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ABSTRACT

We study the fair division problem consisting in allocating one item

per agent so as to avoid (or minimize) envy, in a setting where only

agents connected in a given social network may experience envy.

In a variant of the problem, agents themselves can be located on

the network by the central authority. These problems turn out to

be difficult even on very simple graph structures, but we identify

several tractable cases. We further provide practical algorithms and

experimental insights.
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1 INTRODUCTION

Fairly allocating resources to agents is a fundamental problem

in economics and computer science, and has been the subject of

intense investigations [10, 13]. Recently, several papers have ex-

plored the consequences of assuming in such settings an underlying

network connecting agents [2, 4, 8, 13]. The most intuitive interpre-

tation is that agents have limited information regarding the overall

allocation. Two agents can perceive each other if they are directly

connected in the graph.

A fairness measure, very sensitive to the information available

to agents, is the notion of envy [20]. Indeed, envy occurs when an

agent prefers the share of some other agents over her own. Account-

ing for a network topology boils down to replace “other agents”

by “neighbors”. The notion of envy can thus naturally be extended

to account for the limited visibility of the agents. Intuitively, an

allocation will be locally envy-free if none of the agents envies her

neighbors. This notion has been referred as graph, social, or local

envy-freeness [2, 4, 12, 13, 19].

In this paper, we are concerned with the allocation of indivisi-

ble goods within a group of agents. The setting we study in this
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paper is arguably one of the simplest in resource allocation, known

in economics as house allocation [1, 23, 31]: agents have (strict)

preferences over items, and each agent must receive exactly one

item. In the case of a complete network, envy-freeness is not a

very exciting notion in that setting. Indeed, for an allocation to be

envy-free, each agent must get her top object (and this is obviously

also a Pareto-optimal allocation in that case). When an agent is only

connected to a subset of the other agents, she may not need to get

her top-resource to be envy-free. The locations of the resources on

the graph as well as the connections between the agents are then

crucial issues in order to compute a locally envy-free allocation.

To see how the network can make a difference, consider the

following scenario.

Example 1.1. Suppose for instance a team of workers taking

their shifts in sequence, to which a central authority must assign

different jobs. Workers have preferences regarding these jobs. As

the shifts are contiguous and as the employees work at the same

place, they have the opportunity to see the job allocated to some

other workers, as one ends and the other one begins her shift. This

would be modeled as a line topology in our setting as depicted on

the graph below. To make things concrete, suppose there are three

jobs, chop the tree, mow the lawn, and trim the hedge, and three

gardeners (1, 2 and 3) with preferences 1 : chop ≻ mow ≻ trim,

2 : mow ≻ chop ≻ trim, 3 : chop ≻ trim ≻ mow , taking shifts in

order 1, 2 and finally 3. On the figure, rankings are mentioned over

agents (with top jobs at the top, etc.)

1

chop
mow
tr im

2

mow
chop
tr im

3

chop
tr im
mow

By allocating the job chop the tree to agent 1, mow the lawn to

agent 2, and trim the hedge to agent 3, we get an envy-free allocation

if we disregard the fact that agent 1 and 3 may be envious of each

other. Note that a locally envy-free allocation is not necessarily

Pareto-optimal (take the same allocation, but the ranking of agent

1 to be trim ≻ chop ≻ mow), but that giving her top item to

each agent if possible will always be an envy-free Pareto-optimal

allocation in any network.

The reader may object that, in Example 1.1, agent 3 may still

be envious of agent 1, because she knows that this agent must

have received the task agent 2 didn’t get, i.e. chop the tree. This is

a valid point, to which we provide two counter-arguments. First,

as a technical response, note that in general agents would not

know exactly who gets the items they do not see. Thus, although

agents may know that they must be envious of some agents, they



cannot identify which one, which makes a significant difference

in the case of envy. Our second point is more fundamental and

concerns the model and the motivation of this work. Clearly, the

existence of a network may be due to an underlying notion of

proximity (either geographical, or temporal as in our example) in

the problem. However, another interpretation of the meaning of

links must be emphasized: links may represent envy the central

authority is concerned with. In other words, although there may

theoretically be envy among all agents, the central authority may

have reasons to only focus on some of these envy links. For instance,

you may wish to avoid envy among members of the same team in

your organization, because they actually work together on a daily

basis (in that case links may capture team relationships). Under this

interpretation, a network of degree n − 2, that is the total number

of agents minus 2, could for instance model a situation where

agents team-up in pairs and conduct a task together, sharing their

resources. In a similar vein, we may focus on avoiding envy among

“similar” agents, because they may be legitimate to complain if they

are not treated equally despite similar competences, for instance.

1.1 Related work

Our work is connected to a number of recent contributions–beyond

the works directly addressing fair allocation on graphs already

mentioned. Recently, house allocation settings have been discussed,

notably in relation with swap dynamics [14, 22]. In particular, [22]

show how graph structures can affect the complexity of some de-

cision problems regarding such dynamics, for instance whether

some allocation is reachable by a sequence of swaps among agents.

The allocation of a graph has also recently been studied [9]. In this

context, the nodes of the graph represent indivisible resources to

allocate and edges formalize connectivity constraints between the

resources. Some computational aspects of allocating agents on a

line are also discussed in [5]: in that case the line concerns the

items (eg. slots) to be allocated, and induces a domain restriction

(stronger than single-peakedness). In these cases the model is really

different, since the graph is capturing dependencies between the re-

sources (like spatial dependencies for pieces of land). Several ways

for a central authority to control fair division have been discussed

in [6]: the structure of the allocation problem can be changed by

adding or removing items to improve fairness. Interestingly our

model introduces a new type of control action: locating agents on

a graph. Finally, because envy-freeness is difficult to achieve in

general (with indivisible items) [15], different notions of degree of

envy have been studied, see e.g. [11, 17, 26, 27].

1.2 Contributions and organization

A formal definition of the model, together with the definition of the

main problems that we address, are provided in Section 2. Section 3

is dedicated to the problem, called dec-LEF, of deciding if a central

planner, who has a complete knowledge of the social network and

the agents’ rankings of the objects, can allocate the objects such

that no agent will envy a neighbor. We identify intractable and

tractable cases of this decision problem, with respect to the number

of neighbors of each agent, that is the degree of the nodes in the

graph representing the social network. Another relevant parameter

is the size of a vertex cover. A subset of agents N ′ forms a vertex

cover of the social network if every agent is either in N ′, or at
least one of her neighbors is in N ′. We provide an algorithm which

shows that dec-LEF is in XP (parameterized by the size of a vertex

cover) and a proof ofW[1]-hardness.

Section 4 is dedicated to optimization problems with two dif-

ferent perspectives: maximizing the number of locally envy-free

agents, and maximizing the degree of non-envy of the society. We

provide approximation algorithms for both approaches.

A variant of dec-LEF called dec-location-LEF is studied in

Section 5. This problem asks if one can decide both the placement

of the agents and the object allocation so as to satisfy local envy-

freeness. The problem is shown to be NP-complete, and a special

case is resolved in polynomial time. To conclude, we report some

experimental results (Section 6) and we provide open problems and

future directions in Section 7.

2 OUR MODEL AND PROBLEMS

A set of objects O and a set of agents N are given. We assume

that |O | = |N | = n. Each agent i has a preference relation ≻i
over O (a linear order). The profile of all preference relations is

denoted by ≻. We are also given a social network modeled as an

undirected graph G with vertex set N and edge set E. Each edge in

E represents a social relation between the corresponding agents.

An instance of a resource allocation problem is thus described by a

tuple ⟨N ,O,≻,G = (N ,E)⟩. When the social networkG is dense, it

may be easier to describe it through its complement graphG which

is the unique graph defined on the same vertex set and such that

two vertices are connected iff they are not connected in G.
An allocation A is a bijection N → O where every agent i gets

a single object A (i ). We also generalize the notion of allocation to

partial allocations, in which we allow objects to be unallocated.

Definition 2.1 (Envy-free). An allocation A is envy-free (EF) if

no pair of agents i, j satisfies A (j ) ≻i A (i ).

Definition 2.2 (Locally envy-free). An allocationA is locally envy-

free (LEF) if no pair of agents {i, j} ∈ E satisfies A (j ) ≻i A (i ).

For a given allocation, an agent is LEF if she prefers her object

to the object(s) of her neighbor(s).

Several notions of degrees of envy have been studied [11, 13, 26,

27]. In our context we shall study the number of envious agents,

and a degree measure capturing some simple notion of intensity of

envy, in terms of the difference of ranks between items (these two

notions would correspond to esum,max,bool
and esum,sum,raw

, up

to normalization, under the classification of [13]).

Definition 2.3. (degrees of (non)-envy). Given an allocationA, the

degree of envy of agent i towards agent j is e (A, i, j ) =
1

n−1 max(0, ri (A (i ))−ri (A (j ))), where ri (o) is the rank of object o
in i ′s preferences. The average degree of envy (respectively of non-

envy) is E (A) = 1

2 |E |
∑
{i, j }∈E e (A, i, j ) +e (A, j, i ) (respectively is

NE (A) = 1 − E (A)).

Note that for a given allocation A, an agent i envies a neighbor-
ing agent j if and only if e (A, i, j ) > 0.

We mainly address four problems: dec-LEF, max-LEF, max-NE

and dec-location-LEF. The first one is a decision problem regard-

ing the existence of an LEF allocation over a given social network.



Definition 2.4 (dec-LEF). Given an instance ⟨N ,O,≻,G = (N ,E)⟩,
is there an LEF allocation A?

The second and the third ones are optimization problems in

which an allocation that is as close as possible to local envy-freeness

is sought, using the aforementioned criteria.

Definition 2.5 (max-LEF). Given an instance ⟨N ,O,≻,G = (N ,E)⟩,
find an allocation that maximizes the number of LEF agents.

Definition 2.6 (max-NE). Given an instance ⟨N ,O,≻,G = (N ,E)⟩,
find an allocation that maximizes the average degree of non-envy

NE (A).

In dec-location-LEF, one has to place the agents on the network

in addition to the allocation. This placement makes sense if we

consider Example 1.1 where the agents take shifts.

Definition 2.7 (dec-location-LEF). Given an undirected network

(V ,E), and ⟨N ,O,≻⟩, are there two bijections A : N → O and

L : N → V (A and L determine the allocation of the objects and

the location of the agents on the network, respectively) such that

A (i ) ≻i A (j ) for every edge {L (i ),L (j )} ∈ E?

Example 2.8. As a warm-up, consider 5 agents allocated on a

line, as depicted below. Each agent has a strict ranking over objects.

1

a
b
c
d
e

2

c
a
b
d
e

3

a
b
d
c
e

4

b
a
d
c
e

5

c
e
b
a
d

Is there an LEF allocation of goods to agents? If not, what is the

minimum number of envious agents? Finally, is it possible to find

an LEF allocation by relocating agents on this line?

3 DECISION PROBLEM

This section is devoted to dec-LEF. Our main findings settle the

computational status of dec-LEF with respect to the degree of the

nodes in the social network, as well as the size of a vertex cover.

First of all, note that some objects cannot be assigned to certain

agents for the allocation to be LEF. For example, the best object of an

agent cannot be assigned to one of her neighbors. More generally,

no better object than the one allocated to an agent can be assigned

to one of her neighbors, leading to the following observations:

Observation 1. In any LEF allocation, an agent with k neighbors

must get an object ranked among her n − k top objects.

Observation 2. In any LEF allocation, the best object for an agent

is either assigned to herself or to one of her neighbors in G.

Observation 1 implies that an agent having n − 1 neighbors

must receive her best object in any LEF allocation. Therefore, the

computational complexity of dec-LEF is not related to those agents,

and in the following we assume that the social network does not

contain a vertex of degree n − 1.

3.1 dec-LEF and degree of nodes

Our first result shows that dec-LEF is computationally difficult,

even if the social network is very sparse, i.e. each agent has one

neighbor inG . This is somewhat surprising as such a network offers

very little possibility for an agent to be envious.

Theorem 3.1. dec-LEF is NP-complete, even if G is a matching.

Proof. The reduction is from 3SAT [21]. We are given a set

of clauses C = {c1, · · · , cm } defined over a set of variables X =
{x1, · · · ,xp }. Each clause is disjunctive and consists of 3 literals. Is

there a truth assignment which satisfies all the clauses?

Take an instance I = ⟨C,X ⟩ of 3SAT and create an instance J

of dec-LEF as follows.

The set of objects is O = {u
j
i : 1 ≤ i ≤ p, 1 ≤ j ≤ m} ∪ {u

j
i :

1 ≤ i ≤ p, 1 ≤ j ≤ m} ∪ {qj : 1 ≤ j ≤ m} ∪ {ti j : 1 ≤ i ≤ p, 1 ≤

j ≤ m} ∪ {hℓ : 1 ≤ ℓ ≤ m(p − 1)}. Here, u
j
i and u

j
i correspond to

the unnegated and negated literals of xi in clause c j , respectively,
qj corresponds to the clause c j , and the ti j ’s and hℓ ’s are gadgets.
Thus, |O | = 4mp.

The set of agents N is built as follows. For each (i, j ) ∈ [p]× [m],

create a pair of variable-agents Xi j , X
′
i j which are linked in the

social network. For each j ∈ [m], create a pair of clause-agents Kj ,

K ′j which are linked in the network. For each ℓ ∈ [m(p − 1)], create

a pair of garbage-agents Lℓ , L
′
ℓ
which are linked in the network.

Thus, the network consists of a perfect matching with 4mp agents.

Each clause c j is associatedwith the pair of clause-agents (Kj ,K
′
j ),

qj and 3 objects corresponding to its literals. For example, c2 =

x1 ∨ x4 ∨ x5 is associated with objects q2, u
2

1
, u2

4
, and u2

5
. The pref-

erences of the clause-agents are:

• Kj : qj ≻ (the 3 objects related to the literals of c j ) ≻ rest

• K ′j : (the 3 objects related to the literals of c j ) ≻ qj ≻ rest

where “rest” means the remaining objects. Both “rest” and the 3

objects corresponding to the literals of c j are arbitrarily ordered,

but in the same way for Kj and K
′
j . Each variable xi is associated

with the m pairs of variable-agents (Xi j ,X
′
i j ), 1 ≤ j ≤ m. The

preferences of these variable-agents are:

• Xi1 : u
1

i ≻ ti1 ≻ u1i ≻ ti2 ≻ rest
1

i
• X ′i1 : ti1 ≻ u1i ≻ ti2 ≻ u1i ≻ rest

1

i

• Xi2 : u
2

i ≻ ti2 ≻ u2i ≻ ti3 ≻ rest
2

i
• X ′i2 : ti2 ≻ u2i ≻ ti3 ≻ u2i ≻ rest

2

i
...

• Xim : umi ≻ tim ≻ umi ≻ ti1 ≻ rest
m
i

• X ′im : tim ≻ umi ≻ ti1 ≻ umi ≻ rest
m
i

where “rest
j
i ” means the remaining objects arbitrarily ordered, but

in the same way for Xi j and X
′
i j . The preferences of the garbage-

agents (Lℓ ,L
′
ℓ
), 1 ≤ ℓ ≤ m(p − 1) are:

• Lℓ : hℓ ≻ U ≻ rest

• L′
ℓ
: U ≻ hℓ ≻ rest

whereU = {u
j
i ,u

j
i : i ∈ [p], j ∈ [m]}, “rest” is the set of remaining

objects, and both U and “rest” are arbitrarily ordered in the same

way for Lℓ and L
′
ℓ
.

We claim that there is an LEF allocation in J if, and only if,

there is a truth assignment satisfying I.



Take a truth assignment which satisfies I. One can allocate

objects to each variable-agent pair (Xi j ,X
′
i j ) in such a way that

it is LEF: If xi = true , then Xi j gets u
j
i and X ′i j gets ti j+1 (where

ti m+1 := ti1), otherwise xi = f alse , Xi j gets u
j
i and X ′i j gets ti j .

One can allocate objects to each clause-agent pair (Kj ,K
′
j ) in such

a way that it is LEF: c j is satisfied thanks to one of its literals; Kj
gets qj and K

′
j gets an unallocated object corresponding to a literal

of c j . Finally, allocate objects to each garbage-agent pair (Lℓ ,L
′
ℓ
)

in such a way that it is LEF: Lℓ gets hℓ and L
′
ℓ
gets any unallocated

objects ofU .

Suppose an LEF allocation exists forJ . Consider a variable xi . By
construction of the preferences of the variable-agent pair (Xi1,X

′
i1),

we observe that there is absence of envy in only two cases: Xi1
gets u1i and X ′i1 gets ti1, otherwise Xi1 gets u1i and X ′i1 gets ti2.
If we are in the first case, then there is absence of envy between

Xim and X ′im only if Xim gets umi and X ′im gets tim because ti1

is already allocated, and so on; the Xi j ’s get all the u
j
i ’s (i is fixed

but 1 ≤ j ≤ m). If we are in the second case, then there is absence

of envy between Xi2 and X ′i2 only if Xi2 gets u
2

i and X ′i2 gets ti3

because ti2 is already allocated, and so on; the Xi j ’s get all the u
j
i ’s

(i is fixed but 1 ≤ j ≤ m). Thus, set xi to f alse (resp. xi to true) if

every Xi j gets u
j
i (resp. Xi j gets u

j
i ).

Consider any clause c j . By construction of the preferences of

the clause-agent pair (Kj ,K
′
j ), we observe that there is absence of

envy in only three cases: Kj gets qj and K
′
j gets one of the 3 objects

associated with the literals of c j . Since the allocation is LEF, there

is some i∗ such that K ′j gets either u
j
i∗ or u

j
i∗ , and this object is not

allocated to a variable-agent. Thus, c j is satisfied by the above truth
assignment. To conclude, all the clauses are satisfied. □

The strength of this result lies on the fact that the network

structure is extremely simple. As a consequence, it can easily be

used as a building block to show hardness of a large variety of

graphs. In short, it suffices to introduce additional dummy agents

connecting agents from the original matching instance, and to make

sure that each dummy agent x ′i ranks first “her” dummy resource

di , followed by a copy of the ranking (minus di ) of an (arbitrary)

neighbor (so as to ensure that theymust indeed receive their dummy

resource for the allocation to be LEF).

Corollary 3.2. dec-LEF is NP-complete on a line, or on a circle,

and generally on graphs of maximum degree k for k ≥ 1 constant.

Given this result, one may suspect the problem to be hard on

any graph structure beyond a clique. Our next result shows that if

the social network is dense enough, then dec-LEF is polynomial.

Theorem 3.3. dec-LEF in graphs of minimum degree n − 2 is

solvable in polynomial time.

Proof. Note thatG is amatching in that case. In order to simplify

notations, we denote by ϕ (i ) the neighbor of agent i in G. Hence,
ϕ (i ) is the unique non-neighbor of agent i in the social network.

We reduce the problem to 2-SAT which is solvable in linear time

[3]. Let us consider boolean variables xi j for 1 ≤ i, j ≤ n, such that

xi j is true iff object j is assigned to i . Denote by o
j
i the object at

position j in the preference relation of agent i .

Consider the following formula φ:∧
i ∈N

(xio1i
∨ xio2i

) ∧
∧

1≤i<ℓ≤n
1≤j≤n

(¬xi j ∨ ¬xℓj ) ∧
∧
i ∈N

(xio1i
∨ xϕ (i )o1i

)

The first part of formula φ expresses that each agent must obtain

an object within her top 2, as noted in Observation 1. By combi-

nation with the second part of φ, we get that the solution must be

an assignment: each agent must obtain her first or second choice

but not both since every object is owned by at most one agent and

|N | = |O |. Observation 2 implies that the best object for agent i
must be assigned either to agent i or ϕ (i ). This condition is given

by the last part of the formula. Hence, formula φ exactly translates

the constraints of an LEF allocation. □

Interestingly, the status of dec-LEF changes between social net-

works of degree at least n − 2 and those of degree n − 3. A regular

graph is such that all of its nodes have the same degree.

Theorem 3.4. dec-LEF isNP-complete in regular graphs of degree

n − 3.

Proof. The reduction is from (3,B2)-SAT [25] which is a restric-

tion of 3SAT where each literal appears exactly twice in the clauses,

and therefore, each variable appears four times. Notations are the

same as in the proof of Theorem 3.1. Take an instance I = ⟨C,X ⟩
of 3SAT and create an instance J of dec-LEF as follows.

Instead of describing the social network in J , we describe its

complementaryG . Note thatG is a regular graph of degree 2. Hence,

G contains a collection of cycles. For each variable xi , we intro-
duce dummy variable-objects q1i and q2i , literal-objects u

1

i ,u
2

i ,u
1

i
and u2i corresponding to its first and second occurrence as an un-

negated and negated literal, respectively, as well as a cycle in G

containing literal-agentsX 1

i ,X
1

i ,X
2

i andX
2

i , connected in this order.

Preferences are as follows:

• X
j
i : q

j
i ≻ q

3−j
i ≻ u

j
i ≻ . . .

• X
j
i : q

j
i ≻ q

3−j
i ≻ u

j
i ≻ . . .

Note that only the 3 top objects are represented since no object

ranked below can lead to an LEF allocation (see Observation 1).

Note also that in any LEF allocation, either q1i and q
2

i are allocated

to agents X 1

i and X 2

i , either q1i and q
2

i are allocated to agents X
1

i

and X
2

i . The first case can be interpreted in I as assigning false to

xi , and the later case as assigning true to xi .
For each clause ci we introduce dummy clause-objects d1i and

d2i , as well as a cycle inG containing clause-agents K1

i ,K
2

i ,K
3

i . The

preferences of clause-agent K
j
i are:

• K
j
i : d1i ≻ d2i ≻ ℓ(i, j ) ≻ . . .

where ℓ(i, j ) is the literal-object corresponding to the ith literal of

c j . Note that an allocation is LEF if d1i , d
2

i and one literal-object

corresponding to a literal of ci are assigned to K1

i ,K
2

i ,K
3

i . This can

be interpreted in I as the requirement for at least one literal of ci
to be true.

The reduction is almost complete but it remains to describe

gadgets collecting all unassigned objects. Indeed, so far we have

introduced 4m + 3p agents and 6m + 2p objects. It remains to con-

struct garbage collectors for the 2m − p remaining objects. Note



that no dummy object (neither variable nor clause) may be part of

the remaining objects since they must be assigned to literal-agents

or clause-agents in any LEF allocation. Let L = {u
j
i ,u

j
i : 1 ≤ i ≤

m, 1 ≤ j ≤ 2} denotes the set of literal-objects and let L (i ) denote

the ith literal-object, where literal-objects are ordered arbitrarily.

We describe a gadget collecting a single object of L. Exactly 2m −p
copies of this gadget will be used in the reduction to collect all the

remaining literal-objects. For each i ≤ 4m, we introduce objects

t1i and t2i and a cycle in G containing gadget-agents L1i ,L
2

i and L
3

i .

Furthermore, for each i ≤ 4m − 1 we introduce gadget-object hi .
Preferences are as follows.

• L1i : t
1

i ≻ t2i ≻ hi−1 ≻ . . .

• L2i : t
1

i ≻ t2i ≻ ℓ(i ) ≻ . . .

• L3i : t
1

i ≻ t2i ≻ hi ≻ . . .

where h0 and h4m stand for h1 and h4m−1, respectively. Note that in
any LEF allocation, objects t1i and t2i are allocated to agents belong-

ing to {L1i ,L
2

i ,L
3

i }, and the remaining unassigned agent receives

either hi−1,hi or ℓ(i ). Since no more than 4m−1 agents can receive

a gadget-object, at least one literal-object is assigned to agent L2i
for some i ≤ 4m. Moreover, all gadget-objects must be assigned to

gadget-agents since no other agent has a gadget-object in her top 3

objects. Therefore, in every LEF allocation, exactly one literal-object

is allocated to an agent belonging to the gadget.

Now let us show that one can allocate objects without envy in

the gadget. Let ℓ(i ) be the literal-object assigned in the gadget. This

object must be assigned to L2i . Assign t
1

i and t2i to agents L1i and L
3

i ,

respectively. For any j , i , assign t1j to agent L2j . Finally, for any

j > i , hj−1 is assigned to L1j and t
2

j is assigned to L3j , and for any

j < i , hj is assigned to L3j and t
2

j is assigned to L1j .

It is easy to check that I is satisfiable iff J has an LEF allocation.

Due to space limitation, we omit the proof of this statement. □

In the same idea as for Theorem 3.1, we can extend the previous

hardness result to more general classes of graphs. It suffices to

add, in the graph of the previous proof, dummy agents who are

connected to three other agents. They have a dummy resource on

top of their ranking, followed by the whole ranking of one of her

neighbors. Each initial agent ranks last the dummy resources.

Corollary 3.5. dec-LEF is NP-complete on graphs of minimum

degree n − k for k ≥ 3 constant.

3.2 dec-LEF and vertex cover

So far the complexity of dec-LEF has been investigated through

the degree of its nodes, but other parameters can be taken into

account. Let us show how the size of a (smallest) vertex cover can

help. A vertex cover C of G = (N ,E) is a subset of nodes such that

{u,v} ∩C , ∅ for every edge (u,v ) ∈ E. It follows that I := N \C
must be an independent set, that is a set of pairwise non-adjacent

vertices.

Theorem 3.6. If the social networkG admits a vertex cover of size

k , then dec-LEF can be answered in O (n2k+3).

Proof. Find a vertex cover C of the social network and let I :=
N \C . See [24] for a O (2kn) algorithm which decides and builds

a vertex cover of size k in a graph with n vertices. Use brute force

to assign k objects of O to C (the time complexity is O (n2k )). For
each partial allocation A without envy within C , let O−A be the

set of unassigned objects (if no such partial allocation exists, then

we can immediately conclude that no LEF allocation exists). Build a

bipartite graph (I ,O−A ;E
′) with an edge from agent i ∈ I to object

o ∈ O−A if assigning o to i does not create envy. There is an LEF

allocation for the entire network if and only if the bipartite graph

admits a perfect matching (O (n3)). □

Therefore the method is efficient when k is small. For instance,

dec-LEF is polynomial if the social network is a star because the

central node of a star is a vertex cover. More generally, Theorem

3.6 implies that dec-LEF is polynomial when k = O (1).
Theorem 3.6 implies that dec-LEF belongs to XP when the fixed

parameter under consideration is the size of a vertex cover. Recall

that a problem belongs to FPT if there is an algorithm to solve it

with time complexity in O ( f (k )poly (n)), where f is an arbitrary

function depending only on k . One could expect that dec-LEF also

belongs to FPT for the same parameter since the problem of finding

a vertex cover of size k is FPT. However, the following theorem

shows that there is no hope that dec-LEF belongs to FPT.

Theorem 3.7. dec-LEF parameterized by the size of a vertex cover

is W[1]-hard.

Proof. We present a parameterized reduction from Multicol-

ored Independent Set [18]. An instance of Multicolored In-

dependent Set consists of a graph G = {V, E}, an integer k , and
a partition (V1, . . . ,Vk ) ofV . The task is to decide if there is an

independent set of size k in G containing exactly one vertex from

each setVi . We construct an instance of dec-LEF as follows. For

each vertex v inV , we introduce object ov . Let Oi denote the set

of objects {ov : v ∈ Vi }, and let O↑i denote an arbitrary order over

the objects of Oi . For each edge e = {v,v ′} in E, we introduce two

agents Xv
e and Xv ′

e , and two edge-objects oe and o′e . LetOE denote

the set of edge-objects, and let O↑
E
denote an arbitrary ranking

over the objects of OE . For each integer i ≤ k , we introduce agent
Ki . The agents of {Ki }i≤k form a clique in the social network G.
Furthermore, for each vertexv ∈ Vi and for each edge e = {v,v ′} in
E, agent Xv

e is connected to agent Ki inG . Finally, for each integer

j ≤ |V| − k , we introduce agent D j . Preferences are the following:

• Ki : O
↑

i ≻ O↑
1
≻ . . . ≻ O↑i−1 ≻ O↑i−1 ≻ . . .O

↑

k ≻ O↑
E

• Xv
e : oe ≻ ov ≻ o′e ≻ . . .

Since agent D j is isolated in G , her preferences may be arbitrary. It

is easy to check that {Ki }i≤k forms a vertex cover in the network.

We show that G has an independent set of size k containing one

vertex in each setVi iff an LEF allocation exists. Assume first that

{v1, . . . ,vk } is an independent set in G, where vi ∈ Vi for each
i ≤ k . We construct an LEF allocation as follows. For each i ≤ k ,
assignovi toKi , and for each edge e = (vi ,v

′) in E, assignoe toX
vi
e .

For each agent Xv
e such that v is not selected in the independent

set, assign oe to X
v
e if it is still available, and otherwise assign o′e

to Xv
e . Finally, assign the remaining objects arbitrarily. We claim

that this allocation is envy-free. Indeed, each agent Ki receives an
object ofOi . Furthermore, for each vertexv inVi and for each edge

e in E , agent Xv
e has a single neighbor who is Ki . If Ki receives

ovi and v = vi then X
vi
e receives oe , and otherwise Xv

e receives o′e .



Assume now that an LEF allocation exists. We claim that each

agent Ki should receive an object of Oi . By contradiction, assume

that agent Ki receives object o < Oi . Note that for any j , i , Ki and
Kj are neighbors. Hence, for any object o

′
, if o < O j and o

′ < Oi ∪O j
then o ≻Vi o

′
iff o′ ≻Vj o holds. This implies that if o < O j then an

object of O j must be assigned to Kj to avoid envy between agents

Ki and Kj . Therefore, if o ∈ OE then agent Ki envies agent Kj , a

contradiction. On the other hand, if o ∈ O j for some j , i then
either Ki envies Kj or Kj envies Ki , since o ≻Vi o

′
iff o ≻Vj o

′
holds

because o′ ∈ O j , a contradiction. Let ovi denote the object assigned
to Ki . We claim that {v1, . . . ,vk } forms an independent set in G.

By contradiction assume that edge e connects vi and vj in G. This

implies by construction that Xvi
e and X

vj
e are neighbors of Ki and

Kj in G , respectively. On one hand, if Xvi
e does not receive oe then

she envies Ki . On the other hand, if X
vj
e does not receive oe then

she envies Kj . Therefore, oe must be assigned to both Xvi
e and X

vj
e ,

leading to a contradiction since oe cannot be assigned twice. □

Our findings for dec-LEF are summarized in Table 1.

degree d
d ≤ k (k ≥ 1 fixed) NP-c Th. 3.1

d ≥ n − k (k ≥ 3 fixed) NP-c Th. 3.4

d ≥ n − 2 P Th. 3.3

parameter k on the vertex cover size

XP Th. 3.6

W[1]-hard Th. 3.7

Table 1: Complexity results of dec-LEF

4 OPTIMIZATION

In light of Section 3, we know that both max-LEF and max-NE are

NP-hard even on very simple graph structures. We present in this

section approximation algorithms for max-LEF and max-NE.

4.1 Maximizing the number of LEF agents

This subsection is dedicated to max-LEF. A general method is pro-

posed in Algorithm 1. For a maximization problem, an algorithm is

ρ-approximate, with ρ ∈ [0, 1], if it outputs a solution whose value

is at least ρ-times the optimal value, for any instance.

Algorithm 1:

1 Find an independent set I of the network (in any opportune

way)

2 for all i ∈ I do
3 Let A (i ) be i’s most preferred object within O

4 Remove A (i ) from O

5 Complete A (in any opportune way) and return A

Observation 3. Algorithm 1 is
|I |
n -approximate for max-LEF.

Proof. By construction, every member of I is LEF, and the

largest number of LEF agents is |N | = n. □

Observation 4. The construction of I in Algorithm 1 (Step 1)

can be done so that a polynomial time (∆ + 1)−1-approximation is

produced, where ∆ denotes the maximum degree in the social network.

Proof. The independent set is built as follows. I is initially

empty and while N , ∅, do: choose i ∈ N , add i to I , and remove i
and its neighbors from N . Since a node has at most ∆ neighbors, I
is an independent set of size at least n/(∆ + 1). Use Observation 3

to get the expected ratio of (∆ + 1)−1. □

The (∆ + 1)−1-approximation algorithm is long known for the

maximum independent set problem (that is, find an independent

set of maximum cardinality), see for example in [28]. The following

lemma shows that max-LEF shares exactly the same inapproxima-

bility results as maximum independent set.

Lemma 1. Any r -approximate algorithm for max-LEF is also a

r -approximate algorithm for maximum independent set.

Proof. Suppose we have an r -approximation algorithm for max-

LEF. Consider a set of n agents with identical preferences (≻1=≻2=

. . . ≻n ) on a graph. Our r -approximation algorithm computes for

this instance an allocation A and a set I of non-envious agents.
Because preferences are identical, a pair of connected agents cannot

be locally envy-free, whatever the allocation is. In this setting, the

set I is thus necessarily an independent set. So our algorithm is also

a r -approximation algorithm for maximum independent set. □

Maximum independent set in general isPoly-APX-hard, mean-

ing it is as hard as any problem that can be approximated to a

polynomial factor. Lemma 1 implies that max-LEF is also Poly-

APX-hard. Thus, Algorithm 1 is asymptotically optimal.

Interestingly, there are graph classes where the size of an in-

dependent set can be expressed as a fraction of n. Therefore, this
fraction corresponds to the approximation ratio of Algorithm 1.

Proposition 4.1. A polynomial time 0.5-approximate algorithm

for max-LEF exists if the social network is bipartite.

Proof. Suppose the social network is a bipartite graph (N1,N2;E).
By definition both N1 and N2 are independent sets. If |N1 | ≥ |N2 |,

then run Algorithm 1 with I := N1, otherwise run Algorithm 1

with I := N2. Since 2|I | ≥ |N1 | + |N2 | = |N | = n, a polynomial time

0.5-approximation is reached. □

Proposition 4.1 can be easily extended to k-partite graphs (whose
vertex set can be partitioned into k different independent sets),

leading to a polynomial time k−1-approximation algorithm.

Note that if the social network admits a vertex cover C of size k ,
then Algorithm 1 with I := N \C provides a (1−k/n)-approximate

solution to max-LEF.

4.2 Optimizing degree of (non)-envy

Instead of simply counting the number of non-envious agents, we

will now focus on a more subtle criterion, measuring the degree of

envy among agents. This leads to themax-NE optimization problem

(defined in section 2) which consists in minimizing the average

degree of envy E (A) (or equivalently maximizing the average degree

of non-envyNE (A) = 1 − E (A)). Before describing the algorithm,

we first state the following lemma (due to lack of space, the proof

of this lemma is omitted).

Lemma 2. LetUn be the uniform distribution over all matchings

from n agents to n objects. Then we have EA∼Un [NE (A)] = 5

6
−

o(1).



This tells us that with high probability, random matchings yield

high degrees of non-envy. To get a deterministic algorithm based

on this idea, we apply a standard derandomization technique. In

our algorithm (Algorithm 2), at each step i , agent i receives one of
the remaining unallocated objects. This object is chosen so as to

minimize the conditional expectation of E (line 4). We will show

below that this conditional expectation can be computed efficiently.

Algorithm 2:

1 A0 ← {} is an empty allocation, S ← {} is empty set of agents

2 for each i ∈ 1 . . .n do

3 for each object x unassigned in Ai−1 do

4 Ax
i ← Ai−1 ∪ {aдenti ← x }

5 vx ← EA∼Un

[
E (A) : A (S ∪ {i}) = Ax

i

]

6 x∗ ← argminx vx
7 Ai ← Ai−1 ∪ {aдenti ← x∗}

8 S ← S ∪ {i}

Proposition 1. Algorithm 2 is a polynomial-time
5

6
− o(1) ap-

proximation algorithm for max-NE.

Proof. First, by standard arguments of the derandomization

method (similar to e.g. page 132 of [30]) together with lemma

2, this algorithm outputs an allocation A such that NE (A) ≥
5

6
− o(1). By design we have NE (A) ≤ 1, so the approxima-

tion ratio holds. To show that the algorithm runs in polynomial

time, we need to bound the computation time of vx . If A is a par-

tial allocation, define P (A, l ) as the set of goods that agent l can
own without violating A. For example, if A is a complete allo-

cation, P (A, l ) = A (l ) and if A = {}, then P (A, l ) = O . First
note that vx can be calculated as a sum of conditional expectations

1

2 |E |
∑
{l,h }∈E EA∼Un

[
e (A, l ,h) + e (A,h, l ) : A (S ∪ {i}) = Ax

i

]
.

Next, note that for any l ,h ∈ N the expectation EA∼Un [e (A, l ,h) :

A (S∪{i}) = Ax
i ] is equal to

1

|Zl,h | .(n−1)
∑

(a,b )∈Zl,h max(0, rl (a)−

rl (b)) where Zl,h =
{
(a,b) ∈ P (l ,Ax

i ) × P (h,A
x
i ) : a , b

}
. The

computation of vx can thus be done in O (n4). □

5 LOCATION AND ALLOCATION

This section is dedicated to dec-location-LEF. The following the-

orem shows that this problem is computationally challenging.

Theorem 5.1. dec-location-LEF is NP-complete.

Proof. The reduction is from problem independent set which

is NP-complete [21] and can be defined as follows. Given an undi-

rected graph G = (V, E) and a positive integer k ≤ |V|, is there
an independent set I ⊆ V of size k?

Let s denote the size ofV , andV = {v1, · · · ,vs }. We construct

an instance of dec-location-LEF as follows. The set of objects is

O = Q ∪ T , where Q = {q1, · · · ,qs−k } and T = {t1, · · · , tk }. The
set of agents is N = {X1, . . . ,Xs−k } ∪ {L1, . . . ,Lk }. Let Q−i denote

the set Q \ {qi }, and let Q↑
−i , Q

↑
and T ↑ denote partial orders over

Q−i , Q and T , respectively, where objects are ranked by increasing

order of indices. Preferences are as follows:

• Xi : qi ≻ Q↑
−i ≻ T

↑

• Lj : T
↑ ≻ Q↑

Finally, the social network is G = G = (V, E).
We claim that the instance of dec-location-LEF is a yes-instance

if, and only if, G contains an independent set of size k .
Assume that I is an independent set of sizek inG. We can assume

without loss of generality that I = {v1, . . . ,vk }. We construct A

and L as follows. If vi ∈ I then L (Li ) = vi and A (Li ) = ti .
Otherwise, agents are placed arbitrarily onG and receive their best

item (A (Xi ) = qi ). It is easy to check thatA is LEF with respect to

L since no two vertices L (Li ) and L (Lj ) are neighbors in G.
Assume now that there exists L such that A is LEF w.r.t. L. If

L (Li ) and L (Lj ) are neighbors inG then either A (Li ) ≻Lj A (Lj )
or A (Lj ) ≻Li A (Li ) holds since Li and Lj have the same prefer-

ences, leading to a contradictionwithA LEF. Hence, {L (L1), . . . ,L (Lk )}
forms an independent set of size k in G = G. □

Interestingly, the above reduction also holds when A is fixed,

i.e. the allocation of objects to agents is imposed by the problem.

We shall extend the polynomial time result obtained for dec-LEF

on social networks of degree at least n − 2. Note that for dec-

location-LEF, vertices of degree n − 1 cannot be ignored, since we
need to decide which agents they accommodate.

Observation 2 implies that two agents having the same top object

must be neighbors in G, otherwise one of them must be envious.

Therefore, one can focus on L≻ , defined as the set of location func-

tions such that each pair of agents having the same top object are

neighbors in G (or equivalently, not neighbors in G).
If an instance contains three (or more) agents with the same

top object then it must be a no-instance since each vertex in G
has degree at most 1. The following lemma shows that the location

functions of L≻ are all equivalent for the search of an LEF allocation.

Lemma 5.2. If A is an LEF allocation for some L, and A cannot

be improved by a swap between two agents without violating the LEF

condition, then A is also LEF for any location function ofL≻ .

Proof. First of all, L must belong to L≻ for A to be LEF. Let

L′ be a function of L≻ . It is easy to check that any pair of agents

having the same top object have the same set of neighbors in G for

both L and L′. Therefore, if A is LEF for these agents under L,

then A is also LEF for these agents under L′.

Let i be an agent who solely ranks some object o at the first

position in her preferences. On one hand, if L (i ) is a vertex of

degree n − 1 then Observation 2 implies that she must receive o. On
the other hand, if L (i ) is a vertex of degree n− 2 and j is the unique

neighbor of i in G then Observation 2 implies that o is assigned

either to i or to j . But j must also be the unique agent to have some

object o′ ranked first in her preferences, where o , o′. Therefore,
either agent i or j must receive o′. Since by hypothesis A cannot

be improved by swapping objects o and o′, o must be assigned to

i and o′ must be assigned to j. In all, agent i must receive her top

object in A. Therefore, A is also LEF for agent i . □

In order to solve dec-location-LEF, one can compute a function

L of L≻ by assigning the agents having the same top object to ver-

tices connected in G, and by assigning the other agents arbitrarily.

Once L is fixed, one can use the algorithm presented in Theorem

3.3 to compute an LEF allocation if such an allocation exists. If an



LEF allocation is returned then the algorithm returns L and A.

Otherwise, we know by Lemma 5.2 that no function in L≻ can lead

to an LEF allocation, and the algorithm returns false. This algorithm

clearly runs in polynomial time, leading to the following theorem:

Theorem 5.3. dec-location-LEF in graphs of minimum degree

n − 2 is solvable in polynomial time.

6 EXPERIMENTS

In this section we generate random instances of our decision and

optimization problems and we solve these instances exactly using

mixed integer linear program formulations. We build on the ones

proposed by [16] (which address envy-freeness and the minimiza-

tion of maximum pairwise envy among any two agents [26], in a

context of additive utilities with several goods per agent). To fit

our setting, we adapt it so as to account for graph constraints. We

further design three variants, two where the objective functions

correspond to max-LEF and max-NE, and another one where the

locations of agents on the graph are treated as decision variables,

to address the more challenging dec-location-LEF.

For these experiments, we generate random k-regular graphs
with 8 vertices for k ranging from 1 to 7. Agents’ preferences are

randomly drawn from impartial culture. Table 2 shows the results

(averaged over 1000 runs). Note that max-LEF results are given in

terms of the number of envious agents.

A natural question is how the likelihood to find an LEF evolves

as the degree of the graph augments. It must clearly decrease (in the

extreme case of a complete graph, recall that all agents must have a

different preferred item, which occurs with a probability as low as

n!/nn ). The question is how this drop will occur. Our experiments

show that this decrease is sharp, and from a degree equal to half of

the agents, it actually becomes highly unlikely to find an LEF. On

the other hand, for graphs of small degrees, it is often the case that

an LEF can be found, and, as expected, it becomes even more so as

the number of agents and items augments. Further experiments on

a higher number of agents confirm this. As a rule of thumb, this

means for instance that from 20 agents, it is almost always possible

to find an LEF on a grid-like network.

Degree 1 2 3 4 5 6 7

LEF 1 0.72 0.22 0.05 0.02 <0.01 <0.01

max-LEF 0 0.28 0.93 1.52 1.95 2.44 2.78

max-NE 1 0.99 0.99 0.99 0.98 0.98 0.98

MMPE 0 0.28 0.83 1.19 1.42 1.69 1.91

Loc-LEF 1 1 1 0.92 0.49 0.07 <0.01

Table 2: 8 agents, graphs of regular degree

The ability to allocate agents on the network gives the central

authority some extra-power when it comes to find an LEF. However,

note that this power heavily depends on the structure of the graph

(for instance, it is useless when the graph is complete, as all the

different ways to label the graph with agents are isomorphic). Table

2 shows that this power can be significant: the likelihood to find an

LEF remains above 90% until degree 4, while it was as low as 5.5%

in the basic problem.

We also report in Table 2 results regarding the measures we opti-

mize (as well as the “classical” minimization of maximum pairwise

envy (MMPE) of [26], which in our context can be interpreted as

minimizing the maximum number of agents envied by any agent).

Note in particular that even with a complete graph, it is on average

possible to allocate items so as to make envious only about a third

of the agents, and that no agent envies more than two other agents

in our instance with 8 agents.

7 FUTUREWORK

We have studied different aspects of local envy-freeness in house

allocation settings. There are several interesting future directions

to explore. We give below some preliminary thoughts on the ones

we find the most stimulating.

Constraints on the allocation. Two other relevant challenges re-

lated to dec-LEF are: Given a partial allocation of the objects, can a

full LEF allocation be found? Given some forbidden object-agent

pairs, can an LEF allocation be found?

Oriented graphs. A natural extension of dec-LEF is to consider

a social network modeled with a directed graph. An arc (u,v ) in-
dicates that u possibly envies v , but it does not indicate that v
possibly envies u, unless the arc (v,u) is also present. In this di-

rected case, an allocation A is said to be LEF if A (j ) ⊁i A (i ) for
every arc (i, j ). It is not difficult to see that dec-LEF is NP-complete

in this directed case (use the proof of Theorem 3.1 where each edge

{u,v} is replaced by the arcs (u,v ) and (v,u)). Interestingly, the
directed variant of dec-LEF can be solved efficiently in directed

acyclic graphs (DAGs). Indeed, if the social network is a DAG, then

an LEF allocation must exist, and it can be computed in polynomial

time. In fact, a DAG has at least one source, i.e. a vertex with in-

degree 0. If a source of a DAG is deleted, then we get a (possibly

empty) DAG. The algorithm computing an LEF allocation works

as follows: while the social network is non empty, find a source s ,
allocate s her most preferred object os ∈ O , remove os from O , and

delete s . The algorithm also guarantees a Pareto-optimal allocation

and mimics a serial dictatorship [29]. Note that DAGs actually char-

acterize exactly those graphs guaranteeing LEF to exist (if a cycle

exists, simply set the preferences of all agents to be exactly the

same within the cycle to get a no-instance). But this leaves other

interesting questions open: for instance, are there other natural

classes of graphs admitting polynomial time algorithms for dec-LEF

in oriented graphs?

Domain restrictions. There is a long tradition in social choice

to consider domain restrictions on agents’ preferences to obtain

positive results. This would be natural to study our setting under

such assumptions. For example, we can fix the number of different

rankings. To take a concrete question, how difficult dec-LEF and

dec-location-LEF arewhen there are only two categories of agents:

those with ranking ≻1 on the objects and those with ranking ≻2?

More generally, can well-known domain restrictions, such as single-

peakedness, be useful? Since the relevance of this domain restriction

in the context of house allocation has recently been emphasized

[7, 14], this might be an interesting road to pursue.
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