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Nonlinear Marangoni convection in circular and elliptical cylinders
P. Assemat and A. Bergeon
IMFT UMR CNRS 5502—UPS UFR MIG, 31062 Toulouse Cedex, France

E. Knobloch
Department of Physics, University of California, Berkeley, California 94720, USA

The spatial organization of single-fluid Marangoni convection in vertical cylinders with circular or 
elliptical horizontal cross section is described. The convection is driven by an imposed heat flux 
from above through Marangoni stresses at a free but undeformed surface due to temperature-
dependent surface tension. The solutions and their stability characteristics are obtained using 
branch-following techniques together with direct numerical simulations. The changes in the 
observed patterns with increasing ellipticity are emphasized. In some cases, the deformation of the 
cylinder results in the presence of oscillations. 
�DOI: 10.1063/1.2771566�

I. INTRODUCTION

Surface tension-driven flows are of importance in a va-
riety of applications, and are a consequence of surface ten-
sion inhomogeneities that are either imposed externally or
develop spontaneously as a result of an instability. Typical of
these is the Marangoni instability that sets in in liquids with
a temperature-dependent surface tension once the tempera-
ture difference, measured by the Marangoni number, exceeds
a critical value. Such flows occur even in the absence of
gravity.

Flows of this type are strongly influenced by the absence
of reflection symmetry in the midplane of the vessel, a fact
responsible for the prevalence of hexagonal structures in
large domains. Indeed, the hexagons observed in the original
experiment of Bénard are now known to be due to this
effect.1 In smaller domains, the nature of the observed pat-
terns is influenced by the shape of the domain. Experiments
by Koschmieder and Prahl2 and Ondarçuhu et al.3 have fo-
cused on Marangoni-driven convection in small aspect ratio
square domains, while others have investigated patterns in
circular domains;2,4–7 to the authors’ knowledge, other types
of domains have not been investigated. A recent overview of
the experimental situation can be found in Ref. 8. In the
so-called Rayleigh-Bénard geometry, the multiplicity of
states in circular and elliptical domains has been studied by
Hof et al.9 and Meevasana and Ahlers,10 respectively, and
one may expect a similar richness in problems without mid-
plane symmetry of which Marangoni convection is typical.

In the present paper, we use numerical techniques to
study large-amplitude convection in circular and nearly cir-
cular domains in order to ascertain the effects of the geom-
etry on the transition to steady convection. At first glance this
appears straightforward. However, in the process of perform-
ing our study we identified a number of unexpected transi-
tions whose origin is of some interest. In addition, we have
elucidated some subtle numerical effects that have a surpris-
ingly robust influence on the predicted pattern but are none-
theless artefacts of the grid. These observations may be use-

ful to others attempting Navier-Stokes simulations in
containers of circular or nearly circular cross section.
Throughout, we use the techniques and language of bifurca-
tion theory to interpret our results.

The paper is organized as follows. In Sec. II, we intro-
duce the basic equations of the study, and review the numeri-
cal techniques used to compute the solutions. These include
numerical branch following techniques as well as direct nu-
merical simulation. Our results are presented in Sec. III, and
interpreted theoretically in Sec. IV. The paper concludes with
a summary and a comparison of the results with available
experiments.

II. MARANGONI CONVECTION

A. Equations and dimensionless parameters

We study Marangoni convection in a vertical cylinder of
elliptical cross section with semimajor axis R and semiminor
axis �R. Thus when ��1, the cross section is elongated in
the x direction, while for ��1 it is elongated in the y direc-
tion. The case �=1 corresponds to a circle. In contrast to Ref.
11, a constant normal heat flux −q�0 is applied �in the
downward direction� at the free upper surface; finite Biot
number effects are neglected. In the following, A�R /H de-
notes the aspect ratio of the container, where H is its depth.
The velocity vanishes along the walls, assumed to be no-slip,
and the lateral walls are considered to be adiabatic. The sur-
face tension along the free upper surface varies linearly with
the surface temperature: ��T�=�0�1+�TT�, where T is the
temperature relative to the temperature at the bottom and �0

is a constant. We assume that to leading order the free sur-
face remains undeformed by the flow �� is large� and that the
gas in contact with the free surface has no influence. The
conditions for stress equilibrium along the free surface are

��
�u

�z
= �0�T

�T

�x
, ��

�v
�z

= �0�T
�T

�y
, �1�

where u��u ,v ,w� is the velocity in �x ,y ,z� coordinates
with the origin in the middle of the lower boundary, � is the
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density of the fluid, and � is its kinematic viscosity. This
condition is responsible for the onset of convection. The con-
duction state u=0, T=Tc�z��−qz /� is destabilized by tem-
perature fluctuations along the upper surface when the im-
posed heat flux −q exceeds a critical value as measured by
the flux Marangoni number Ma�−qH2�0�T /���	, cf. Ref.
11. Here 	 is the thermal diffusivity and ��CV�	 is the
thermal conductivity. For fluids with �T�0, the above for-
mulation remains valid provided the sign of q is reversed,
i.e., provided the surface is cooled instead of being heated.

In the following, distance, time, temperature, and veloc-
ity are nondimensionalized using H, H2 /�, 
T�−qH /�, and
Ma� /H, respectively. In zero gravity, the dimensionless
equations for u, p, and T are

�tu = − Ma�u · ��u − �p + �2u, � · u = 0, �2�

�tT = − Ma�u · ��T + Pr−1�2T , �3�

where u, p, T, x, y, z, and t now refer to dimensionless
variables, and Pr�� /	 is the Prandtl number. The boundary
conditions along the free surface �z=1� are

�zu − Pr−1�xT = �zv − Pr−1�yT = w = �zT − 1 = 0, �4�

while those along the bottom �z=0� are u=v=w=T=0.
Along the lateral walls we have u=v=w=�nT=0, where n is
the coordinate normal to the wall. Consequently, the pure
conduction state �u=0, T�z�=z� is a solution of the problem
for any Marangoni number Ma. In this paper, we focus on
containers with a relatively small aspect ratio �A�1� and
examine the transitions that take place with increasing ellip-
tical deformation of the container.

B. Numerical method

Our primary purpose is to apply numerical branch-
following algorithms in three spatial dimensions in order to
elucidate the complete bifurcation structure of Marangoni
convection for aspect ratios for which the solution multiplic-
ity is still relatively small. This is the case for the aspect
ratios we use in this paper. The branch-following method
used in our case can be implemented by combining an exist-
ing first-order time-stepping code employing projection
methods for time integration12 with an iterative �Newton
method� wraparound to compute the fixed points of the sys-
tem, as suggested by Mamun and Tuckerman.13 This tech-
nique is used here to calculate both linear and nonlinear so-
lutions of the problem as described in Ref. 14.

We use a spectral element method for the space discreti-
zation of the equations in conservation form. The computa-
tional domain is partitioned into Ne nonoverlapping elements
�l �1� l�Ne� �Fig. 1�. The reference coordinate system

x̂��x̂ , ŷ , ẑ� defines a cubic domain �̂= �−1,1�3. Data are ex-
pressed as tensor products of Lagrange polynomials based on
the Gauss-Lobatto-Legendre �GLL� quadrature points. Func-
tions in the system coordinates x��x ,y ,z� are of the form

u�xl�x̂�� = �
i=0

nx

�
j=0

ny

�
k=0

nz

uijk
l hi

nx�x̂�hj
ny�ŷ�hk

nz�ẑ� , �5�

where uijk
l are the nodal basis coefficients, hi

nx�x̂� �respec-
tively, hj

ny�ŷ� and hk
nz�ẑ�� are Lagrange polynomials of degree

nx �respectively, ny and nz� based on the GLL quadrature
points, and xl�x̂�= (xl�x̂� ,yl�x̂� ,zl�x̂�) is the coordinate map-

ping from the reference domain �̂ to �l.
In the projection scheme used for the momentum equa-

tion, the linear terms are integrated implicitly and the non-
linear terms explicitly. The first-order version of the scheme
reads


t−1�u�n+1� − u�n�� = − Ma�u�n� · ��u�n� − �p�n+1�

+ �2u�n+1�, �6�

where u�n� refers to the velocity field at time tn�n
t. Each
time step is subdivided into three substeps. After the compu-
tation of the nonlinear terms �the first substep�, a Poisson
problem is formulated for the pressure using the boundary
conditions proposed in Ref. 12. This Poisson problem �sec-
ond substep� as well as the Helmholtz problems for the ve-
locity components that constitute the final implicit substep of
the scheme are solved using a variational formulation. Since
a similar treatment is done for the heat equation, each time
step involves the inversion of four Helmholtz problems �one
for the temperature T and one for each velocity component�
and one Poisson problem �for the pressure�. The inversions
are performed using a Schur method taking full advantage of
the tensorization in the z direction. Throughout the paper, we
use Ne=12 spectral elements.

To check the accuracy of the method, we compare our
results with Refs. 15 and 16. A direct comparison is difficult
as the results of Refs. 15 and 16 are presented graphically. To
check the accuracy of the critical Marangoni number, i.e., the

FIG. 1. View of the grid in an elliptical geometry. The grid has Ne=12
macro-elements. Spatial resolution in each element is nx=ny =nz=10, where
nx, ny, and nz are, respectively, the polynomial degrees of the interpolant in
the x, y, and z directions.



primary bifurcation point for different aspect ratios, we have
therefore employed three methods. The first uses Arnoldi’s
method13 to calculate the largest eigenvalues of large linear
systems. For the linear stability problem of the conduction
state, this method yields the largest eigenvalues at discrete
values of Ma. The critical Marangoni number corresponds to
a zero maximum eigenvalue. In an A=1 container with
nxny nz=101010 interpolation yields Mac=109.035.

The second method solves the system DF�Ma�h=0,
where DF denotes the linearized version of the discretized
equations around the conduction state, and h
��uijk

l ,vijk
l ,wijk

l ,Tijk
l �, 0� i�nx, 0� j�ny, 0�k�nz, 1� l

�Ne, are the values of the three velocity components and
temperature at the grid points. This is a nonlinear system as
both h and Ma are unknowns. This problem is solved using a
Newton method as described in Ref. 14. Consequently, no
eigenvalue computation is involved. The method converges
well as the number of grid points �Fig. 2 and Table I� is
increased. The third method uses an extrapolation of fully
nonlinear solutions to zero amplitude �Fig. 3�. For A=1 with
nxny nz=101010, the extrapolation yields Mac

=109.029. Thus all three methods are in excellent agreement
with each other and with the values obtained in the previ-
ously cited papers.

Our numerical method keeps track of the unstable eigen-
values along each solution branch. For bifurcations that
break the circular symmetry of the container, these eigenval-

ues are doubled. Thus it is important to characterize all so-
lutions by their symmetry; this symmetry typically reflects
the symmetry of the unstable eigenfunction responsible for
the instability, although, as we shall see, this is not always
the case.

In the following section, we will see how the multiplicity
of the eigenvalues is reduced as the cylinder cross section
becomes elliptical. We compute numerically the bifurcation
diagrams for both O�2�-symmetric �circular� and
D2-symmetric �elliptical� cross sections with our continua-
tion method. All primary bifurcations are steady-state bifur-
cations since the eigenvalues of the linear stability problem
are necessarily real.11,17 Periodically we calculate the leading
eigenvalues of the linearized system �around the nonlinear
state� using an adaptation of Arnoldi’s method described in
Ref. 13. When the number of positive eigenvalues changes,
indicating a bifurcation, the method determines the param-
eter interval in which the bifurcation occurs together with the
associated eigenvector. The latter is used to initiate branch
switching. Secondary bifurcation points are located from the
intersection of pairs of nonlinear branches with different
numbers of unstable eigenvalues, and for the aspect ratios
used the results using a 101010 grid agree well with the
results of direct numerical integration. All calculations use
Pr=1 since the value of Pr has no effect on the primary
bifurcations.

III. RESULTS

In this section, we describe the results for containers of
both circular and elliptical cross section and different aspect
ratios. The results are presented in the form of bifurcation
diagrams, and use solid circles to indicate primary bifurca-

FIG. 2. Evolution of the critical Marangoni number for the m=1 mode with
the grid spacing nx=ny when Pr=1, A=1.5, and nz=10 �cf. Fig. 11�.

TABLE I. Critical Marangoni number Mac for different grids and aspect
ratios.

nxny nz 6610 101010 141410 101014

m=1, A=1 109.0726 109.0286 109.0283 108.9071

m=0, A=2.1 84.1408 84.0812 84.0810 84.0818

m=1, A=2.8 82.9163 82.7896 82.7832 82.7871

FIG. 3. Bifurcation diagram showing the maximum of the vertical velocity
wm as a function of the Marangoni number Ma. Snapshots show isovalues of
the vertical velocity in the midplane of the cylinder. The orientation of the
m�0 states is nominally arbitrary. Parameters are �=1, A=1, and Pr=1.
Resolution is Ne=12, nx=ny =nz=10.



tions and secondary pitchfork bifurcations, while solid
squares indicate saddle-node bifurcations, open circles indi-
cate �secondary� Hopf bifurcations, and open triangles indi-
cate collisions of a pair of complex eigenvalues on the posi-
tive real axis; the latter, of course, does not correspond to a
bifurcation. Primary bifurcations are labeled using the nota-
tion Pm, Tm to indicate pitchfork �P� and transcritical �T�
bifurcations to modes with azimuthal wavenumber m. In the
following, we refer to eigenvalues with a negative �positive�
real part as stable �unstable� eigenvalues. Stability of each
branch is indicated using the notation n−p, where n is the
number of unstable real eigenvalues and p is the number of
pairs of unstable complex eigenvalues. Thus the number of
unstable eigenvalues is n+2p. In the figures, we use solid
�dashed� lines to indicate linearly stable �unstable� solutions.
We do not follow branches of time-periodic states. In many
of the bifurcation diagrams, we include snapshots of the flow
showing the vertical velocity w at midheight, with dark
�light� shading indicating w�0 �w�0�.

Throughout the description that follows, we refer to
states that are reflection-symmetric about x=0 �y=0� as
	y-symmetric �	x-symmetric�.

A. Aspect ratio A=1

We begin with aspect ratio A=1 and describe the
changes that occur in the solutions of the nonlinear problem
as the ellipticity � is reduced from �=1. The diameter in the
x direction is kept equal to 1 throughout. We refer to Ref. 18
for a similar study of square and nearly square containers.
Figure 3 shows the bifurcation diagram for the circular con-
tainer. The figure displays the evolution with the Marangoni
number of the maximum wm of the absolute value of the
vertical component of the velocity at the Gauss-Lobatto-
Legendre nodes.19 The value wm=0 corresponds to the con-
duction state. Branches with wm�0 are characterized by the
azimuthal wavenumber m of the state, indicated in the label
of the corresponding primary bifurcation.

Figure 3 shows that the conduction state is stable up to
MaP1

=109.03. At this value of the Marangoni number the
conduction state undergoes a symmetry-breaking bifurcation
that produces a branch of states with azimuthal wavenumber
m=1. As a result, the eigenvalue that passes through zero at
MaP1

is doubled, and the resulting bifurcation is a pitchfork
of revolution. The figure reveals that this bifurcation is su-
percritical, and the resulting solutions are therefore stable
�modulo a zero eigenvalue associated with spatial rotations
of the pattern�. We note, however, that the solutions are not
invariant under a change in sign of wm. This is a consequence
of the different boundary conditions applied at the top and
bottom of the container.

The second primary bifurcation occurs at MaP2
=161.1

and is also a supercritical pitchfork of revolution, this time
producing a branch of m=2 solutions �Fig. 4�. These
solutions inherit the instability of the conduction state in
MaP1

�Ma�MaP2
and hence are doubly unstable. More-

over, like the m=1 solutions, the m=2 solutions are not in-
variant under change of sign.

The final primary bifurcation we discuss occurs at

MaT0
=164.2, and corresponds to a transcritical bifurcation to

an m=0 state, i.e., to an axisymmetric state. Since this bifur-
cation is unaffected by the O�2� symmetry of the system,
only one eigenvalue passes through zero at MaT0

, with the
supercritical branch inheriting the four unstable eigenvalues
of the conduction state, while the subcritical part is five times
unstable.

Figure 3 shows how these branches interact in the non-
linear regime. The m=1 branch terminates on the m=0
branch above a saddle-node bifurcation �Ma=162.34, indi-
cated by a solid square� at a point labeled S1 characterized by
a double zero eigenvalue. The bifurcation at S1 is mathemati-
cally identical to that at P1: the m=0 state loses stability with
decreasing Ma at a pitchfork of revolution at S1, and is there-
fore doubly unstable below S1 �and above the saddle node�.
The prominent kink in the m=1 branch just prior to S1 is a
consequence of increasing importance of the m=0 contribu-
tion, which shifts the local maximum in w to a new location,
and is not the result of a bifurcation. The figure shows that
the m=2 branch also terminates on the m=0 branch, but this
time below the saddle node, at a point labeled S2. Once
again, at this point there is a double zero eigenvalue. We find
that above S2 �and below the saddle node� the m=0 branch is
three times unstable; it follows that the m=2 branch near S2

must be four times unstable, and hence that the m=2 branch
must undergo a Hopf bifurcation between P2 and S2, a con-
clusion that has been verified numerically �Fig. 4�. Indeed,
the complex unstable eigenvalues created at the Hopf bifur-
cation collide on the positive real axis with increasing Ma,
before one of them reaches zero at S2; the other zero eigen-
value at S2 comes from rotations of the m=2 states. The
number of unstable eigenvalues along each solution branch
is indicated in the figure, and is consistent with the above
theoretical expectation. Since the Hopf bifurcation preserves
the symmetry of the m=2 state, the resulting �unstable� os-
cillations are standing waves, and likely disappear in a global
bifurcation involving the m=0 state.

FIG. 4. Detail of Fig. 3.



It will have been noticed that the m=1 and m=2 states
are both oriented at 45° to the x axis. This is a consequence
of the structure of the numerical grid used to compute the
solutions �Fig. 1�. The grid used is not rotationally invariant
but has in fact residual D4 symmetry. This symmetry group,
the symmetry of a square, is generated by two reflections, 	x

in the x axis and �xy in the line x=y. As discussed below, the
small perturbations due to the structure of the grid split each
of the m=1 and m=2 branches into a pair of branches, one
consisting of states with 	x symmetry and the other of
�-symmetric states; each branch is produced in a standard
pitchfork bifurcation that come in in close succession. It
turns out that in each case the grid selects the �-symmetric
state as the first state that sets in. A similar observation ap-
plies to the termination point S2, which is also split by the
grid. Both m=2 branches undergo the Hopf bifurcation to
standing oscillations prior to their termination on the m=0
branch.

We now turn to a discussion of the corresponding results
for a slightly elliptical container, characterized by �=0.98.
Although the resulting ellipticity is small, this value is still
sufficiently far from �=1 that the ellipticity effects ought to
dominate the symmetry-breaking effects due to the grid. It
should be mentioned that the elliptical deformation of the
container cross section changes the symmetry of the problem
to D2, the symmetry group of a rectangle, a smaller symme-
try group than D4. The former is generated by the two reflec-
tions 	x and 	y, and in contrast to 	x and � these commute.
Figure 5 shows that this change in the symmetry of the prob-
lem results in a substantial change in the bifurcation dia-
gram. Since the primary bifurcations can only lead to 	x- and
	y-symmetric states, the multiple bifurcations at P1 and P2

are strongly affected. Figure 5 shows that P1 is split, with the

	y-symmetric states coming in first, followed by the
	x-symmetric states; the former are stable, while the latter
are once unstable. The bifurcation at P2 is also split, result-
ing in a transcritical bifurcation to D2-symmetric states and a
pitchfork to �-like states �Fig. 6�b��. In fact, these states,
which come in at the point labeled P2�, have exact � sym-
metry at zero amplitude, but with increasing amplitude their
plane of symmetry rotates monotonically, reaching 45° by
the time the branch terminates at S2�. The reason for this
unexpected behavior will be explained below. Figure 6�b�
also shows that one of the transcritical branches created in
the breakup of P2 connects to the large-amplitude axisym-
metric states at S1�, while the other undergoes a saddle-node
bifurcation before connecting to the second transcritical bi-
furcation T0; the latter is merely the �slightly perturbed� tran-
scritical bifurcation T0 present in the O�2�-symmetric case;
the same notation is therefore used to refer to it. This con-
nection contains a Hopf bifurcation to standing oscillations

FIG. 5. Bifurcation diagram showing the maximum of the vertical velocity
wm as a function of the Marangoni number Ma. Snapshots show isovalues
of the vertical velocity in the midplane of the cylinder. Parameters are
�=0.98, A=1, and Pr=1. Resolution is Ne=12, nx=ny =nz=10.

FIG. 6. �a�,�b� Detail of Fig. 5.



with D2 symmetry, but the resulting oscillations are neces-
sarily unstable. It should be noted that this bifurcation is
present after S2�; for � closer to �=1, the order of these bi-
furcations is reversed, while a second Hopf bifurcation is
present on the branch of �-like states connecting P2� to S2�.
Finally, the forced symmetry breaking to D2 also splits the
termination point S1 �Fig. 3�, with the result that the
	y-symmetric states transfer stability to the D2-symmetric
states arising from the axisymmetric states �at S1 in Fig.
6�a��, while the unstable branch of 	x-symmetric states ter-
minates on the D2-symmetric states just below �at S1� in Fig.
6�a��. Once again the number of unstable eigenvalues along
each branch is indicated in the figure.

Figure 7 shows the corresponding results for �=0.90,
i.e., for larger ellipticity. The broad features of the bifurca-
tion diagram are similar. The main difference involves the
branch of D2-symmetric states connecting the two primary
transcritical bifurcations. Figure 7 shows that this branch
now undergoes an additional saddle-node bifurcation on the
right; the termination point S2� of the �-like states falls on the
part of the D2 branch just below this saddle node. Moreover,
the secondary Hopf bifurcation is now absent; this bifurca-
tion collides with the saddle-node bifurcation with increasing
ellipticity, and disappears via the so-called Takens-Bogdanov
bifurcation. This bifurcation is then followed by a second
�and different� codimension-2 bifurcation at which S2� passes
through the saddle node.

Figure 8 shows the corresponding results for �=0.75.
For this value of � the order of the primary bifurcations is
reversed. The reason for this is indicated in Fig. 9, which
shows the linear stability thresholds for m=1 modes in the
�� ,Ma� plane. The figure shows that outside the region
0.8���1, the mode that first sets in is the mode with 	x

symmetry; the first unstable mode is 	y-symmetric only in
the range 0.8���1. Because of the mode exchange that

takes place near �=0.8, the 	x-symmetric states must transfer
their stability to the 	y-symmetric states in the nonlinear re-
gime. Figure 10 shows that this transfer of stability occurs
via a stable branch of mixed states, i.e., a branch of states
with no symmetry. As a result, the stable large-amplitude
states, away from the primary bifurcation, continue to be the
	y-symmetric states.

FIG. 7. Bifurcation diagram showing the maximum of the vertical velocity
wm as a function of the Marangoni number Ma. Snapshots show isovalues
of the vertical velocity in the midplane of the cylinder. Parameters are
�=0.90, A=1, and Pr=1. Resolution is Ne=12, nx=ny =nz=10.

FIG. 8. Bifurcation diagram showing the maximum of the vertical velocity
wm as a function of the Marangoni number Ma. Snapshots show isovalues
of the vertical velocity in the midplane of the cylinder. Parameters are
�=0.75, A=1, and Pr=1. Resolution is Ne=12, nx=ny =nz=10.

FIG. 9. Critical Marangoni number Mac as a function of the ellipticity �.
The azimuthal wavenumber is m=1. Parameters are A=1 and Pr=1. The
primary bifurcation with �=1 is split into two successive bifurcations: solid
line indicates 	x-symmetric states, dashed line 	y-symmetric states. Resolu-
tion is Ne=12, nx=ny =nz=10.



B. Aspect ratio A=1.5

Figure 11 shows the linear stability thresholds for
A=1.5, again as a function of �. The primary instability is
always to m=0-like states, followed for ��1 by a transition
at larger Ma to a succession of m=2 states. At yet larger
values of Ma �not shown�, one finds a pair of transitions to
m=1 states as well.

In the next set of figures, we examine the resulting be-
havior in the nonlinear regime. Figure 12 shows the bifurca-
tion diagram for �=1 with high resolution to minimize the
effects of the computational grid. The primary bifurcation
at T0 �MaT0

=96.19� is transcritical and produces a stable
m=0 branch of states with fluid descending in the center and

an unstable branch of states with ascending fluid in the cen-
ter. The latter turns around at a saddle-node bifurcation �in-
dicated by a solid square� and acquires stability, remaining
stable at larger values of Ma. In addition, a branch of m=2
states bifurcates from the conduction state in a pitchfork of
revolution at P2 �MaP2

=105.87� and does so supercritically.
The resulting states are once unstable near onset, but become
twice unstable above a saddle-node bifurcation �indicated by
a solid square�, before stabilizing via a �subcritical� Hopf
bifurcation. As a result, the m=2 branch acquires stability
before its termination on the �supercritical� m=0 branch at
S1. This bifurcation is again a pitchfork of revolution and
destabilizes the m=0 states at larger values of Ma; for future
reference, we emphasize that these states have a pair of un-
stable eigenvalues and are hyperbolic, i.e., none of the eigen-
values along this branch are close to zero and hence subject
to qualitative change under small perturbation, such as the
introduction of nonzero ellipticity. It follows that at large
Ma, the only stable states are the axisymmetric states with
ascending fluid in the center, as expected on physical
grounds. Finally, at MaP1

=112.35 the conduction state loses
stability to solutions with m=1. The resulting pitchfork of
revolution is subcritical, implying that the m=1 states are
initially four times unstable. Figure 12 shows, however, that
despite the high resolution used, some effects of the compu-
tational grid remain. These are most noticeable in the split-
ting of the m=1 branch emanating from P1, and in the pres-
ence of the bifurcation points S3 and S3�. These effects will be
discussed in greater detail in the following section.

Figure 13 shows the corresponding bifurcation diagram
for �=0.98. We see a dramatic effect: the primary pitchforks
of revolution are both split, P2 into a pitchfork P2� to �-like
states and a transcritical bifurcation T2� to 	x-symmetric

FIG. 10. Closer view of Fig. 8 showing exchange of stability between 	x-
and 	y-symmetric states via a stable branch of nonsymmetric states.

FIG. 11. Critical Marangoni number Mac as a function of the ellipticity �.
The continuous line refers to Mac�T0�, the dashed line to Mac�P2��, and the
dot-dashed line to Mac�T2��. Parameters are A=1.5 and Pr=1. Resolution is
Ne=12, nx=ny =nz=10.

FIG. 12. Bifurcation diagram showing the maximum of the vertical velocity
wm as a function of the Marangoni number Ma. Snapshots show isovalues of
the vertical velocity in the midplane of the cylinder. The orientation of the
m�0 states is nominally arbitrary. Parameters are �=1, A=1.5, and Pr=1.
Resolution is Ne=12, nx=ny =nz=10.



states �Fig. 14�a��, and P1 into a pair of pitchfork bifurca-
tions producing 	y-symmetric states �P1�� and 	x-symmetric
states �P1�, respectively �Fig. 14�d��. At the same time, the
primary bifurcation �labeled T0� remains transcritical, al-
though the states that are produced are now D2-symmetric
and not axisymmetric. In addition, the secondary bifurcation
at S1 is “unfolded” with the result that the supercritical
branch originating at T0 now connects to the supercritical
branch emanating from T2�, while the subcritical branch at T2�
connects to the large-amplitude unstable m=0-like state.

As in the A=1 case, the unstable �-like states rotate
through 45° �Fig. 14�a�� along the branch before the branch
terminates on the doubly unstable supercritical part of the
transcritical branch at a point labeled S1�, below a saddle-
node bifurcation at which the branch turns around toward
smaller values of Ma �Fig. 14�c��. At the termination, the
number of unstable eigenvalues on the transcritical branch
decreases to one, but at the saddle node it increases back to
two, before a Hopf bifurcation stabilizes the branch. Alterna-
tively, viewed from the perspective of the supercritical
branch produced at T0, the solutions with descending fluid in
the center lose stability with increasing Ma at a Hopf bifur-
cation �Fig. 14�c��. However, no stable oscillations have been
found in the vicinity of this bifurcation, suggesting that this
bifurcation remains subcritical. In contrast, the subcritical
part of the transcritical branch T2� remains unstable through-
out, and is three times unstable at large values of Ma �Fig.
14�b��. The branch of 	y-symmetric states emerging from P1�
now terminates at S2� on the subcritical branch created at T2�.
In addition, there is a second segment of 	y-symmetric states
that extends from S3� to S4� and brackets the saddle node on
the branch of subcritical D2-symmetric states emerging from
T2�. In contrast, the branch of 	x-symmetric states emerging

from P1 turns around at a saddle node and extends to larger
values of Ma, where it is ultimately four times unstable �Fig.
14�d��. A pair of Hopf bifurcations brackets the saddle node
but the associated oscillations are necessarily unstable. De-
spite this, stable periodic oscillations are found near the
saddle node in the interval 107.24�Ma�107.26, between
the saddle-node bifurcation and the Hopf bifurcations. These
oscillations grow in amplitude with increasing Ma �Fig. 15�
and are 	x-symmetric �Fig. 16�, i.e., they share the symmetry
of the steady states on the branch emanating from P1, but
their relation to this branch remains unclear.

The bifurcation diagram shown in Fig. 13 possesses two
unexpected features. First, the stability assignments indicate
that the two large-amplitude branches have three and four
unstable eigenvalues, respectively. In contrast, the m=0
branch in Fig. 12 is only twice unstable, and for small per-
turbations of the domain this stability assignment should be
inherited by the corresponding D2 branch in Fig. 13. In ad-
dition, we expect the presence of a third branch at large Ma,
since the deformation of the domain is expected to split the
m=1 branch into two distinct branches. To reconcile Fig. 13
with Fig. 12, we have therefore recomputed the bifurcation
diagram for �=0.995 �Fig. 17�. The figure confirms that our
expectation is correct, and indicates that �=0.98 is in fact a
large perturbation. Indeed, as � decreases, the branch of
	y-symmetric states collides with the branch of
D2-symmetric states, and breaks into two segments. The first
of these terminates at S2� �Fig. 14�c�� while the second ex-
tends between S3� and S4� �Fig. 14�b��. Evidently, as � de-
creases, the bifurcation point S4� moves in from large ampli-
tudes and is responsible for the unexpected stability
properties of the D2-symmetric states at these amplitudes, as
well as for the absence of the third large-amplitude branch.
Finally, Fig. 17 also reveals the presence of a pair of Hopf
bifurcations on each of the branches bifurcating from P1 and
P1�, each of which brackets a saddle node. The presence of
these bifurcations provides strong evidence for the presence
of the corresponding bifurcations in the �=1 case in the in-
finite resolution limit. In addition, the Hopf bifurcations on
both of the branches bifurcating from T2� converge to the
corresponding Hopf bifurcation in the �=1 case �Fig. 12�.

C. Effects of the numerical grid

In this section, we examine the effects of the numerical
grid noticed already in Fig. 12. For this purpose, we decrease
the resolution to nx=ny =6. Figure 18 for A=1 shows that the
grid splits the primary bifurcation P2 to m=2 states into two
successive bifurcations even when �=1. Associated with this
splitting is the splitting of the termination point S2; more-
over, both branches inherit the Hopf bifurcation present in
Fig. 3. In contrast, the primary bifurcation P1 is not split by
the grid, although the branches that emanate from it are. This
branch splitting is responsible for the transfer of stability at
finite amplitude between these two branches; this transfer
occurs via a secondary branch of mixed states �Fig. 18�c��
and is a consequence of the fact that the m=1 states have a
zero eigenvalue, associated with rotations, when �=1. Figure
19 shows the corresponding results using the total kinetic

FIG. 13. Bifurcation diagram showing the maximum of the vertical velocity
wm as a function of the Marangoni number Ma. Snapshots show isovalues
of the vertical velocity in the midplane of the cylinder. Parameters are
�=0.98, A=1.5, and Pr=1. Resolution is Ne=12, nx=ny =nz=10.



energy E as a measure of the solution amplitude. This proce-
dure confirms that the splitting is due to the symmetry of the
grid, and not an artefact produced by changes in the location
of the maximum of �w� with respect to a collocation point.

Figure 20 shows a blowup of some of the branches in
Fig. 12, and demonstrates the effect of the computational
grid even with the 101010 resolution. The figure shows
that the pitchfork at P2 is split by the grid into two nearby
�pitchfork� bifurcations �P2 , P2��, one of which is to states
with 	x symmetry and the other is to states with � symmetry.
Both branches that result undergo the same sequence of bi-
furcations, and these converge on the corresponding bifurca-
tions in the nominally infinite resolution limit. In contrast,
the bifurcation P1 is not split, although two distinct solution
branches emerge from it at finite amplitude. Moreover, Figs.
20�a� and 20�b� reveal the presence of one secondary Hopf
bifurcation �open circle� on each branch, but this time at
quite different locations. Thus the grid has a different effect
on different bifurcations. As a result, the stability assign-
ments along the split branches depend on which branch is

considered, and care must be taken when using these types of
numerical results to establish stability properties in the nomi-
nally infinite resolution limit.

The effect is magnified at lower resolution, as revealed
in Figs. 21–23. Note in particular the proliferation of second-
ary Hopf bifurcations �open circles� on the m=1 branches
�Figs. 22�b� and 22�c��. In contrast, the saddle-node bifurca-
tions �solid squares� and the secondary bifurcations S3 and S3�
at which the branches exchange stability �Fig. 22�d�� remain
almost unchanged. The new Hopf bifurcations are respon-
sible for the presence of a narrow interval of stability above
the leftmost saddle node �Fig. 22�d��. Evidently, this interval
of stability is an artefact of the low resolution, and only the
bifurcations that also appear in Fig. 20 are “real.” In contrast,
the bifurcations along the m=2 branches emanating from P2

and P2� continue to track each other well �Fig. 23�, although
we can now discern the presence of a pair of secondary
bifurcations S2 and S2� at which these branches trade stability
prior to their termination at S1 and S1�, respectively
�Fig. 23�b��.

FIG. 14. Closer view of Fig. 13. Parameters are �=0.98, A=1.5, and Pr=1. Resolution is Ne=12, nx=ny =nz=10.



Figure 22 demonstrates that because of the grid, the
m=1 branch is already split into a pair of hyperbolic
branches, and one expects, therefore, to find three branches
at large amplitude, at least for sufficiently small ellipticity;
for larger �, the first of the m=1 branches collides with and
eliminates the large-amplitude m=0 branch, resulting in the
presence at large amplitude of only two branches, one with
three unstable eigenvalues and the other with four.

Once ��1, it is the ellipticity that splits the various
branches, and the grid structure plays only a minor, quanti-
tative role. In the following section, we provide a theoretical
explanation of these results.

IV. THEORETICAL DESCRIPTION

Simulations in an A=1 circular cylinder reveal succes-
sive bifurcations to m=1, 2, and 0 states; at the m=1, m=2
bifurcations, two eigenvalues become positive simulta-
neously, while at m=0 only a single eigenvalue changes sign.
The simulations also reveal that in the nonlinear regime the

m=0 and m=2 states interact. These states interact in the
A=1.5 case as well. To describe this �codimension-2� inter-
action, we write

w�r,�,z� = Re	a�t�f�r,z�exp 2i�
 + b�t�g�r,z� + ¯ , �7�

where w is the vertical velocity at the point �r ,� ,z�, and we
suppose that both modes set in in close succession, so that
any interaction occurs already at small amplitude. In a cylin-
drical container, the equations for the amplitudes a �com-
plex� and b �real� must commute with the following
representation20,21 of the symmetry group O�2� of rotations
and reflections of a circle:

�a,b� → �ae2i�,b�, �a,b� → �ā,b� , �8�

corresponding to rotations through an arbitrary angle � and
reflection in the x axis. Thus

ȧ = �a − �a�2a + �1ab + �2ab2 + ¯ , �9�

ḃ = �b + ��a�2 + �b2 + ¯ , �10�

where � and � are bifurcation parameters, and �1, �2, �, and
� are real coefficients, cf. Ref. 11. In writing these equations,
we have chosen the cubic term to be stabilizing. There are
two types of solutions:

�a ,b�= �0,b�, corresponding to axisymmetric states;
these bifurcate transcritically at �=0.

�a ,b�, ab�0, corresponding to m=2 modes; these bifur-
cate in a pitchfork of revolution at �=0, and are accompa-
nied by a nonzero value of b, i.e., these solutions are not
symmetric with respect to w→−w, as observed in the simu-
lations. As already mentioned, this is a consequence of the
different boundary conditions at the top and bottom.

FIG. 15. Oscillations in the maximum vertical velocity wm as a function of
time obtained at Ma=107.24 �solid line�, Ma=107.25 �dashed line�, and
Ma=107.26 �dot-dashed line�. Parameters are �=0.98, A=1.5, and Pr=1.
Resolution is Ne=12, nx=ny =nz=10.

FIG. 16. Snapshots of the oscillation present at Ma=107.25 at six instants
within one period. The oscillation is periodic and 	x-symmetric. Parameters
are �=0.98, A=1.5, and Pr=1. Resolution is Ne=12, nx=ny =nz=10.

FIG. 17. Bifurcation diagram showing the maximum of the vertical velocity
wm as a function of the Marangoni number Ma. Snapshots show isovalues
of the vertical velocity in the midplane of the cylinder. Parameters are
�=0.995, A=1.5, and Pr=1. Resolution is Ne=12, nx=ny =nz=10.



The m=2 branch terminates on the branch of axisym-
metric states when �+�1b+�2b2=0; this bifurcation is also
a pitchfork of revolution.

A similar set of equations can be written down for the
m=1 states. These are also accompanied by a nonzero con-
tribution from the axisymmetric state.

A. Grid effect in a circular domain

We now explore the effect of the D4 symmetry of the
computational grid. We do so by adding to the above equa-
tions small terms that preserve the symmetry of the system
under reflection in both the x and y axes, as well as in the

diagonals, but break rotational invariance. To this end we
look at the bifurcations to m=2 and m=1 separately.

When m=2, the breaking of O�2� down to D4 symmetry
leads to an equation of the form

ȧ = �a − �a�2a + �1ab + �2ab2 + ¯ + �ā , �11�

where ��1 and is real. A small term proportional to b can be
added to the b equation as well. It follows that the m=2
mode now sets in at �= ±� instead of �=0, in other words,
that the primary bifurcation has been split into two succes-
sive bifurcations. The solution that sets in at �=−� corre-
sponds to real a and hence to states of the form w

FIG. 18. �a� Bifurcation diagram showing the maximum of the vertical velocity wm as a function of the Marangoni number Ma. Snapshots show isovalues of
the vertical velocity in the midplane of the cylinder. �b�,�c� Closer view of �a�. Parameters are �=1, A=1, and Pr=1. Resolution is Ne=12, nx=ny =6, and
nz=10.



=a cos 2�f�r ,z�+¯ which are invariant with respect to re-
flections in the x and y axes. In contrast, the solution that sets
in at �=� corresponds to purely imaginary a and hence to
states of the form w= �a�f�r ,z�sin 2�+¯ that are invariant
under reflections in the diagonals. We identify the former
with the 	x-symmetric states, and the latter with the
�-symmetric states.

In contrast, when m=1, the requirement that rotation by
90° leaves the system invariant �i.e., a→ ia� shows that the
only linear term in a that can be added to Eq. �9� is propor-
tional to a itself. Consequently, the grid does not split the
bifurcation to m=1 states, although it may shift its location.
At finite amplitude we have

ȧ = �a − �a�2a + �1ab + �2ab2 + ¯ + �ā3, �12�

where � is again real. Writing a=� exp i� leads to the con-
clusion that �=0 or �=� /4, indicating the presence of two
distinct branches at finite amplitude given by �2= �̃�1±��,
where �̃��+�1b+�2b2 and the � signs correspond to
�=0 and �=� /4, respectively. The former are reflection-
symmetric with respect to 	x, the latter with respect to �.
Moreover, the �=0 ��=� /4� is stable �unstable� when
��0 and vice versa. These stability assignments are modi-
fied in the obvious fashion when the bifurcation is subcritical
or there are additional unstable eigenvalues that are inherited
from the a=0 state.

B. Elliptical domain

We suppose that the cylinder is distorted into an ellipse,
and that this distortion is small. This distortion preserves the
conduction state a=b=0 but breaks the O�2� symmetry down
to D2, the symmetry of a rectangle. The symmetry is
generated by reflections in the x and y axes. In addition, we
include the symmetry breaking due to the grid. As already
mentioned, the grid has symmetry D4 and thus breaks the
rotational symmetry of the system in a different way. In the
following, it is important that the symmetries of the ellipse

are also symmetries of the grid. To incorporate both of these
symmetry-breaking effects, we add to Eqs. �9� and �10� the
largest terms that break the O�2� symmetry in the required
fashion, while preserving invariance under reflection in the x
and y axes. The results depend on the azimuthal wavenumber
m.

We begin with the interaction between the m=1 and
m=0 modes. In this case, the symmetry x→−x acts by
�a ,b�→ �−ā ,b�, while y→−y acts by �a ,b�→ �ā ,b�. It fol-
lows that

ȧ = �a − �a�2a + �1ab + �2ab2 + ¯ + �ā3 + �ā , �13�

ḃ = �b + ��a�2 + �b2 + ¯ , �14�

where ��1 measures the ellipticity of the container, and is
real. The resulting linearized equations are uncoupled:
	x-symmetric states bifurcate from �0, 0� at �=−�, while
	y-symmetric states come in at �=�. Weakly nonlinear
analysis near each of these bifurcation points shows that
these bifurcations are pitchforks. The analysis confirms the
results of numerical continuation in the vicinity of the bifur-
cation to the m=1 state in both A=1 and 1.5 cylinders �com-
pare Fig. 3 with Fig. 5, and Fig. 12 with Fig. 13�.

We next turn to the interaction of the m=2 and m=0
modes. This time both x→−x and y→−y act by �a ,b�
→ �ā ,b�, and we obtain

ȧ = �a − �a�2a + �1ab + �2ab2 + ¯ + �� + �0�ā + �1b ,

�15�

ḃ = �b + ��a�2 + �b2 + ¯ + 1
2�2�a + ā� . �16�

In these equations, ��1 continues to represent the effect of
the grid while the � j �1 break the remaining D4 symmetry
further, down to D2. Note that the symmetry requirement
permits the inclusion of the term �0ā at linear order; thus in
this case the grid effect can in effect be absorbed in the

FIG. 19. �a� Bifurcation diagram showing the kinetic energy E����u2+v2+w2�d� as a function of the Marangoni number Ma. �b� Closer view of �a�.
Parameters are �=1, A=1, and Pr=1. Resolution is Ne=12, nx=ny =6, and nz=10.



coefficient �0, although we do not choose to do so. It follows
that ��0 provides the dominant symmetry breaking effect
only in circular domains.

With a�� exp i� and ���+�0, we have

�� − �3 + �1�b + �2�b2 + �� cos 2� + �1b cos � = 0,

�17�

�� sin 2� + �1b sin � = 0, �18�

�b + ��2 + �b2 + �2� cos � = 0. �19�

It follows that there are two types of solutions, satisfying
sin �=0 and 2�� cos �+�1b=0, respectively. In the former
case, a is real and can take either sign:

�a − a3 + �1ab + �2ab2 + �a + �1b = 0, �20�

�b + �a2 + �b2 + �2a = 0. �21�

Reconstructing the solution �7�, we find

w�r,�,z� = af�r,z�cos 2� + bg�r,z� + ¯ . �22�

This solution describes a solution with D2 symmetry,
i.e., with two orthogonal axes of reflection. Moreover, the
sin �=0 state sets in at

� = − � +
�1�2

�
, �23�

representing the threshold shift due to both the grid and the
elliptical distortion. A weakly nonlinear calculation near this
point shows that

� = − � +
�1�2

�
+ ��1�2

�
+

��1

�
+

�1�2
2�

�3 � + ¯ , �24�

indicating that this bifurcation becomes transcritical once
the circular domain is distorted ��1�0 and/or �2�0�.

We examine next the bifurcation to the sin ��0 branch.
Since

FIG. 20. Closer view of Fig. 12. �a� and �b� show the two branches of m=1 states due to the grid, together with their stability assignments, while �c� shows
the transfer of stability between these branches. �d� shows the splitting of the m=2 branches emerging from P2, also due to the grid. In contrast to �a� and �b�,
the secondary Hopf bifurcations occur on both branches. Parameters are �=1, A=1.5, and Pr=1. Resolution is Ne=12, nx=ny =nz=10.



cos � = −
�1b

2��
�25�

the angle � will vary along the branch as a consequence of
the variation of the amplitude ratio b /� with the bifurcation
parameter �. Equations �17� and �19� become

� − � − �2 + �1b + �2b2 = 0, �26�

�b + ��2 + �b2 −
�1�2b

2�
= 0, �27�

implying that

� = � + �− � − ��1 +
�1�2

2�
� b

�
+ O�b2� , �28�

�2 = �− � +
�1�2

2�
� b

�
+ O�b2� . �29�

The bifurcation at �=� is therefore a pitchfork:
����−��1/2. Equation �25� now shows that cos � vanishes
��→� /2� as �→�, while cos �→1 ��→0,�� as � in-
creases. Consequently, the spatial phase � /2 of the pattern
gradually rotates with increasing supercriticality, and the to-
tal amount of rotation from the primary bifurcation to the
end of the branch is ±� /4 as found in the numerical simu-
lations. This rotation is evidently a consequence of the inter-
action between the m=2 and m=0 modes, and is present
whenever ��+�0��1�0, however small, a situation that we
expect to be satisfied generically in elliptically distorted do-
mains; the simulations show that the phase rotation persists
even when the corresponding primary bifurcations are far
apart, and the codimension-2 analysis just described no
longer applies.

The bifurcation from the axisymmetric state to m=2 at
S1 �Fig. 12� is of the same type as P1. As a result, the effect
of the grid is described by

ȧ = �a − �a�2a + ¯ + �ā . �30�

There are two types of solutions, with a real or pure imagi-
nary; these set in at �= ��, respectively, and correspond to
states with 	x and � symmetry, as observed in Fig. 23. Like-
wise, in the absence of the grid, the effect of finite ellipticity
is captured by the equation

ȧ = �a − �a�2a + ¯ + �0, �31�

where 0� ��0��1 is a real parameter.22 Thus a must be real,
and for fixed �0 the equilibria satisfy a cubic equation. One
branch grows monotonically from negative to positive � and
is stable throughout; two other �disconnected� solutions ap-
pear via a saddle node and are present in ��3��0 /2�2/3 only.
Both are unstable. These predictions agree exactly with the
results shown in Fig. 17 near S1; evidently, the ellipticity in
this figure overwhelms the effect of the grid responsible for
the splitting of the m=2 branches. It should be observed,
however, that Eq. �31� does not capture all aspects of the loss
of symmetry;22 indeed, very close to S1 a more complete
“unfolding” is provided by

ȧ = �a − �a�2a + ¯ + �1ā + �0. �32�

This equation shows, by analogy with our discussion of the
bifurcation at P1, that small intervals of secondary branches
with a rotating phase may also be present, and it is precisely
these that are required to reconcile the splitting of the m=2
branch when �=1 into 	x- and �-symmetric branches �Fig.
23� with the behavior shown in Fig. 17 for 1−��1, which
shows that the solutions on either side of S1 connect to 	x-
and 	y-symmetric branches.

Finally, near the primary bifurcation T0 �i.e., �=0�, we
find that

� =
�1�2

� + �
+ �− � −

�1�2�1

�� + ��2 −
�1

2�

�� + ��2b + ¯ , �33�

showing that the bifurcation to the analogue of the m=0 state
remains transcritical. The above results are consistent with
those presented in Figs. 5, 13, and 17.

V. DISCUSSION

In this paper, we have examined the effect of changing
the container shape on pattern formation in Marangoni con-
vection in small aspect ratio containers. The present study
parallels an earlier investigation of the effects of changing
the shape of the container from square to slightly
rectangular.18 In the present case, the change of shape of the
container from circular to elliptical has a similar effect, in
that the finite ellipticity of the container splits multiplicity-2
eigenvalues, resulting not only in the appearance of multiple
hyperbolic branches, but also of a variety of secondary bifur-
cations, including some responsible for “mode-jumping” at
finite amplitude. Although none of the secondary Hopf bifur-
cations we have identified appears to be supercritical, i.e.,
none produces stable small-amplitude oscillations, we have

FIG. 21. Bifurcation diagram showing the maximum of the vertical velocity
wm as a function of the Marangoni number Ma. Parameters are �=1,
A=1.5, and Pr=1. Resolution is Ne=12, nx=ny =6, and nz=10.



nonetheless located stable periodic oscillations near the
saddle-node bifurcation on the m=1 branch when A=1.5. At
present, the origin of these unexpected oscillations remains
unclear. However, it appears that these oscillations are not
introduced by the elliptical distortion of the domain, in con-
trast to the �quasiperiodic� oscillations studied in Ref. 23.

For our computations, we have employed a code that
could simultaneously be used to compute solutions in both
circular and elliptical domains, and that could capture tran-
sitions that shift a pattern off-center even in a circular con-
tainer. The numerical scheme employed is more accurate
than finite-element techniques but employs a grid that pos-
sesses the symmetry D4. We have found, perhaps surpris-
ingly, that the orientation of the pattern can be pinned to the
grid, and that this pinning persists even as the resolution of
the grid is substantially increased. We have shown that the
presence of such pinning can be understood using appropri-
ate ideas from bifurcation theory, and that these ideas could

be extended to incorporate the interaction between the grid
and the ellipticity of the container. Although limited in scope,
the theory was in all cases confirmed by our computations.

It is significant that for A=1, the mode that first becomes
unstable is nonaxisymmetric; with increasing Marangoni
numbers, the amplitude of this mode grows until a nonhys-
teretic transition to an axisymmetric state takes place. In ex-
periments on the Rayleigh-Bénard-Marangoni problem,
Koschmieder and Prahl2 found that for 0.87�A�2.15, the
first state observed was always axisymmetric, an observation
that may be reconciled with the theory by including both the
presence of surface deformation that is present in the experi-
ments and the nontrivial effect of a finite Rayleigh number,
also neglected in the present paper. On the other hand, the
prediction that for A=1.5 the primary instability will be a
transcritical bifurcation to an m=0 mode is consistent not
only with microgravity experiments7 but also with ground-
based experiments2 and the �extrapolated� results of Dauby

FIG. 22. �a�–�d� Closer view of Fig. 21 showing exchange of stability between the two branches emerging from P1. Parameters are �=1, A=1.5, and Pr
=1. Resolution is Ne=12, nx=ny =6, and nz=10.



et al.24 that do include finite Rayleigh number effects. How-
ever, with increasing aspect ratio, Dauby et al. predicted an
onset of instability via an m=1 mode, followed by m=2 and
more complex structures, while the m=1 state is apparently
absent from Koschmieder and Prahl’s experiments.

Our results suggest distinct protocols for carrying out
more detailed experiments. In particular, when the primary
instability is a transcritical bifurcation to an axisymmetric
mode, it is vitally important to examine perturbations with
both downflow and upflow in the center of the container.
Specifically, our results for A=1.5 show that the primary
instability leads to a stable m=0 state with downflow in the
center, and that this state remains stable until a secondary
bifurcation, where it acquires an m=2 contribution; at larger
Ma this mixed state loses stability to growing oscillations,
and a hysteretic transition to a stable m=0 state with upflow
in the center takes place. This state remains stable for larger
Ma. In fact, these upflow states are stable down to a saddle-
node bifurcation where the system undergoes a hysteretic
transition back to the conduction state. It is significant that
upflow states of this type have indeed been observed under
microgravity conditions.7 When the domain is deformed into
an ellipse, the downflow m=0 and m=2 branches form a
single continuous branch, but the hysteretic transition to the
upflow state with increasing Ma remains. An appropriate ex-
perimental protocol focusing on downflow states near onset
could in principle confirm the presence of both hysteresis
loops and detect any �finite-amplitude� oscillations that may
be associated with the loss of stability of the downflow state.

The results described here are largely insensitive to the
precise value of the Prandtl number. In particular, for Pr=7,
A=1, the global properties of the bifurcation diagrams
are not drastically affected. For example, when �=1, the
Marangoni number of the secondary bifurcation S1 �Fig. 3� is
hardly affected. When �=0.98, the only noticeable change
occurs along the supercritical part of the branch emerging
from T2�. Here two saddle nodes are present in succession,
and the eigenvalues change from 2-0 to 3-0 and then back to
2-0, thereby recovering the stability properties indicated in

Figs. 5 and 6 prior to the connection with the branch emerg-
ing from P1�. An additional change occurs along the subcriti-
cal part of the branch emerging from T2�: the Hopf bifurcation
is now absent and is replaced by two saddle-node bifurca-
tions. We have been unable, however, to recover the oscilla-
tions observed when Pr=1 and A=1.5 �Fig. 15�. This comes
as no surprise since in problems of this type, a lower value of
Pr favors the presence of oscillations.

It is noteworthy that we have seen no evidence of the
dynamics expected to arise from the interaction of the m=1
and m=2 modes in circular containers.25,26 The most dra-
matic feature of this interaction is the presence, in certain
parameter regimes, of structurally stable heteroclinic cycles
connecting the m=2 state with its rotations by � /4. Such
cycles have been observed in A=2.5 containers by Johnson
and Narayanan5 and reproduced within weakly nonlinear
theory by Dauby et al.;24 see also Ref. 7. Presumably this is
so because the aspect ratios we have used are too far from
the required codimension-2 point for this interaction.
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