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ABSTRACT

Since the advent of hand held devices (e.g., smartphones, tablets,
smart watches) with Ubiquitous computing and the wide popularity
of location-based mobile applications, the amount of captured user
location data is dramatically increasing. However, the gathering
and exploitation of this data by mobile application providers raises
many privacy threats as sensitive information can be inferred from
it (e.g., home and work locations, religious beliefs, sexual orienta-
tions and social relationships). To address this issue a number of
data obfuscation techniques (also called Location Privacy Protec-
tion Mechanisms or LPPMs) have been proposed in the literature.
One of the existing methods to assess the effectiveness of LPPMs is
to test them against user re-identification attacks. The aim of these
attacks is to break user anonymity by re-associating data obfuscated
using a given LPPM with user profiles built from user past mobility.
In this paper, we present AP-Attack a novel re-identification attack
that relies on a heatmap representation of user mobility data. Our
experiments run against three representative LPPMs of the litera-
ture using four real mobility datasets show that AP-Attack succeeds
in re-identifying up to 79% users in non-obfuscated data, +27% more
users than POI-Attack and PIT-Attack two well known state-of-
the-art attacks. We also present a simple technique to improve
user protection against our attack, which relies on a user-centric
application of multiple-LPPMs.
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1 INTRODUCTION

With the raising number of mobile devices and the wide popu-
larity of mobile applications, an increasing amount of mobility
data is being gathered, processed and sometimes sold to third
parties by application providers due to their inherent economic
model. Examples of such applications include GPS navigation (e.g.,
Google Maps [21], Bing Maps [33]), location-based social networks
(e.g., Swarm with Foursquare [13] or geo-gaming (e.g., Pokemon
GO [37]). At the same time, following the open data movement,
major socio-economic actors (e.g., telecommunication companies)
and local authorities (e.g., cities) are pushed to give back their data
to the society by publishing the datasets they are collecting about
individuals [29] [46] [8]. However, as shown in various studies,
the publication of user mobility data opens a number of privacy
threats [27] [45] [47]. For instance, one can extract particular places
where users regularly stop, also called Points Of Interest (POI) [16],
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like the user’s home location, work place [20], places of worship [14]
or even discover the user health status if she regularly goes to the
hospital. Moreover, by analyzing POIs of different users, social
relationship can be discovered [5] and labels such as : siblings, col-
leagues, significant others..., can be associated to these relations.

To deal with this issue, various location privacy protection mech-
anisms (also called LPPMs) have been devised in the literature to
protect the privacy of users when their mobility data is shared with
applications. These mechanisms can be classified according to two
usage scenarios. The first scenario, called the online scenario applies
when users send their GPS coordinates to an application provider
in order to get a geo-localized response (e.g., finding a restaurant in
the user’s vicinity, GPS navigation). In this context the LPPM, which
runs on the client side can only act on the GPS coordinates sent by
the user at a given time and place. Examples of such LPPMs include
Geo-Indistinguishablility [3], where Laplacian noise is added to each
GPS coordinate, CloakDroid [32], where the GPS data is discretized
using a grid or Android Location Privacy Framework [24], where
various obfuscation techniques can be applied such as the gener-
alization of a given location to the closest street, city, postal code
and more. The second scenario, called the offline scenario applies
when a given service provider collects a mobility dataset and needs
obfuscation techniques to protect the participating users’ privacy
before releasing the dataset. In this context, the LPPM, which runs
on the server side, has a broader view of the mobility of the overall
population of users and can thus apply more sophisticated obfus-
cation techniques. Examples of such LPPMs include GLOVE [22],
where mobility traces are merged together using a spatio-temporal
similarity metric, Never Walk Alone [1] and its extension W4M [2],
where cylindrical volumes wrap the movement of at least k different
users together.

However, in both the online and the offline cases it is difficult
to assess the effectiveness of the proposed LPPMs in practice. In-
deed, LPPMs are generally evaluated either theoretically by proving
the guarantees they offer to the users (e.g., k-anonymity [42] or
differential privacy [11]) or practically by using custom privacy
metrics that are often difficult to interpret, such as in [41] where
POl retrieval metric is used to quantify privacy. Indeed, it is difficult
to tell a data owner that aims at obfuscating her dataset whether
obfuscating her dataset by enforcing k-anonymity with the W4M
protocol [2] is better than obfuscating it by enforcing differential
privacy with the Geo-Indistinguishablility protocol [3]. A comple-
mentary way to assess the effectiveness of LPPMs is to rely on
user re-identification attacks. Considering an obfuscated mobility
dataset and a set of user profiles learnt from users past mobility, a



user re-identification attack tries to re-associate a portion of the
obfuscated data to its originating user.

Literature contains a number of user re-identification attacks.
These attacks can be distinguished according to two key elements:
the user profiles they build from users past mobility and the distance
metric they use to compare obfuscated data with user profiles. In
this paper, we chose two state-of-the-art attacks POI-Attack [40]
and PIT-Attack [15]. In the former, a user profile is represented by
the list of POIs visited by the user while in the latter a user profile
is represented by a Markov chain between the POIs visited by the
user. However, none of these attacks consider the past mobility of
users as a whole (i.e., considering both the places where the users
stop and the trajectories that lead to these places).

In this paper, we first present AP-Attack (All Points Attack) a
novel attack in which a user profile is represented as a heat-map. We
compare the performance of AP-Attack to the two above attacks on
four real mobility datasets and show that AP-Attack succeeds in re-
identifying up to +27% more users than POI-Attack and up to +34%
more users than PIT-Attack, reaching a re-identification rate of up
to 79% in non-obfuscated data. We further use AP-Attack in addition
to state-of-the-art attacks to show the lack of resilience of three
state-of-the-art LPPMs (i.e., Geo-I [3], Promesse [41] and W4M [2])
to protect the users of four real datasets. Results show that none of
the studied LPPMs succeeds in protecting all the users. Secondly,
we study the vulnerability of individual users to re-identification
attacks when their data is obfuscated using the above three LPPMs.
Results show that users are not equal in front of re-identification
attacks, some can not be protected by the considered LPPMs, some
are naturally protected against the attacks, while others can be
protected by one or multiple LPPMs. Using this observation, that to
the best of our knowledge we are the first to establish, we propose a
Multi-LPPM user-centric obfuscation technique, which outperforms
all the evaluated LPPMs.

The remaining of this paper is structured as follows. First, we
present in Section 2, a background on location privacy. Then, we
present in Section 3, a model for re-identification attacks and a new
re-identification attack AP-Attack. Further in Section 4, we evaluate
AP-Attack and two state-of-the-art attacks of the literature POI-
Attack and PIT-Attack against state-of-the-art LPPMs using four
real datasets. As well as a technique to improve user protection
using a Multi-LPPM approach based on a user-centric analysis.
Finally we describe related research works in Section 5 before
concluding the paper in Section 6.

2 BACKGROUND

We present in this section a set of background definitions related
to mobility traces (Section 2.1) and to Location Privacy Protection
Mechanisms (Section 2.2).

2.1 Mobility Traces

A mobility trace is constituted of a sequence of spatio-temporal
points (lat, Ing, t) associated to a given user, where lat and Ing cor-
respond to the latitude and longitude of GPS coordinates while ¢ is
a time stamp. The top part of Figure 1 shows a visual representation
of a mobility trace (spacial elements only) of a given user collected
in the city of San Fransisco.
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Figure 1: Various representations of mobility traces

In order to associate semantic information to user raw mobility
traces, various mobility models can be built from these traces. The
bottom part of Figure 1 shows examples of such models. In this
figure, the left part represents a mobility model in which only user
points of interest (POIs) have been extracted. POIs are particular
places where a user has stopped for a given amount of time. They
are extracted from raw traces using spatio-temporal clustering
algorithms such as [49] [23]. POIs may reveal personal information
such as a user’s home place, work place or even sexual orientation
and religious beliefs. The central part of the figure represents a
mobility model in the form of a Markov chain between user POIs.
This model is richer than the former one as it captures user mobility
habits between POIs (e.g., the probability that the user goes to
her favorite Japanese restaurant after going to the movie theatre).
Finally, the right part of the figure represents a mobility model in
which the map has been split into cells and the raw data has been
projected into these cells in the form of a heat-map. Specifically, in
this model, the intensity of the color of a given cell is relative to the
frequency of user visits in the corresponding area of the map. Even
though this model does not convey detailed temporal information
about the user mobility, it is the only one to capture information
about user trajectories. We will later use this model to build a novel
user re-identification attack presented in Section 3.2.

2.2 Location Privacy Protection Mechanisms -
LPPMs

To overcome the threats affecting location privacy, Location Privacy
Protection mechanisms (LPPMs) have been proposed in the liter-
ature. LPPMs generally take as input a mobility trace (sometimes
composed of a single record [25]) or a set of mobility traces and
alter these traces in order to produce obfuscated traces. LPPMs can
be used in an online fashion, where each record is obfuscated before
being sent to an application provider, or offline, where all the traces
will be obfuscated at once. Furthermore, LPPMs are often classified
depending on the privacy guarantees they offer to the users. There
exist two major privacy guarantees presented in the literature: k-
anonymity [42] and differential privacy [11]. The k-anonymity
property states that a user is hidden among a set of k — 1 other
users with similar properties. In the context of mobility data this
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(e) Example of W4M applied to the traces in figure

Figure 2: Illustration of LPPMs applied to mobility traces

translates to the ability to hide a given user in a geographical zone
(called a cloaking area) where there are at least k — 1 other users [4].
Among the LPPMs that enforce k-anonymity, CliqueCloak [17] use
a trusted third party to compute cloaking areas, PRIVE [19] has the
same principle but relies on peer-to-peer communication between
users to compute the cloaking areas. These two LPPMs allow the
protection of a given geo-located point (i.e., online scenario) but
do not consider a mobility trace as a whole. Instead, Wait 4 Me
(W4M) [2] allows to enforce k-anonimity on mobility traces by
extending k-anonymity to (k, §)-anonymity. In this context, a user
mobility trace will be hidden within k — 1 traces inside a cylindrical
volume of radius §. Figure 2e shows the application of W4M on
the two mobility traces of Figure 2d. From these two figures, we
observe that the two traces have been distorted to fit into the same
cylindrical zone.

Differential privacy [11], which has initially been proposed for data-
base systems, ensures that the result of an agregate query over a
table should not be significantly affected by the presence or absence
of one single element of this table. This concept has been adapted
to mobility data in an LPPM called Geo-Indistinguishability (Geo-
I) [3]. In Geo-, differential privacy is ensured by adding spatial
noise to location data generated using a two dimensional Laplacian
distribution. An example of applying Geo-I to a mobility trace of
Figure 2a is depicted in Figure 2b. In this figure, we observe that
each point in the original trace has been translated due to the added
noise. As such, it is more difficult to infer information such as user
POIs.

In addition to the above LPPMs, there exist other LPPMs that

try to protect user mobility traces by removing significant infor-
mation from the traces such as user POIs. Among these LPPMs,
Promesse [41] reaches this objective by distorting the temporal
dimension of the mobility trace. Specifically, Promesse erases user
POIs by using a speed smoothing technique, which assures that
between each successive points in the obfuscated trace the distance
and time difference are the same. An example of applying Promesse
to a mobility trace of Figure 2a is depicted in Figure 2c. In this figure,
we observe that POIs have been removed yet it is still possible to
reason about user trajectories.

While the above LPPMs offer various theoretical or practical
guarantees to protect the privacy of the users, it is difficult to guar-
antee resilience against powerful re-identification attack with back-
ground knowledge. In this paper, we show how re-identification
attacks are able to break through the protection of state-of-the-art
LPPM with different theoretical and practical guarantees.

3 AP-ATTACK: MODEL AND ALGORITHM

User re-identification attacks aim at linking user obfuscated data
to her former mobility data. It is worth mentioning that the termi-
nology de-anonymization can be found in place of re-identification
(e.g., [15]). We would rather use de-anonymization to describe the
process of finding a user real identity (e.g., name, address...) while
re-identification describe the process of recovering a user ID in the
system.

In the following, we present a general model for re-identification
attacks Section 3.1, before describing our novel re-identification
attack in Section 3.2.



3.1 Modelling Re-Identification Attacks

Let U = {U1, Uy, . .., UN} be the set of users in the system. The first
phase of a re-identification attack is the training phase in which the
adversary builds a knowledge base about the users in the system. In
real systems, this phase may correspond to a period of time where
users were using a geo-located service without protecting their
mobility data. This phase is depicted in the left part of Figure 3.
Specifically, we assume that for each user Uj, the adversary has
access to a set of mobility traces corresponding to her past mobility,
i.e., KD; (where KD stands for Known user Data). Specifically, the
set of all mobility traces known by the adversary is noted KD =
{KD1,KD>, ...,KD,}. From each of these traces KD;, we assume
that the adversary builds a user profile p(KD;) that characterizes
the user mobility as depicted in the bottom left part of Figure 3
(Step (1)). This profile is specific to each re-identification attack as
further discussed in Section 4.1.

The second phase of a re-identification attack is depicted in the
right part of Figure 3. In this phase, we assume that the adversary
obtained a set of anonymous mobility traces (Step (2) in the figure),
ie., UD = {UD1, UDg,...,UDy} (where UD stands for Unknown
user Data). Then, from each anonymous trace UD;, the adversary
builds a profile p(UD;) containing important information of the
trace (Step (3) in the figure). Finally, a re-identification attack A run
by the adversary tries to re-associate each extracted profile p(UD;)
with profiles of known users, i.e.,

A : UD - U
UD; +— A(UD;,KD)="U,

A key element for the success of a re-identification attack is the
similarity metric used to compare anonymous data with known user
profiles (Step (4) in Figure 3). In addition to the way user profiles
are modelled, the similarity metric is the second element, which is
specific to each re-identification attack. If many anonymous traces
are given as input to a re-identification attack, the attack is re-
iterated on each element of UD; as depicted in Algorithm 1. The
success of an attack is then computed based on the number of cor-
rect re-associations the attack performs between anonymous traces
and known user profiles (See line 9). To do this, we employ an
oracle Id able to disclose for each anonymous trace UD; its owner
identity Id(UD;) = u(UD;). This way, we can compute the user
re-identification rate (Equation 1).

1 If Ay (UD;, KD)=1d(UD;)
UD; 0 Else

r(Ax, KD, UD) = D] (1)

3.2 AP-Attack Design Principles

We present in this section AP-Attack (All Points Attack) a novel
re-identification attack that uses the whole user mobility data to
form user profiles. Specifically, instead of focusing on a sub-set of
points (e.g., those constituting POIs), AP-Attack aggregates all the
points enclosed in a user mobility trace into a heat-map structure.
More precisely, as shown in Figure 4, the map is subdivided into a

Algorithm 1 Re-identification attack

1: function A(UD,KD)

2 UP < (p(UD)\Vi)
. KP — (p(KDj)\Yj)
4: matches «— 0
5
6

for i < [[1,|UD|] do
j i d(UP;, KP;
j e argO I“I;HlDl (UP; i)

<j<IK

7: matches < matches U (Id(UD;), Id(KDj))
8: end for

1 ifu' =u

0 else

(w',u)ematches
9: rate «
|UD|

10: return (rate, matches)
11: end function

grid with cells of the same size. Then, in each cell the number of
records found in it is computed. As such, each cell will reflect the
intensity of user movement in the corresponding geographical zone.
This allows distinguishing between extremely, moderately, slightly
frequented cells and unfrequented cells. Thereby, p4p(KD;) return
a probability distribution where each value psp (KD;)) represents
the probability that the owner of the trace U; goes through the cell
k. In order to be able to take into consideration the whole world
map, the representation of each heatmap is a mapping between
unique cells that the user passed by and their probability. This way
each user would have a different sized map adapted to how wide
her mobility was. This can also be seen as a sparse matrix.

Furthermore, we translate the distance between two profiles with
the distance between two probability distributions. To compute
this distance we can rely on classical distance metrics between
probability distributions such as the ones surveyed in [7]. With
respect to the experiments we did, one of the best metric to choose
from is the Topsoe divergence defined in Equation 2. Where P and
Q represent the list of cells in the two heat-maps we compare. So P;
is the probability of the user represented by the heat-map P going
through the ith cell. This divergence is based on Shanon’s concept
of probabilistic uncertainty or entropy. It is a derived symmetric
version of the Kullback Leibler divergence [7] which measures the
information deviation. This is adapted to our case since we measure
how much a heat-map can be used to characterize the mobility of a
user that is represented by an other heat-map.

2P; ) 20;
P; +Qi)+Qlln(Pi +Q;

dTopsoeP,Q) = ) [Pi In ( | @

1

In order to re-identify an anonymous trace UD;, we match the
trace with U; one of the user of U whose trace KD; minimize
d(pap(UD;), pap(KDj)).
ie : Aap(UD;, KD) = arg mingp; ekp (d(pap(UD;), pap(KDj)))
This new attack that not only take into consideration the POIs
but also the mobility as a hole provides an effective counter-measure
against LPPMs that are based on erasing POlIs to raise the privacy
level of a mobility trace.
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Figure 4: From mobility trace to user profile in AP-Attack

4 EVALUATION

We present in this section the evaluation of AP-Attack, we start by
presenting the attacks and LPPMs used in this evaluation and how
they have been configured (Section 4.1 to 4.3), our used datasets
(Section 4.4) and our experimental setup (Section 4.5). Then, we
present the performance of our proposed AP-Attack compared
to state-of-the-art attacks (Section 4.6). We then demonstrate the
lack of resilience of three representative LPPMs of the literature
(Section 4.7). Finally, we use a user-centric approach in order to
apply a Multi-LPPM obfuscation technique (Section 4.8).

4.1 Competitors

In this section we describe POI-Attack [40] and PIT-Attack [15] two
state of the art attacks against which we compare the performance
of AP-Attack.

4.1.1 Points Of Interest Attack - POI-Attack. This attack uses
Points of interest (POIs) to characterize users’ profiles. Therefore
Ppoi(KD;) is the set of POIs extracted from the trace KD;. Those
points are extracted using clustering algorithms such as the ones
presented in [49] [23] parameterized with the diameter of a geo-
graphical zone where a user has stopped and a minimum duration
characterizing her stop. To measure the similarity between two sets
of POIs, each POI of the first set is associated with the geograph-
ically closest POIs in the second set. The dissimilarity between
the two sets will be equal to the median of all the geographical
distances, which is computed as follows in the Equation 3. Where
X and Y are the sets of POIs for each trace and d(X}, Y;) computes
the geographical distance between two POIs X, and Y;.

dporsers(X. Y) = median | (min [d(X,, 1)) \¥r]

Jtmin [dx,. vo) V)|

4.1.2  Probabilistic Inter-POI Transition Attack - PIT-Attack [15].
In addition to extracting POlIs, this attack takes into consideration
the transition probability from one POI to another. Specifically, the
authors rely on mobility Markov chains [16] where the states are
POIs (P = Py, Py, . . ., Pg) ordered by the number points in each POI
and the edges’ labels are transitions probabilities between POIs
(tp,,p;). This is done by computing the proportion of transition
between each POI in the mobility traces. In order to compute the
distance between two mobility Markov chains, two informations
are taken into account : the geographical distance between POIs
and the weight of each POI The weight of a POI is computed using
the proportion of points contained inside the POL More precisely
the authors proposed many distance metrics to compare Markov
chains. The most effective one is the stats-prox distance which is
a combination of two distances: the stationary distance and the
proximity distance (Equation 4). The stationary distance (Equa-
tion 5) sums the weighted geographical distances between each
combination of two POIs if the distance is lower then a parameter
dp. And the proximity distance (Equation 6) after ranking the POIs
by their weight in each Markov Chain. It adds scores r; if two POIs
of the rank i are closer than a parameter A. The score is halved

after each rank r; = —r;_1 and ry is a parameter. The dissimilarity

between the two Markov chain is the inverse of the total score.

dstats—prax = if(dstat > Y) dstat else dprox (4)
d(P;,Qj) If d(P;i,Qj) < d
dstars(P,Q) = Z w(P;) X { O( ! Q]) Else( ! Q]) 0

P;, Q;€PXQ

©)
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This attacks rely almost excursively on POlIs, eliminating the in-
formation contained inside the trajectories. Also LPPMs focusing
on the elimination of POIs yield to a inept attack as illustrated in
Section 4.7.

4.2 Attacks Configuration

The three attacks evaluated in this paper AP-Attack, POI-Attack and
PIT-Attack have a number of configuration parameters. Specifically,
AP-Attack has a cell size parameter that we have fixed at 800 me-
ters in this evaluation. After a number of calibration experiments,
we have chosen this value because it was big enough to include
POIs and was resilient to noisy traces. In addition, re-identification
rates result for cells between 50 meters and 800 meters are approx-
imately similar. Furthermore, POI-Attack and PIT-Attack require
parameters for the extraction of the POIs from the traces. These
parameters are the diameter of the clustering area (that we fixed at
200 meters) and the minimum time spent inside a POI (that we fixed
at 1 hour). These values have been chosen after a series of experi-
mentations yealding to the best results. It is worth mentioning that
in [40] POI-Attack was used in a different configuration. Indeed,
the authors re-identified the obfuscated mobility traces against the
non-obfuscated version of those traces, rather than using a dif-
ferent past mobility as a training knowledge. In consequence, the
re-identification is easier.

4.3 LPPMs

To evaluate AP-Attack, we have chosen three representative LPPMs
of the literature (see section 2.2): (1) Geo-I, which adds Laplacian
noise to mobility traces and enforces a guarantee inspired from
Differential privacy; (2) Promesse, which uses speed smoothing
to erase POIs and (3) W4M, which alters traces to group them in
cylindrical volumes hence enforcing k-anonymity. Each LPPM has
a number of configuration parameters. These parameters have an
impact on the privacy level offered to the users but also on the
quality of the resulting obfuscated data. Due to a lack of space,
we decided to configure each LPPM following a medium level of
protection. This choice is motivated by the fact that our objective
is not to find the best LPPM configuration but rather to show how
with a reasonable alteration of the data. The LPPM do not suc-
ceed completely in protecting the user from re-identification. Other
experiments with other configurations of the used LPPMs or us-
ing other LPPMs of the literature can be done using our available
toolkit [31]. Specifically, Geo-I is configured with a parameter e
that has an impact on the amount of noise added to the data (the
lower epsilon the higher the noise). We have fixed the value of this
parameter to 0.01, which corresponds to a medium privacy level.
Promesse is configured with a parameter « that corresponds to the
distance between two successive sampling points. We have fixed
this parameter to 200 meters. Finally, W4M is configured with two

Table 1: Description of datasets

Name ‘ CabSpotting Geolife MDC PrivaMov
# users \ 536 42 144 48
Localization ‘ San Francisco Beijing Geneva Lyon
# records ‘ 11.219.955 1.574.338  904.422 973.684

parameters, k representing the minimum number of users inside
the cylindrical volume and the radius § of the latter. We have fixed
these parameters at k = 2 and § = 600 meters because W4M erases a
lot of points making the dataset almost empty and those parameters
guarantee privacy and availability of the data.

4.4 Datasets

We used four real mobility datasets in our experiments. These
datasets are:(1) Cabspotting [39] that contains the mobility of 536
cab drivers in the city of San Francisco; (2) Geolife [48] that contains
the mobility of 42 users mainly in the city of Beijing; (3) MDC [29]
that contains the mobility data of 144 users in the city of Geneva
and (4) PrivaMov [6] that contains the mobility of 48 students and
staff members in the city of Lyon. To make the comparison fair
between the datasets, we selected in each dataset the 30 most active
successive days. We present in the table 1 a description of the
datasets used in our experiments. The users are not active in all the
days of the period some are more active than others. We consider as
a mobility trace, the mobility of the user during all the period. In all
the experiments described in this paper, we split the datasets into a
period of 15 days used for the training phase and 15 days used for
the re-identification phase. We run other experiments where the
training and re-identification phases varied from 1 day to 23 days
each to evaluate the impact of dataset splitting on re-identification
attacks. We do not present these results in the paper due the lack
of space, but the results are available in the companion technical
report [31].

4.5 Experimental Setup

All of our experiment were carried out in a computer running an
Ubuntu 14.04 OS with 50GB of RAM and 16 cores of 1.2Ghz each.
Our testing application [31] written in Java & Scala and runs in the
Java Virtual Machine 1.8.0.

4.6 Performance Of Re-identification Attacks

The first experiment we did was intended to compare the three con-
sidered re-identification attacks by measuring their re-identification
rate on non-obfuscated data of the four considered datasets. Re-
sults are depicted in Figure 5. From this figure, we observe that
AP-Attack outperforms the two other attacks on all the considered
datasets. This experiment shows that sending mobility data "anony-
mously” (e.g., by using anonymous communication protocols such
as TOR [10]) to application providers is not sufficient to protect the
privacy of users as an adversary using re-identification attacks is
able to recognize from 45% to 79% of the users in the four datasets.
It is thus necessary for end users to rely on LPPMs to protect their
data. From this experiment we also notice that Cabspotting is the
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Figure 5: Performance of re-identification attacks

dataset where the users are the most intrinsically protected. This
comes from the fact that Cab drivers have similar mobility patterns
(e.g., they regularly go to the airport, famous hotels, malls and the
taxi parking places). Instead, MDC, GeoLife and PrivaMov are re-
lated to users having different mobility habits, which makes them
easier to re-identify.

4.7 LPPMs Effectiveness Against
Re-identification Attacks

In this experiment, we compare the performance of the three con-
sidered LPPMs, i.e., Geo-I, Promesse and W4M. Specifically, we
evaluate the re-identification rate obtained by the three former at-
tacks on data obfuscated using these three LPPMs. Figure 6 shows
the result of this experiment. In addition to the three LPPMs, we
report the results obtained for non-obfuscated data, which we use
as a baseline. At first glance, we observe the high level of privacy
enforced by W4M in the PrivaMov dataset (11%) and by Promesse in
the Cabspotting dataset (6%) against AP-Attack, which is the most
successful attack. Nevertheless, these two LPPMs seem not to be
sufficient to protect users in the GeoLife and MDC datasets where
the re-identification rate reaches 48% and 36% for W4M and 68%
and 46% for Promesse. We notice that the LPPMs that erase POIs as
Promesse and W4M nullify the attack POI-Attack and PIT-Attack.
For instance, in the Geolife Dataset for AP-Attack goes from 79%
in the non-obfuscated data to 68% in the dataset protected with
Promesse while PIT-Attack goes from 47% to 0%. Finally, we ob-
serve that Geo-I is the least efficient LPPM against re-identification
attacks in the four datasets. We also notice that Geo-I affects less
AP-Attack compared to POI-Attack. Indeed, AP-Attack goes down
in average with —3% while POI-Attack goes down by —15%. The
noise added to the points by Geo-I rarely gets them out of a cell,
while the clustering algorithms used to form POIs suffer more from
the noise. Summarizing, this experiment allows us to draw the fol-
lowing conclusions: (1) there is no one-size-fits-all LPPM, as the
resilience of an LPPM to re-identification attacks depends on the
underlying data; (2) users of a given dataset are not all equal in front
of re-identification attacks, as on the four datasets there exist users
that are never re-identified even in the absence of protection mech-
anisms (e.g., 54% for the best case with Cabspotting and 21% for
the worst case with Geolife). These two observations motivate the

need of investigating multi-LPPM and user centric data obfuscation
techniques as presented in the following section.

4.8 Improving Dataset Obfuscation

With regards to the results in the previous section, a user centric
analysis is needed. We start this experiment by evaluating the
sensitivity of individual users to re-identification attacks and show
how a user can be mistaken for another (Section 4.8.1). We then
investigate a multi-LPPM protection scheme (Section 4.8.2).

4.8.1 Sensitivity of users to re-identification attacks. This exper-
iment shows the proportion of users protected by none, one or
multiple LPPMs on each of our four datasets. In this experiment we
used all the re-identification attacks (ie., AP-Attack, POI-Attack and
PIT-Attack). Results are depicted in Figure 7. Overall these results
allow us to draw the following conclusions: (1) there is a proportion
of users that are not vulnerable to re-identification attacks (this
proportion varies from 19% to 54% in the four datasets); (2) there
is a proportion of users that can not be protected by the existing
LPPMs in their current configuration (this proportion varies from
2% to 33% in the four datasets); (3) there is a proportion of users that
can be protected by only one LPPM among those that we tested
(this proportion varies from 19% to 42% in the four datasets) and
(4) there is a proportion of users that can be protected by multiple
LPPMs (this proportion varies from 12% to 37% in the four datasets).
From these conclusions, which to the best of our knowledge we
are the first to draw, it becomes natural to think of multi-LPPM
obfuscation techniques as further discussed in the following section.

A user is mistakenly re-identified when her mobility in the
anonymous trace is similar to the mobility of another user in the
known dataset. We looked into the individual heat-maps in the
datasets. We notice that often, the user share parts of his mobility
in the anonymous trace with her known profile but also with an-
other user and some little behavior changes make her mistakenly
re-identified. While, we rarely found users that drastically change
their behavior from known and unknown dataset. From this obser-
vation, we recommend for the design of LPPMs resilient against
re-identification attacks, approaching the trace to wrong users in
order to confuse the attacker rather then drastically altering the
trace and degrading its utility for the service provider.

4.8.2  Towards Multi-LPPM Obfuscation. In this experiment, we
decided to leverage the results obtained in the previous experiment
to design a multi-LPPM obfuscation technique, the method is de-
scribed in the Algorithm 2. Specifically, on each of our four datasets
we built an obfuscated dataset as follows. For each user, we chose
one mobility trace from the non-obfuscated dataset or one of the
datasets obfuscated by an LPPM. To do this, we extracted the list
of all LPPMs that successfully protected the user (line 4). Then,
chose the trace according to a preference order (line 6). In conse-
quence, the users that were insensitive to all the re-identification
attacks. As they are naturally protected, it is better not to alter their
corresponding portion of the data. Then, for the users that were
protected by only one LPPM, we used the latter in our obfuscated
dataset. Finally, for those users that were protected by more than
one LPPM, we used in the following order Geo-I, Promesse or W4M
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to obfuscate their data. This choice was motivated by the degree
of degradation obtained in the traces after obfuscation, which is
lower when using Geo-I and Promesse than when using W4M.
The results depicted in Figure 8 show that our multi-LPPM and
user-centric obfuscation technique called Hybrid in the figure out-
performs all the existing LPPMs. Nevertheless, there are still users
that are not protected by our multi-LPPM approach. This suggests
that there is still room for proposing novel LPPMs. Our findings

Algorithm 2 Multi-LPPM user-centric dataset obfuscation

1: function HybridLPPM(U,UD,ResultsAttacks)

2 datasetoyr «— 0

3 foralli e U do

4 { « getProtectingLPPMs(ResultsAttacks;)

5: if |I|# 0 then

6 sort(£)

7 // nonObfuscated >Geol — Promesse - W4M
8 t < uptl

9: /] UD* is the dataset obfuscated with the LPPM x
10: else

11: t « UD;
12: end if
13: datasetyy; <« datasetoy; Ut
14: end for

—_

5: return datasetoyr
16: end function

suggest that efforts should go in the direction of a data-centric/user-
centric approach. We showed in this section how a system designer
or data owner going towards this direction by adapting the LPPMs
and possibly their degree of protection according to the sensitivity
of each user to re-identification attacks.
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5 RELATED WORK

The re-identification threat is affecting a wide variety of systems
due to the wide scale gathering of user personal data by applica-
tion providers. To measure this threat, a variety of re-identification
attacks are being proposed in various systems such as Web-search
systems [18] [38], face recognition [12], social networks [35] and
recommender systems [36]. User re-identification attacks in the con-
text of mobility data such as the one proposed in this paper, share a
similar objective as the attacks above. Specifically, re-identification
attacks demonstrate that the accumulation of mobility data about
users allows the extraction of user profiles despite users hiding or
changing their user ID. In order to protect against these threats
various Location Privacy Protection Mechanism (LPPM) have been
introduced. As previously discussed in this paper, LPPMs alter
mobility traces in order to protect users against the inference of
sensitive information about them. To evaluate the degree of protec-
tion offered by LPPMs to users, various privacy evaluation metrics
have been used. Examples of such metrics include the POI retrieval
rate [41, 43], which reflects the a ability of a LPPM to hide user
POIs in the obfuscated traces.

We find in the literature an increasing interest in location pri-
vacy. Indeed, as the work of De Montjoye & al. [9] have shown, the
mobility of users acts as a fingerprint. They managed with only
four points from the mobility traces to isolate a unique user with a
95% success rate. While uniqueness in the crowd is different than
re-identification because it does not use new traces to compare
against formerly gathered one, it still make proof of how a mobil-
ity trace discriminate users. Krumm et al. [28] managed to put a
learning system which is able to label geographic places (Home,
work, worship, shop...) with 73% success rate demonstrating the
vulnerability of location privacy in semantic extraction from POIs.
On the same line, Krumm [26] looked at user de-anonymization by
finding users’ home addresses, they were able to find users’ homes
by a median error of 60 meters but the white pages system they
used was not effective enough to find user real identity. Ma & al.
[30] studied another type of re-identification where the anonymous
traces are intercalated between the records of the identified traces.
Naini & al. [34] also used map grid to compare between users. They
worked on a closed system and tried using a bipartite graph match-
ing to associate users. Srivatsa & al [44] used social network as side

channel to re-identify users, they used a contact graph identifying
meetings between users extracted from a set of traces and then used
a correlation with a social network graph to match users mobility
with their social network account.

6 CONCLUSION

In this paper, we presented a novel re-identification attack based
on a heat-map representation of user profiles. We showed that this
attack, which aggregates user mobility into a probability distribu-
tion acting as a fingerprint of user mobility, outperforms existing
attacks on four real mobility datasets. Moreover, we studied the
ability of three state-of-the-art LPPMs to protect users against re-
identification attacks. The results showed that there is no one-size-
fits-all LPPM. Instead, the degree of protection offered by LPPMs
heavily depend on the underlying data. We then decided to further
analyze how individual users are sensitive to re-identification at-
tacks while being protected by various LPPMs. Our results have
shown that users are not equal in front of re-identification attacks,
some can not be protected by the considered LPPMs, some are nat-
urally protected, while others can be protected by one or multiple
LPPMs. This observation, that to the best of our knowledge we are
the first to establish has lead us to the design of a Multi-LPPM user-
centric obfuscation technique, which better resists re-identification
attacks than existing LPPMs. Still, according to the considered
datasets, we showed that a proportion of users can not be protected
using this technique, which opens the door for future investigations
in the field. In this context, we have shown that current state-of-the-
art LPPM lack the resilience to protect user against LPPM in front
of powerful re-identification attacks and demonstrated that data
owners need to consider user-centric obfuscation for the protection
of their datasets. Also, the LPPM affect the utility of the traces in
different intensities. That’s why, we need to investigate the Utility
aspects of LPPMs and look for a good trade-off between Privacy
and Utility.
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