best fits the data points according to a certain distance metric [START_REF] Zhang | Parameter estimation techniques: a tutorial with application to conic fitting[END_REF]. In [START_REF] Barreto | Fitting conics to paracatadioptric projections of lines[END_REF], the authors present a comparison of the normal least squares (LMS), approximate mean square (AMS), Fitzgibbon and Fisher (FF) [START_REF] Fitzgibbon | A buyer's guide to conic fitting[END_REF], gradient weighted least square fitting (GRAD) and orthogonal distances (ORTHO) methods for the specific problem of paracatadioptric line detection. Their conclusions are that GRAD and ORTHO are the most robust to noise and that all methods perform poorly when the amplitude of the occlusion is above 240 • . Since most of the catadioptric lines have an amplitude less than 45 • , it appears clearly that these methods are unsuitable for general central catadioptric line detection and estimation. Moreover, these methods suppose that the pixels from the edges have been already classified into chains representing the different possible catadioptric lines.

In the calibrated case, homography H and parameter ξ are known. In this way, a 3D line is determined thanks to a vector (n x , n y , n z ) T . This vector represents the normal of the great circle on the unitary sphere obtained by the intersection of the plane which contains the center of the sphere and the 3D real line (fig. 1(b)). A 3D real line can be also represented by two angles φ and θ which respectively are the elevation angle and the azimuth angle of the normal vector. Each catadioptric line is then represented by only two parameters and a simple adaptation of the Hough transform can solved the problem. This is this kind of approach which is proposed in [START_REF] Ying | Catadioptric line features detection using hough transform[END_REF] and [START_REF] Vasseur | Central catadioptric line detection[END_REF]. The mean difference between these methods deals with the space in which the treatments are performed. In [START_REF] Vasseur | Central catadioptric line detection[END_REF], the image is projected on the unitary sphere and the 3D coordinates of the pixels are then used while in [START_REF] Ying | Catadioptric line features detection using hough transform[END_REF], they apply the algorithm directly in the image. Although these two approaches present interesting results, it is worth noting that they present the classic defects of the Hough transform such as the best sampling step for φ and θ for example. In order to avoid these drawbacks, we can note that if two pixels of a catadioptric line are known, it is then possible to compute the normal of the great circle and then to obtain the corresponding values of φ and θ. In [START_REF] Mei | Fast central catadioptric line extraction, estimation, tracking and structure from motion[END_REF], the authors propose a randomized Hough transform which selects randomly two points in the image of edges in order to compute the φ and θ angles. These angles are then used in an accumulator for the detection of the most confident catadioptric lines.

Central Catadioptric Line Detection Algorithm

Our line detection algorithm for central catadioptric sensor consists first in applying a Canny edge detector (Fig 4(b)). Then, we proceed to an edge chaining which consists in extracting connected pixels from edges in order to form lists with a length superior or equal to a threshold (NbPixels) (Fig 4(c)). To detect the lines in the scene consists then in verifying if these chains are the projections of 3D lines. In this way, we apply a split and merge algorithm of the chains. First, an adaptation of the polygonal approximation of the classical perspective case is proposed in order to find which chains or parts of chains are catadioptric projections of lines. This process is performed thanks to a division criterion which cuts the chains at a particular position if the chain is not verified as a catadioptric line. Next, we use a fusion criterion in order to group the different chains in the image which represents the same central catadioptric lines. These both criteria are discussed in the following of the paper.

Division Criterion

Consider the two endpoints of a chain of N pixels with coordinates P 1 = (X 1 , Y 1 , Z 1 ) and P 2 = (X 2 , Y 2 , Z 2 ) on the unitary sphere S 2 . These points define a single central catadioptric line in the image and then a great circle C on the sphere (cf fig( 1(a)(b)). This circle results from the intersection of the unitary sphere and a plane which contains the sphere origin 0 1 and whose a normal vector is

-→ n = ---→ O 1 P 1 × ---→ O 1 P 2 = (n x , n y , n z ) T .
Then, the equation of C is :

n x X + n y Y + n z Z = 0 (X, Y, Z) ∈ S 2
We consider that a point on the sphere with coordinates (X i , Y i , Z i ) of the chain belongs to the great circle if the distance between this point and the plane defined by the great circle is less than a threshold:

|n x X i + n y Y i + n z Z i | ≤ DivThreshold.
This chain is then considered as a central catadioptric line if at least 95% of its points belong to the great circle.

In the opposite case, we cut the chain into two sub-chains at the point (X j , Y j , Z j ) which maximizes the following error

||(X i , Y i , Z i ). -→ n ||, i = 1 • • • n (the furthest point from the plane).
This division step stops when the chain is considered as a central catadioptric line or when the length of the sub-chains is less than the threshold (NbPixels). At the end of this step, we then obtain the whole set of central catadioptric lines in the image. However this method may generate a multi-detection of the same lines. In order to compensate this drawback, we then propose to merge the similar catadioptric lines.

Fusion Criterion

Let define two catadioptric lines d 1 and d 2 detected with the previous method. These lines respectively characterized by -→ n 1 and -→ n 2 define two planes in the 3D space passing through the origin of the unitary sphere,

Π 1 = {U = (X, Y, Z) ∈ R 3 , -→ n 1 .U = 0} and Π 2 = {U = (X, Y, Z) ∈ R 3 , -→ n 2 .U = 0}
. We consider that these detected catadioptric lines are similar if they define the same 3D plane, that is to say if :

1 -| -→ n 1 . -→ n 2 | ≤ FusThreshold.
In this case, the two catadioptric lines are merged into a single line. The catadioptric line equation is then updated from the pixels of the chains which belong to d 1 and d 2 as follows. Let note respectively

M 1 = (X 1 i , Y 1 i , Z 1 i ) i=1•••N1 and M 2 = (X 2 i , Y 2 i , Z 2 i ) i=1•••N2 , the pixels of catadioptric line d 1 (resp. d 2 ). Let M , the matrix of dimension (N 1 + N 2 ) × 3, M = 0 B B B B B B B B @ X 1 1 Y 1 1 Z 1 1 . . . . . . . . . X 1 N 1 Y 1 N 1 Z 1 N 1 X 2 1 Y 2 1 Z 2 1 . . . . . . . . . X 2 N 2 Y 2 N 2 Z 2 N 2 1 C C C C C C C C A ,
The normal vector -→ n = (n x , n y , n z ) T of the great circle associated to the catadioptric line is then solution of :

M. -→ n = (0, • • • , 0) T . (3) 
The solution of (3) is obtained from the SVD of matrix M [START_REF] Jennings | Matrix Computation[END_REF].

Experimentations

We have tested our central catadioptric line detector on different kinds of omnidirectional images. We first propose some results with synthesis images for which we perfectly know the line equations in order to show the accuracy of the approach. Then, some results on real images are also proposed. In the whole set of experimentations except in one indicated case, the different thresholds are fixed as follows : NbPixels =100, DivThreshold = 0.0005, FusThreshold = 1 • .

Synthesis Images

We have generated two synthesis images for which we perfectly know the calibration parameters and line equations. 

Real Catadioptric Images

We present here result for a real catadioptric image. In this case, sensor has been calibrated with the method described in 

Conclusion

In this paper, we deal with the problem of line detection in central catadioptric images. Our method is valid for calibrated sensor and is comparable to the polygonal approximation algorithm. Indeed, it consists in looking for pixels in chains of edges which correspond to catadioptric lines thanks to an analytic approach contrary to previous methods based on Hough transform which depends on the sampling of the search space. Moreover, we then obtain a very fast algorithm which could be implemented for real time applications. 

Fig. 1 .

 1 Fig. 1. (a) Image formation model. Example of projection via the unitary sphere for a 3D point. (b) Projection of a 3D line via the unitary sphere into the catadioptric image plane.
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 6 . The second category concerns calibrated sensors and most of the proposed techniques in this category are based on adaptation of Hough transform[START_REF] Vasseur | Central catadioptric line detection[END_REF] [8][START_REF] Mei | Fast central catadioptric line extraction, estimation, tracking and structure from motion[END_REF]. Methods for uncalibrated sensors form the third category. These methods use particular geometric constraints of catadioptric sensors and are generally dedicated to paracatadioptric sensors[START_REF] Barreto | Fitting conics to paracatadioptric projections of lines[END_REF] [START_REF] Vandeportaele | A fast detector of line images acquired by an uncalibrated paracatadioptric camera[END_REF].

Fig. 2 .

 2 Fig. 2. (a)Original image, (b) Detected catadioptric lines.

Fig. 3 .

 3 Fig. 3. (a)Original image, (b) Red catadioptric lines correspond to detected catadioptric lines, (c) False catadioptric lines whan the length NbPixel is too low.

  [START_REF] Barreto | General Central Projection Systems: Modeling, Calibration and Visual Servoing[END_REF]. This image (fig4(a)) is a paracatadioptric image issued from the calibration toolbox proposed by Barreto[START_REF] Barreto | General Central Projection Systems: Modeling, Calibration and Visual Servoing[END_REF]. In figure4(b), we present the result of Canny edge detector and consecutively the detected chains of pixels extracted for the catadioptric line verification (fig 4(c)).

Figure 4 (

 4 d) shows the catadioptric line detection before the fusion step while figure 4(e) presents the final result after the fusion step. In figure4(f), we propose a more detailed view of a part of the image in order to show the accuracy of the results. Finally, from a computational time point of view, the method takes near 3 seconds with Matlab. A real time implementation constitutes the next perspective of this work.

Fig. 4 .

 4 Fig. 4. (a)Original image, (b) Canny edge detector result, (c) Extracted chains, (d) Catadioptric line detection results after division step, (e) Catadioptric line detection results after fusion step, (f) Detailed view of final results.