
HAL Id: hal-01785276
https://hal.science/hal-01785276v1

Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From csp to configuration problems
Mathieu Veron, Hélène Fargier, Michel Aldanondo

To cite this version:
Mathieu Veron, Hélène Fargier, Michel Aldanondo. From csp to configuration problems. Association
for the Advancement of Artificial Intelligence 1999 Workshops (AAAI WS 1999), Jul 1999, Orlando,
United States. �hal-01785276�

https://hal.science/hal-01785276v1
https://hal.archives-ouvertes.fr

Mathieu Veron

From CSP to configuration problems

H~l~ne Fargier Michel Aldanondo

Access Productique, Le Strat~ge
B:~t B2, Rue Ampere, BP 555,
31674 Lab~ge Cedex, France.

mv @access-pro. fr

Institut de Recherche en
Informatique de Toulouse 118

route de Narbonne, 31062
Toulouse Cedex 4, France.

fargier@irit.fr

Centre de Genie Industriel, Ecole
des Mines d’Aibi Carmaux,

Campus Jarlard Route de TeiUet,
81013 Albi CT, Codex 09, France.

Michel.Aldanondo@enstimac.fr

Abstract
To increase market shares, industry needs to provide
customized products, at a low price and low delivery time.
But establishing a valid configuration is a complex, time-
consuming and costly task. There is a need for software
tools to help people to model their products, and allow them
to compute a valid configuration.
The CSP framework seems to be a valuable candidate to
express models for configurable product and to solve the
configuration problem. In this paper, we will show, on the
basis of our experience in the field, that we need a richer
model to capture the specificity of a configurable product
and other functionalities to easily handle the resolution
process. We will review some previous work fulfilling some
of these functionalities and finally present an approach able
to handle the whole problem.

Introduction

Configuring a product is to choose a feasible instance of
this product among all its variations. Hence configuration is
a search problem over a search space defined by a model of
a configurable product. This model is composed of the
description of all the attributes, characterizing it, the
allowed values for these attributes and the constraints
expressing incompatible values (Mittal & Frayman 1989).
According to this definition of a model, the Configuration
Problem can be mapped into a constraint problem. Whereas
the configuration software (configurators) were
implemented like expert systems (RI I/XCON, McDermot
1982), the Constraint Satisfaction Problem (CSP)
framework is now preferred due to its knowledge
representation which is declarative and context free (for
further discussion about pro and cons of both approaches
see Gelle and Weigel 1996).
Our experience in the field of configurator and
configurable product modeling, acquired after near ten
years of activity in the configurator industry, points out that
the CSP framework is not able to the specificity of the
configuration problem capture entirely and easily, hence
the need for a more complex model to represent a
configurable product and the relevant algorithms.
After reviewing, in a first section, a list of further
requirements. We will analyze how previous work in the
field handle these needs and the solutions they provide to

manage them, with a particular focus on constraint based
approach. Finally we will provide some ideas for the
problem definition and its resolution. The conclusion will
introduce some further work on this model.

Requirements to a configuration problem

Basic Configuration Problem

A configurable product is classically defined by a set of
attributes (or components) which possible values belong
a finite set, and a set of feasibility constraints over these
attributes which specify their compatible combinations of
values. The problem is to find a feasible product (i.e. to
choose a value for each attribute) that satisfies not only the
feasibility constraints but also some user requirements. In a
first basic approach one could consider that each of these
requirements concerns one attribute. In this case, the
Constraint Satisfaction Problem (CSP)(Mackworth 1992)
offers a suitable framework. A CSP is indeed described by
a triplet = {X, D, C}, where X is a set of variables, D a set
of finite domains (one for each variable) and C a set
constraints. A constraint c ~ C is defined by a set
S(c)={ i,j,...m} variables and R(c) a subset of Di x Dj x ...
Dm expressing the combinations of instantiations of these
variables that satisfy the constraint. A constraint c is said
to be valid with respect to a partial instantiation s, if the
projection of s over S(c) is included in R(c). A solution
CSP problem is an instantiation of all variables such that all
constraints are valid.
The mapping is then obvious: the variables are the
attributes of the product, and the constraints encode both
the requirements (by means of unary constraints) and the
feasibility constraints.

Need to manage the states of the objects
In a classical CSP, a solution is a consistent instantiation of
all the variables. But in a configuration problem, all the
variables do not need to be valuated in order to consider the
configuration completed. On one hand, the valuation of
some variables is optional (the optional variables can be

101

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

left uninstantiated at the end of the configuration process).
Hence, the set of variables X has to be partitioned into two
subsets Xm and Xo (the mandatory variables and the
optional variables) and an instantiation d of a set of
variables Y such that Y included Xm is a solution of the
configuration problem if and only if it satisfies all the
constraints pertaining to Y.
On the other hand, some variables are exclusive, in the way
that the valuation of the first one forbids the valuation of
the second one and reciprocally: they cannot participate in
a solution simultaneously. For instance, the user cannot
choose simultaneously a CD drive and a DVD drive when
configuring a PC. Moreover, the possibility to provide a
value to a variable can depend on the value taken by
another one: as soon as the type of the disk driver is SCSI,
the user has to choose a SCSI card - but he cannot
configure such a card if he has chosen an IDE driver.

Hence, we need to handle the notion of state of a variable
(active or not, if active optional or mandatory) and
encode the previous activity conditions over the states. A
first solution could be to add a dummy value within the
domain of each variable (let’s name it 0) and to modify the
set of constraints in order to capture the activity conditions:
0 is the only valid value for y if the activation condition of
y is not satisfied. Although this kind of approach allows the
use of the classical CSP framework, it requires to merge
feasibility constraints and activity conditions. Handling the
states of the variables more explicitly not only overcomes
this drawback but also allows the expression of other
possible states (e.g. optional, mandatory, etc).

Under this assumption, we need to slightly modify the
definition of a complete configuration in the following
way: an elementary configurable product is completed if
and only if a consistent instantiation for all its active and
mandatory variables exists. A configurable product is then
completed if and only if all its mandatory sub-components
are completed.

In order to be able to easily reuse sub-components inside
another configurable product, we have identified a
condition of self-sufficiency for configurable products.
This condition states that no outside knowledge is
necessary, all the references are internal. In our model, this
is translated by a property on the constraints:

¯ the transversal constraints only involve attributes of
configurable products (elementary or not) included
inside the configurable product that need to be reused~

¯ the state conditions only involve state variables of
attributes and configurable products (elementary or not)
included inside the configurable product that need to be
reused.

We are now able to reuse any sub-component into other
configurable products. For example a car manufacturer,
who sells cars and vans, can isolate a sub-product "seat" in
each configurable product. The sub-product "seat" is
modeled only once and reused in both configurable
products (Car and Van).
Another benefit of such a decomposition deals with the
expression of activity conditions: a unique rule can describe
the fact that the same condition controls the existence of all
the variables of a sub-prodtlct.

Need to manage the Structural decomposition
Structural decomposition is a strong issue for the
configuration problem. The technical analysis of a
configurable product clearly shows the interest of a
decomposition in sub-components that can involve their
own internal constraints. For products made from the
assembly of sub-parts, this decomposition is mainly the bill
of materials. But, in more complex configurations, a sub-
component can be itself a configurable product. Hence we
distinguish the notion of elementary configurable product:
an elementary configurable product is a self-containing
entity defined as previously in terms of attributes, domains
and internal constraints. In this context, a configurable
product can be:

¯ either a single elementary configurable product,

¯ or a collection of :
¯ standard components (not configurable product as

raw material or bought components)

¯ and/or configurable products (elementary or not),
the attributes of which can be related by a set of
transversal constraints, i.e. constraint on the value of
any attribute.

Need to make the distinction between functions
and standard components
Configuration problems can be classified according to their
complexity (Gartner Group 1997). From the lowest level
complexity to the highest, we most often find:
¯ Pick-to-order (PTO) problems, standard components are

just picked from a catalog, with very few compatibility
constraints on the possible configurations.

¯ Assemble-to-order (ATO) problems, standard
components must be chosen according to compatibility
constraints plus some constraints that restrict the
possible assemblies. The classical example of ATO is
personal computer configuration.

¯ Build-to-order (BTO) problems, components are not
required to be standard, but can be tailored. In this case,
the product can be structured into sub-products and
recursively.

In Build-to-order problems, the physical components of the
decomposition are not identified, the only specification the
usei can give is in term of functions. But even in problem
involving only standard components, the user does not
always hold the required technical background to choose

102

standards components and can find interest in expressing
functional needs. For instance, a PC buyer does not always
know the difference between one hard drive and another,
but he knows that he wants a fast hard drive with a large
capacity. The description of functional needs requires the
use of both discrete and continuous variables.
Moreover, in any case after configuring functions, a
matching from functions to components or, in the case of
build-to-order, from functions to manufacturing orders has
to be computed.

Need to manage the interaetivity
The human user has a particular place in the configuration
process. It is obvious for configurators dedicated to the
selling process, but we have encountered many cases in the
back-office where the problem and the optimization criteria
could not been completely specified, and had to be left to
human appreciation.
CSP algorithms are designed for batch processing, i.e.
looking blindly for a solution. But, in a configuration
process, the choice of the values is due to the user,
interactively. The main goal to be achieved by a
configurator is to guarantee at each step (i.e. after each user
choice) that the partially specified product is feasible. In
the CSP framework this could be expressed by enforcing
global consistency after each user choice.
Because global consistency is a very costly operation, local
consistency is often the only level of consistency that can
be achieved in real-time. But in this case, a mechanism that
warns the user of the detection of inconsistency needs to be
provided; for example a "backtrack-point" could be
identified to help the user to restore consistency.
More generally, providing help and explanations are key
issues to configuration and Interactive CSP.
Moreover, our experience shows that some internal hidden
attributes are often defined by the experts when modeling
the configurable product. Such variables are not under the
user control (i.e. cannot be valued interactively) but
correspond to technical parameters or intermediate
calculations and are used within functional constraints.

Parallel with previous research

Previous research on configurations has addressed one or
more of those requirements. In the following we will
review some previous work with an emphasis on
constraint-based configurators.

Mittal and Frayman (Mittal and Frayman 1989) present
definition of the configuration problem. They work on
personal computer configuration and their definition is
oriented toward assemble-to-order. This seminal work
clearly outlines the need for a functional definition of
configurable products and for mapping mechanisms that
find out the component decomposition. Nevertheless, it
only deals with the assembly of a predefined set of

components and so fails to support tailored products (i.e.
build-to-order problems).

Esther Gelle and Rainer Weigel (Gelle and Weigel 1996)
claim that the spectrum of configuration problems is wider
than the assembly of predefined components. That’s why
they propose an incremental model that simultaneously
handles discrete and continuous variables. Hence this
model allows the expression of functional descriptions as
well as component assemblies.
Gelle and Weigel actually propose to enhance Incremental
CSP (Mittal and Falkeiner 1990) with an algorithm able
ensure global consistency over continuous domains after
each user choice.
The idea behind ICSP for configuration tasks is that the
solution space is often so huge and the interactions between
variables so complex, that the whole problem cannot be
handled entirely. That’s why the problem is restricted to
"active" variables. The activity of a variable is derived
from special constraints called "Activity Constraints
(AC)". The traditional "Compatibility Constraints (CC)"
are evaluated once all the variables involved in the
constraint are active.
The activity constraints are also used to represent
configurable products. In Gelle and Wiegel’s model, each
object (i.e. configurable product) has a type and attributes,
but the list of attributes is not predefined but is dynamically
conditioned by the selected type. Let’s take an example: the
’engine’ object takes is type over two kinds of engines
(’Gasoline’ or ’Diesel’), which are described by two
activity constraints:

ACI :Engine=Gasoline -9 Engine.GI ~ gl, Engine.G2
g2, Engine.G3 ~ g3

AC2 : Engine=Diesel -9 Engine.DI ~ dl, Engine.D2
d2

Where gl,g2,g3 and dl,d2 are the respective domains
of the attributes GI,G2,G3,DI,D2.

So if the type of engine is Gasoline then engine is described
by three attributes: GI, G2. and G3; but if the type chosen
were Diesel engine would be described by two attributes:
DI and D2.

To handle real assembly-to-order problems, attributes are
considered as "connectors" and the domain of each
attribute is the list of components that can be connected to
that connector.

The activity state over object responds to our object state
need, but it is not expressive enough due to its Boolean
nature. Although the mechanism of Activity Constraint
provides a uniform way to model configurable products and
to manage an activity state for each object, this paradigm
fails to isolate self-sufficient products (attributes and
internal constraints) for reusability purpose. Indeed all the
activity constraints are expressed at the same level and no
structuration tool is provided that could help gathering all
the constraints relevant for a particular sub-product.

103

These drawbacks are avoided by the Composite Constraint
Satisfaction Problem (CCSP) framework proposed
(Freuder and Sabin 1996) to handle the Configuration
Prol~iem. Informally, CCSPs are CSPs where domains can
contain sub-problems : when a variable is instantiated with
a sub-problem, it is replaced by this CSP. More formally,
given a CSP P=(V,Dv;Cv), if Xi e V is given the value
P’=(Xv’,Dv’,Cv’) then P becomes P"=(V t..) V’ / {Xi},
u Dv’ / {Dxi}, Cv ~o Cv’ u C{v’,v} / C{Xi}).
The main configurable product is thus represented by an
initial CCSP, composed of some variables whose domains
are sub-CCSPs : this sub-problem represents the direct
sub-component of the main product. This defines a
hierarchy which reflects the structural decomposition. The
leaves of the tree correspond to our elementary
configurable products.
Hence this model explicitly shows out the structural
decomposition and the replacement mechanism keeps the
problem as simple as possible. But it lacks mechanisms to
handle full interactions with a human user. Indeed, suppose
that the user had previously made a choice over a variable,
thus selecting a sub-problem and that later, he changes his
mind, he cannot modify his previous choice since the
variable is no longer available due to the replacement
mechanism. This could be overcome by maintaining all the
variables within the problem, but the CCSP model would
suffer an increase in complexity.

We can find in previous work some answers to the needs
identified in the first section, but none manages all of them.
Hence we will expose a (partial) solution in terms of data
structure and management levels able to handle all these
requirements.

How to handle these requirements

According to our analysis in Section II, one of the main
requirements for a configurator is the ability to handle the
structural decomposition of configurable products. That’s
why we propose to model a configurable product by a tree
with :
¯ internal nodes representing the sub-configurable

products (the root being the main one)
¯ leaves corresponding to variables of either an elementary

configurable product or standard products.

It appears in Section 11.2 that we need to manage the state
of the components of the tree, that can be active or not (i.e.
accessible to the user or not). Moreover, an active
component can be (i) optional or mandatory and (ii)
completed by the user or not.

Related to these two needs, we have identified a condition
of self-sufficiency of configurable product (see section
II.3). In order to guarantee this condition, we have defined
a configurable product as :

¯ a collection of sub-components,

¯ a set of constraints such that each variable involved in
these constraints appears in a sub-problem,

¯ one state variable for each sub-component,
¯ a set of state conditions over any state variable appearing

in this product or in a sub-product.
For the sake of clarity, we will assume in the following that
selecting a standard component is modeled by an attribute
whose domain is the list of the codes of the standard
components. A trivial matching mechanism is responsible
for listing the selected one into the final bill of materials
decomposition.

More formally:

Definition: a
quartet { Lsc
¯ Lsc is the

partitioned
denoting a

configurable product (CP for short) is
, Cv, S, Cs} where:
list of the sub-components of CP. It can be
into two subsets Lcp and Lecp respectively
set of non elementary CPs and a set of

elementary CPs. The set of included variables of a
configurable product cp is denoted riv(cp) and
recursively defined by :

¯ riv(cp) is the set of variables of cp if cp is
elementary configurable product,

¯ riv(cp) = Ucp. ~ L~p riv(cp’) if cp is a non elementary
CP.’

C is a set of constraints over the set riv(cp). These
constraints encode the feasible, (or unfeasible)
combinations of values for the attributes.

S is a set of state variables, one for each sub-component.

Cs is a set of state conditions over the set of included
state variables of the products or of their sub-
components and recursively.

The idea underlying this definition is the use of a two level
configuration engine. A first level is responsible for the
management of the tree structure and for the control of the
state variables, whereas the second level involves the CSP
mechanisms to maintain the domains of the configuration
variables. The user is responsible for adding/retracting
unary constraints on the active variables in order to express
his choices, a constraint propagation mechanism on the
second level CSP will erase the inconsistent values in the
other domain.

First level : object management

The main goal of this level is to maintain a state for each
object of the tree structure. The value of a state variable
depends on:
¯ (i) the value of the state variable that represents the

upper product in the hierarchy: a sub-component cannot
be active if is container is not active;

104

¯ (ii) the state of its sub-components: a configurable
product is completed if and only if all its sub-
components are completed;

¯ (iii) on user actions: a variable is completed whenever
has been restricted to a singleton by the user,

¯ (iv) on state conditions (Cs) inserted in the model
enforce a particular state.

Let us now explain what kind of state conditions we
handle, and how they are managed. In Section II.2, we
explain how conditions can describe that an object is
optional or not and when an object is active or not.

Hence, a state variable can take four different values :
inactive (0), optional (1), required (2), completed
positive value thus means that the variable is active.

State conditions are encoded by means of constraints that
can involve both state variables and configuration
variables. We distinguish two types of state conditions:
¯ exclusion conditions : an exclusion condition between

objects states that only one of the objects can be active at
any time, e.g. : an exclusion between A and B means
that state(A)>0 and state(B)>0 is not a valid
combination;

¯ requirement conditions : the validity of the condition
(involving state variables and/or attribute variables)
implies that the object must be completed, e.g. :
State(A) >1 implies State(B) >1, or package=’Deluxe’
implies State(extra_warranty)>l.

Thus we define a constraint problem made of a set of
configuration and state variables (each one taking its value
in a finite domain {0,1,2,3}) and a set of constraints. In
order to ensure a coherent configuration process, the states
need to be consistent with each other; this implies
maintaining global consistency over the CSP.

Here is an example of such a constraint problem on the
basis of the previous example taken : let there be four
variables, cd_drive ¢ {24x, 36x, 40x}, dvd_drive ~ {2x,
5x}, option_package ¢ {none, std, deluxe} and
extra_warranty ~ { lyear, 2years, 3years}.
To express that cd drive and dvd_drive are exclusive and
that the deluxe option package implies an extra warranty,
we will define the following constraints :

and

state(cd_drive) state(dvd_drive)
>1 =0
=0 >1

option_package state(extra_warranty)
deluxe .2
none .1
std .1

Second Level : Constraint management on value
In order to deal with the basic requirements of a
configuration problem, i.e. finding a consistent instantiation
of a CSP representing a configurable product, on a second
level, we manage a constraint problem gathering all the
active variables and the constraints pertaining to active
elementary configurable products. This constraint problem
is interactively modified by the user who expresses
restrictions or relaxations over the domains of the variables.
Restrictions and relaxations are handled throughout unary
constraints. Because the user is free to relax a previous
restriction, we have chosen a dynamic CSP representation
of the problem (Detcher and Detcher 1988).
For us to guide the user toward a feasible product, the
problem has to be kept consistent with the user choices. But
the constraint problem can be significantly large
(numerous variables and constraints), hence global
consistency is often too costly to enforce, so we only
enforce a level of local consistency. We have explored
some of these levels and finally the good old arc-
consistency (Mackworth 1977, Mohr and Henderson 1986,
Bessi~re and Cordier 1993, Debruyne 1996 for the
adaptation to dynamic CSP) has proven to be a valuable
candidate. Our first experiments have shown little interest
for stronger levels of consistency, except for enforcing
singleton arc-consistency (Debruyne and Bessi~re 1997)
the domain of the variables picked by the user, before
letting him modify it.

Interaction between the two levels
The two previously described levels are tightly coupled;
interaction between the two levels occurs through (i) the
shared variables, i.e. the variables that appear in the CSPs
of both problems; (ii) the change of activity state of
object. Indeed, in order to keep the CSP as simple as
possible, whenever a configurable product becomes active,
the linked constraints are added, and are removed when it
becomes inactive.

Conclusion ""

Configuration is becoming an important issue for
companies’ competitiveness. Previous research shows that
the CSP framework is of interest when addressing the
configuration problem, but as shown in section II this
research does not succeed in taking into account all the
specific requirements of configuration for industry. In
terms of a solution we have provided a two-level approach
to handle some of these requirements and to solve the
configuration problem interaetively. This approach has
been implemented within the Cam616on software suite, an
interactive selling system from Access Productique.
As previously mentioned, handling interactivity is a key
issue in the configuration problem. Indeed, we need to
provide easy to use software tools to people without

105

product technical knowledge in order to let them achieve a
complex configuration. The extreme case would be a web-
based configurator for very complex products. Hence we
need to work on providing contextual help to the user. This
help could either be on the first level (activity of sub-
components) or on the second level (explanations about
discarded values). We are currently exploring an approach
based on the arc-consistency algorithm providing supports.

Acknowledgments
This work was granted by Access Productique (S.A.).

National Conference on Artificial Intelligence, 25-32.
AAAI Press

Mohr and Henderson 1986. Arc And Path Consistency
Revisited, Artificial Intelligence 28:225-233, 1986.

Sabin and Freuder, E. 1996. Configuration as Composite
Constraint Satisfaction, Technical Report FS-96-03,
Workshop on configuration. 28=36. AAAI Press.

References

Bessi~re and Cordier 1993. Arc Consistency and Arc
Consistency Again, In Proceedings of the Eleventh
National Conference on Artificial Intelligence, 108-113.
AAAI Press.

Detcher and Detcher 1988. Belief maintenance in dynamic
constraint networks. In Proceedings of the Seventh
National Conference on. Artificial Intelligence, 37-42, St
Paul, Minnesota. AAAI Press

Debruyne 1996, Arc-Consistency in Dynamic CSPs Is No
More Prohibitive. In ¯Proceedings of the eighth
International Conference on Tools With Artificial
Intelligence, 299-306. Toulouse, France

Gartner Group 1997. Sales Configurators : Configuring
Sales Success. The report on Supply Chain Management,
October 1997.

Gelle,E. and Weigei, R. 1996. Interactive Configuration
Using Constraint Satisfaction Techniques, Technical
Report FS-96-03, Workshop on configuration, 37-44.
AAAI Press.

Mackworth, A. 1977. Consistency in Networks of Relation.
Artificial Intelligence 8:99-118.

Mackworth, A. 1992. Constraint Satisfaction. In Shapiro, S.
(Ed.) Encyclopaedia of Artificial Intelligence, 285-293.
Wiley, NY.

McDermot 1982. R1 : A Rule-based Configurer of
Computer System, Artificial Intelligence, 19(1):39-88.

Mittal, S. and Frayman 1989. Towards a generic model of
configuration tasks, In Proceedings of the Eleventh
International Joint Conference on Artificial
Intelligence,1395- 1401.

Mittal, S. and Faikeiner 1990. Dynamic Constraint
Satisfaction Problems.. In Proceedings of the Ninth

".

106

