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ABSTRACT
Memorability can be regarded as a useful metric of video impor-
tance to help make a choice between competing videos. Research
on computational understanding of video memorability is how-
ever in its early stages. There is no available dataset for modelling
purposes, and the few previous attempts provided protocols to col-
lect video memorability data that would be difficult to generalize.
Furthermore, the computational features needed to build a robust
memorability predictor remain largely undiscovered. In this article,
we propose a new protocol to collect long-term video memorability
annotations. We measure the memory performances of 104 partici-
pants from weeks to years after memorization to build a dataset of
660 videos for video memorability prediction. This dataset is made
available for the research community. We then analyze the collected
data in order to better understand video memorability, in partic-
ular the effects of response time, duration of memory retention
and repetition of visualization on video memorability. We finally
investigate the use of various types of audio and visual features and
build a computational model for video memorability prediction. We
conclude that high level visual semantics help better predict the
memorability of videos.
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1 INTRODUCTION
Enhancing the relevance of multimedia occurrences in our every-
day life requires new ways to organize – in particular, to retrieve
– digital content. Like other metrics of video "importance", such
as aesthetics [13] or interestingness [12], memorability can be re-
garded as useful to help make a choice between competing videos.
In addition, memorability has the advantage of being clearly defin-
able and objectively measurable (i.e., using a measure that is not
influenced by the observer’s personal judgment). Image memora-
bility has initially been defined as the probability for an image to
be recognized a few minutes after a single view, when presented
amidst a stream of images [21]. This definition has been widely
accepted within subsequent work (e.g., [9, 24, 25, 27, 29]).

The computational understanding of video memorability (VM)
follows on from the study of image memorability (IM) prediction
which has attracted increasing attention since the seminal work of
Isola et al. [21]. With the recent introduction of deep learning to
address the challenge of IM prediction, models also achieved very
good results [2, 24, 37]. As a result of this success, researchers have
recently extended this challenge to videos. However, to the best of
our knowledge, only two available studies focus on VM prediction
[17, 36].

Several problems could explain this scarcity of studies on VM.
Firstly, there is no publicly available dataset to train and test models.
This is probably the most serious obstacle to the rapid expansion of
research in VM prediction. Following the foot steps of researchers in
IM [21, 24], providing data and ground truth for VM should be one
of our first objectives. The second point, closely related to the pre-
vious one, is the lack of a common definition for VM. The previous
attempts to predict VM [17, 36] were based on different measures of
memorability. Furthermore, in comparison to images, videos have
supplementary dimensions – sound and visual movement – that
critically contribute to the semantic and emotional information
conveyed and this makes it difficult to come up with a common
definition of VM. But the videos used and the way memorability
is measured have a critical impact on what we understand by VM.
Similarly, the definition of IM [21] inevitably limited researchers. In
particular, previous research on IM focused on the measurement of
memory performances only a few minutes after memorization. But
these short-term memory performances might be poor predictors
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of longer term memory performances. For example, the memorabil-
ity of emotional images would decrease in a non-harmonious way
between two measures of memory performance (a few minutes
and one day after memorization), inducing in a dataset a change
in the ranking of memorability values over time [10]. To this end,
VM data would be expected to benefit from a protocol that would
measure lasting long-term memory performance.

Regarding modelling, the previous attempts at predicting VM
[17, 36] highlighted several features which contribute to the pre-
diction of VM, such as semantic, saliency and color features. But
the work is far from complete and our capacity to propose efficient
computational models will participate to answer the challenge of
VM prediction.

While participating in the expansion of research on VM, the
contributions of this paper are threefold:

• We propose a new protocol that measures very long-term
memory performances (from weeks to years after memo-
rization) to collect ground truth data of good quality and
make the corresponding dataset available for the research
community (section 3).

• We assess and analyze the collected data and provide useful
insights on the understanding of VM (section 4).

• We build a computational model based on machine learning
techniques which allows to predict a VM score for a given
video. For this purpose, we investigate the use of various
types of audio and visual features, ranging from low-level
characteristics to emotional and (highly) semantic features
(section 5).

2 PREVIOUS WORK
In this section, we review previous work on IM and VM prediction,
focusing on annotation protocols and modelling aspects.

2.1 Measurement of memorability
Long-term memory has been studied for over a century in psychol-
ogy, from multiple perspectives, since the seminal experimental
studies of Ebbinghaus [14] until the more recent neuro-imaging
studies [3]. This work provided researchers, interested in compu-
tational understanding of IM and VM, with several memory tests
(see [34] for an extensive overview), such as the recognition test
[17, 21, 24] or the textual questions-based recall survey [36]. It
also demonstrated that humans have an extensive long-term visual
memory, which enables them to recall a great amount of images
[38] and image details [6], as well as of videos [15]. This is one
of the observations at the origin of the work on memorability in
computer science [21]. Several factors have also been highlighted
for their critical influence on long-term memory, such as emotion
[23], semantics [33], several demographic factors [11], memory
re-evocation [32], or passage of time [30]. These different factors
are all important to better understand memorability, and are found
valuable computational features for IM and VM prediction.

Focusing on the work in computer vision, most studies on IM
prediction made use of one of the two available large datasets de-
signed specifically to meet this challenge [21, 24]. To address more
specific problems, several other datasets have also been publicly

released concerning memorability of face photographs [1], visual-
ization pictures [4], emotional images [11] and scene categories [7].
To build the most used datasets presented in [21, 24], the authors,
possibly constrained by the difficulty in conducting long crowd-
sourcing studies, measured memory performance a few minutes
after memorization to obtain their memorability annotations. This
could be a problem if we conceive that memorability reflects a
lasting memory performance [10]. Indeed, it has been shown that
long-term memories continue to change long after their memo-
rization through an ongoing process called consolidation, which
lasts weeks to years [30]. Because several factors influence the
consolidation process (e.g., emotions, sleep, re-evocation), which
does not equally affect all memories, the order of memorability
ratings measured for content, and especially videos, is susceptible
to change over time [10]. A protocol to collect memorability an-
notations would benefit from the capacity to capture long-lasting
memory performances, averaged to obtain what we will later refer
to as "long-term memorability".

To our knowledge, the first attempt at measuring VM [17] par-
tially adapted the protocol proposed to measure IM [21] to videos.
The resulting protocol is however much heavier than the memory
game protocol [21]. They followed a classical recognition process,
which consists of two steps: a free viewing task, followed two days
later by a recall task. The task duration, for each of the 20 partici-
pants, was about 24 hours, spread over 10 sessions (five free viewing
tasks and five recall tasks) of about two hours each. The authors
used the same proportion of fillers (i.e., non repeated videos) in the
free viewing and recall tasks (i.e., 4/5 of fillers and 1/5 of repeated
videos named targets) to guarantee that viewers were unaware of
targets. If it was mandatory in [21] for which encoding and recall
tasks were interlaced, there is a way here to alleviate the task with-
out impacting its quality; indeed, reducing the number of fillers in
the free viewing task would have very little impact on the memo-
rability scores (often authors even use only material interrogated
later in the learning/free viewing task). Furthermore, the long time
span of the experiment makes the generalization of this protocol
difficult, in particular if one targets the construction of an extensive
dataset. Moreover, authors measured memory after two days, but,
as aforementioned, it is known that the consolidation process lasts
weeks to years: it would be interesting to collect even longer term
memory performances.

In another earlier approach for VM measurement, the partici-
pants performed a crowdsourcing experiment that consisted of a
free viewing task during which they saw a series of videos, followed
by a recall task in which they had to answer textual questions (such
as: "Did you see a man juggling?", "Did you see a car on road?") [36].
The major drawback of the study comes from the use of questions
instead of a classic visual recognition task. Indeed, the memorability
scores computed for the videos may reflect not only the differences
in memory performances but also the differences between the ques-
tions in terms of difficulty. The authors tested the complexity of
the chosen textual questions using the Flesch-Kincaid Grade Level
readability metric, which is designed to quantify how difficult to
understand an English text is [26]. However, this measure might
not be sufficient to represent the questions in all their complexities,
such as the ease for a person to draw images from the words, to
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connect the words to the associated concepts in memory, to asso-
ciate the words to the corresponding scene, etc. Moreover, there is
an unequal distribution of the reading comprehension of English
among Amazon Mechanical Turk workers, who are not necessary
native English speakers. This problem of a potential unequal com-
plexity of the question becomes even more important in view of
the use by authors of the response time to calculate memorability
scores, which might also critically depend on the complexity of the
questions. One will note that this potential bias could have also
affected the measure of inter-human consistency. Furthermore, the
questions were handcrafted, and the choices for types of questions
and videos were very limited (e.g., the question "Did you see a car
on road?" implies that in a whole experimental session only one
car on a road should appear to connect the memory performance
to one particular video). The authors also manually ensured that
no textual questions nor videos in a session were similar in content.
This makes it difficult to generalize this protocol to the construction
of an extensive dataset.

2.2 Memorability modelling
Previous attempts at predicting image and video memorability
highlighted quite a few features that correlate with memorability.

The pioneering work of Isola et al. focused primarily on building
computational models to predict IM from low-level visual features
[21]. From their work, it appeared that the degree of an image’s
memorability can be predicted to a certain extent. Several character-
istics have also been found to be relevant for predicting memorabil-
ity in subsequent work, for example saliency [29], interestingness
and aesthetics [19], or emotions [24]. The best results were finally
obtained by using fine-tuned deep features, which outperformed
all other features in [24], reaching a rank correlation of .64 which
is near human consistency (.68) when measured for the ground
truth collected in the study. This result was later confirmed by other
researchers [2, 37].

Regarding VM prediction, Han et al. proposed a method which
combines the power of audio-visual and fMRI-derived features [17].
They preliminary built a computational model learned with fMRI
features, which supposedly conveys the brain activity of memoriz-
ing videos. This enabled them to finally predict VM without the
use of fMRI scans in a second step. However, the method would
be difficult to generalize. Shekhar et al. conducted a performance
analysis of several computationally extracted features before build-
ing their memorability predictor [36]. The analysis encompassed
C3D deep learning features, semantic features obtained from some
video captioning process, saliency features, dense trajectories, and
color features. They found that the most predictive feature com-
bination used captioning features, dense trajectories, saliency and
color features. The features that performed the best when used
alone were image captioning features, i.e., those conveying more
semantics. Due to the particularity of the dataset of Shekhar et al.
– that is, their aforementioned use of questions to measure mem-
orability –, it would be interesting to confirm if this combination
works equally well on another dataset, and in particular if image
captioning features also perform the best.

3 MEMORABILITY DATASET
CONSTRUCTION

3.1 Video collection
We want our protocol to measure memory performance after a
significant retention period. This can be achieved either with a
longitudinal study, or by measuring a memory created prior to the
experiment. We chose the latter because it enabled us to imme-
diately measure very long-term memory. Thus, the main charac-
teristic of the proposed protocol, in contrast with previous work,
is the absence of learning (often, free viewing) task. It is replaced
with a questionnaire designed to collect information about the par-
ticipants’ prior memory. In order to repeat measures of memory
performances for different persons on the same material, to obtain
average performance, we worked with movies famous enough to
have been seen by several of our participants.

We first established a list of 100 occidental movies, taking care
of mixing popularity and genres. We then manually selected seven
videos of 10 seconds from each movie. To maintain a high intra-
video semantic cohesion, we did not make cuts that would impair
the understanding of the scene, nor did we aggregate shots that
belong to different scenes. Indeed, since the semantics is linked to
the memorability of images [19], we can expect it is linked to the
memorability of videos too.

We also gave preference to the videos we called "neutral", by
contrast to the "typical" ones. According to our definition, a neutral
video is a part of a movie which contains no element that would
enable someone to easily guess this video belongs to a particular
movie. The list of undesirable elements includes but is not limited
to: recognizable famous actors, typical music, style, etc. Typical
videos are simply defined as non-neutral videos. In most movies,
just a few or no 10-second neutral videos exist. That explains why
we obtained only 127 neutral videos for 573 typical ones (while we
expected two neutral and five typical videos per movie, i.e., 200
neutral and 500 typical videos in total).

3.2 Annotation protocol
The protocol is composed of two tasks. Firstly, participants had to
fill in a questionnaire intended to collect data about whether they
have seen the 100 selected movies. Secondly, participants performed
a recognition task on videos selected based on their responses to
the questionnaire.

104 participants (22 − 58 years of age; age average = 37.1; stdev
= 10.4; 26% females; mostly educated persons – engineers or re-
searchers mainly), participated in the experiment on a voluntary
basis. The experiment was taking place in a well-controlled envi-
ronment: a room insulated from noise and equipped with subdued
lights. The videos, of HD or DVD quality, were displayed on a 60
inch monitor. The participants were seated at a distance of about
220 centimeters from the screen (three times the screen height).
Having provided basic demographics, participants answered the
questionnaire. For each of the 100 movies, they were asked whether
they remembered watching fully the movie. In case of a positive
answer, three additional questions followed: 1/ their confidence of
watching the movie (not confident / slightly confident / 50% confident
/ considerably confident / 100% confident), 2/ the last time they saw
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the movie (less than month / 1 year / 5 years / 10 years / more than
10 years), and 3/ the number of times they saw the movie (once /
2-4 times / 5-9 times / 10-19 times / more than 20 times). In case of a
negative answer, only one question was asked, related to their con-
fidence of not having seen the movie. The questionnaire required
about 20 minutes to complete.

Based on the answers to the questionnaire, an algorithm auto-
matically selected 80 targets (i.e., videos from seen movies) and
40 fillers (i.e., videos from never seen movies) among the movies
associated with the highest degree of certitude, with a maximum
of two videos from the same movie. The fillers enable to quantify
how much lucky confusions account for the correct recognitions.
During the video selection, the current number of annotations was
also taken into account to equally balance the annotations among
all the videos. Given such 120 videos selected, participants per-
formed a recognition task where they saw the videos separated by
an inter-stimuli interval of 2 seconds. They had to press the space
bar when they recognized a video in particular, and not when they
were guessing that a particular video came from a movie they had
seen (which was possible only for the typical videos).

3.3 Memorability score calculation
After collecting the data, we kept only the 660 videos that had been
seen at least 4 times as targets (from the initial set of 700 videos).
On average, each video of our dataset had been viewed as a target
by 10.7 participants; which corresponds to the mean number of
observations that enter into the calculation of a memorability score.
We then assigned a memorability score to each video, defined as the
correct recognition rate of the video when viewed as target. The
average percentage of correct detections for all participants was
46.71% (stdev = 14.65%), and the average false alarm rate (i.e., the
percentage of answers on fillers) was 4.16% (stdev = 5.27%). Figure
2(a) provides a distribution of the videos according to their degree
of memorability. The dataset is publicly released here1. In addition
to the videos and corresponding ground truth, we also provide the
features used in section 5.

4 STUDY OF THE MEMORABILITY
ANNOTATIONS

In this section, we conduct an analysis of the ground truth data
collected through the protocol described above. We firstly perform
a human consistency analysis. Then we compare neutral videos
with typical videos. We finally study which factors affect the mem-
orability among response time, duration of memory retention and
repetition of visualization. In what follows, error bars in the graphs
correspond to standard error of the mean, µ to the mean,Mdn to
the median and N to the number of observations in the statistics.

4.1 Consistency analysis
We follow the method proposed in [19] to measure human consis-
tency when assessing memorability of videos. We randomly split
our 104 participants into two independent groups of equal size, and
calculate how well VM scores from the first group of participants
match with VM scores from the second group. Averaging over 25
1https://www.technicolor.com/dream/research-innovation/
movie-memorability-dataset

random half-split trials, an average Spearman’s rank correlation
(i.e., a global human consistency) of 0.57 is observed between these
pairs of scores.

(a) (b)

Figure 1: (a) Distribution of the number of videos according
to the number of annotations per video. (b) Human consis-
tency (with linear trendline).

We reproduced this calculation to obtain human consistency
as a function of the number of annotations per video, presented
in Figure 1(b). This graph is to be compared with the histogram
presented in Figure 1(a), which shows that the number of videos for
each number of annotations was unequal. According to the graph,
we achieved a consistency of .70 from about 18 annotations, which
is consistent with the previous finding [17]. This number also cor-
responds to the maximal consistency obtained when collecting IM
scores [21, 24], but for a much bigger number of annotations (80)
per image. It must be noted that the protocols are different between
the IM experiments conducted in [21, 24] and ours or the work in
[17]. We conducted a measure of long-term memory performance
after at least two days of memorization, whereas in [21, 24] it is
measured after a dozen of seconds to a few minutes. In addition,
VM annotations were collected through in-lab experiments, and
IM annotations through crowdsourcing experiments. However, it
would be interesting in the future to confirm if an important dif-
ference exists between images and videos regarding the number of
annotations necessary to achieve a high human consistency. Apart
from the conclusions we could draw about the universality of the
intrinsic memorability of videos compared to images, this would
mean that the magnitude of the work to carry out to build an exten-
sive database for VM prediction is substantially smaller than one
could expect from work on IM prediction.

4.2 Neutral and typical videos
In our experiment, participants were given clear instructions that
they had to really recognize any video they were presented as al-
ready seen, and not only guess that a video was coming from a
movie whose title was proposed in the questionnaire. However, a
number of participants reported difficulty in making the distinction
between guessing and recognizing: sometimes, because they knew
that a video belonged to a movie they had seen, they had the false
feeling of recognizing it. In this section, we perform an analysis to
compare neutral videos, which contain no element that would en-
able participants to easily guess that a video belongs to a particular
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movie, and typical videos, that could be more or less easily related
to the movie they belong to.

A Wilcoxon rank-sum test indicated that the memorability was
lower for neutral (Mdn = .20, µ = .24) than for typical (Mdn =
.53, µ = .53) videos, with Z = 10.22,p < .00001. This result does
not necessarily mean that participants tended to guess when it was
possible to do so – rather than simply recognize – videos selected
from movies they have seen. Indeed, neutral videos contain far
less contextual elements useful for recognition than typical ones,
making the latter – if more easily "guessable" – at least more easily
recognizable. However, it should draw our attention to the possibil-
ity that our measure is not purely objective, but – to some extent
– context dependent. This would constitute the main weakness of
our protocol, that one should counteract by adapted measures of
control.

We can also note that the average false alarm rate (that is, the
percentage of wrongly recognized filler videos) was low for neutral
videos (.05%) as well as for typical videos (.03%). Specifically, we
expect lucky confusions to account for little of correct detections
on average for the two sorts of videos.

4.3 Response time

(a) (b)

Figure 2: (a) Distribution of the number of videos depending
on memorability score ranges. (b) Mean response time for
correct recognitions against memorability scores.

Figure 2 (b) shows that the response time to do a correct detection
decreases when the memorability of the video increases. We also
observed a Pearson’s correlation of −0.36 (p < .0001) between the
response time on the targets and their memorability scores. These
two results indicate that participants tended to answer quicker
when the videos were more memorable, even though the partici-
pants did not receive any instruction to do so. This suggests that
people tend to naturally answer rapidly after having recognized
the video. This also suggests either that the most memorable videos
are also the most accessible in memory, and/or that the most mem-
orable videos contain more early recognizable elements than the
less memorable ones. In [36], the response time of the participants
was taken to be the measure of VM. The authors chose this mea-
sure to avoid a long gap between viewing and recall stage. Our
results validate – to some extent – their modus operandi: the fact
that the response time decreases linearly when the memorability

increases suggest that the response time is a good indicator of the
memorability of the videos (at least, in a recognition task).

4.4 User context and memorability
To provide us with insights on which context-related factors col-
lected through our questionnaire were linked to memorability, we
processed to a logistic regression, using demographics and answers
to the questionnaire as regressors, and the detection of a target
video (with two possible discrete outcomes, detected or not) as ob-
servations to fit. Regarding the participants’ nationality, we grouped
them into occidental (69 pers) and non-occidental (35 pers) cate-
gories, motivated by our use of occidental movies, which could have
more meaning for occidental than for non-occidental people. We
also tested age and gender to reveal a potential bias in our movies’
choice, that may be more memorable for people of a certain age
and gender. The model, in case of a single observation n, can be
written as:

yn =


1 if β0 +

K∑
k=1

xn,k βk + ϵn > 0

0 else

(1)

whereyn denotes the dependent variable which can take two values,
1 for recognition or 0 for omission of the n-th target observation,
xn,k our k-th feature value (last view, number of views, nationality,
age, gender), βk are the coefficients to be estimated, and ϵn indicates
the error term.

(a) (b)

Figure 3: Correct recognition rate depending on (a) when oc-
curred the last viewing, and (b) the number of views.

According to the results of the logistic regression, the retention
duration (last view) is highly negatively correlated with the proba-
bility to recognize a video (β = −.37,p < .0001). Figure 3 (a) shows
that this decrease in memory for videos over time is continuous.
This result indicates that long-term memory of videos continues
to be altered over time for years. In the context or experiment, it
implies that, to provide an accurate representation of an average
long-term memory performance, a memorability score should cor-
respond to a memory measure carried out as late as possible after
the memorization.

The results of the logistic regression also show that the number
of views is highly correlated with the probability to recognize a
video (β = .44,p < .0001). As expected, the more a movie was seen,
the better the videos were memorized. Figure 3 (b) shows that this
continues to be true even with more than 9 viewings (however,
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the number of observations – 12 – was very low for videos which
belong to movies with 10 or more views). One should note that
the repetition of a viewing could not be the (only) factor involved
in the above phenomenon; in particular, viewing again a movie
may be the sign of a special interest which would explained a
better memorization (e.g., via a greater attentional and emotional
investment). The fact remains that repetition is an important factor
to ask people when measuring their prior memory. Furthermore,
a protocol used to build an extensive database for VM prediction
should, in case of multiple measures of memory (e.g., after the
memorization and then after a longer delay), avoid measuring twice
the same items, because this repetition could artificially increase
the performance measured for the last items.

We observed no significant effects of the demographic factors
(nationality, age and gender). This suggests that the videos were
equally susceptible to be recognized by the different participants
(or, that the relations between these factors and the observations
are too complex to have been captured by the model).

5 MEMORABILITY PREDICTION
Until now, we have presented the video collection and the annota-
tion protocol together with some insights on human VM. In this
section, we move towards building a machine learning model that
can learn and then predict the VM score of a video from its audio-
visual features. The main goal of modelling is to understand if VM is
predictable, and if yes identify which features: generic, perceptual,
or semantic, are suitable for such prediction. We pose the problem
as a standard regression problem and Figure 4 illustrates different
steps in our method. In the following sub-sections, we explain our
choice of features and models to address the problem in hand.

Prediction Feature 
extraction Training data with 

ground-truth 
scores 

Features Regression model 

Predicted 
memorability 
scores for test 

data 

Training 

Mem = 0.56 

Mem = 0.78 

Mem = 0.21 

Mem = 0.23 

Mem = 0.67 

Mem = 0.47 

… … 

Features: C3D, AudioSet, Affect,  
Sentibank (concepts & features),  
Image captions. 

Regression model: Support vector 
regression (Linear and RBF kernel). 

Figure 4: Proposed approach for memorability score predic-
tion.

To build our predictive model, we split the dataset, at the level
of movies, into training (70%), validation (15%) and test (15%) data,
which translates into 70 movies in the training set and 15 movies
each in the validation and test sets. We chose to split our dataset at
the level of movies, instead of the videos, in order to avoid videos
from the same movie being present in the training as well as the
evaluation (validation+test) set. To ensure that such random split

did not lead to any mismatch, we computed the average number of
annotations per video in each of them.We observe that the numbers
of annotations are balanced: each video in the test set has around
10 annotations while there are 9 annotations for each one in the
train set on an average.

5.1 Feature extraction
The task of remembering a specific video has a high cognitive
complexity in general, suggesting that it requires a semantic under-
standing of the content and/or some other perceptual factors such
as the emotion conveyed by the video. Many users who participated
in our experiments indicated that it is a difficult task. While try-
ing to build a machine learning model for such a task, we explore
different kinds of features that can be extracted from the audio-
visual signal. We investigate a variety of generic state-of-the-art
features ([39], [16]) and compare them with other semantic ([22])
and perceptual (emotion) features ([5]).

5.1.1 Spatio-temporal visual features (C3D). These features are
extracted from the C3D model, a 3-dimensional convolutional net-
work proposed for generic video analysis [39]. The main motivation
to use C3D is that it encodes both the spatial and temporal informa-
tion in the video. The model has been proposed for video analysis
and is not an extension of a model for image analysis, unlike other
state-of-the-art models like VGG16 [28]. We use the publicly avail-
able model trained on the Sports-1M dataset [39] and extract the
output of the fully connected layer – fc6 of the network with a
dimensionality of 4096. We additionally explore the use of principal
component analysis (PCA) (named C3D (PCA) in Table 1) for the
dimension reduction, as the original dimensionality is very high
when compared to other features.

5.1.2 Audio features (AudioSet). Using a recently released Au-
dioSet [16] model, which was trained on a large dataset for event
detection, we extract 128-dimensional embeddings for each audio
track associated with a video in our dataset. We use these embed-
dings for training the regression models. The motivation to use
these features is that they are state-of-the-art in the audio event
detection research and events could play a major role in how people
remember sequences in movies. Additionally, we wanted to inves-
tigate how the audio channel contributes to building a model for
VM prediction.

5.1.3 Emotion related features (SentiBank and Affect). As re-
search in psychology showed that emotion and memory are corre-
lated [8], we investigate the use of emotion-related feature in our
prediction system. For modelling emotion from the visual content,
we resort to a visual sentiment concept detector: SentiBank [5]. Sen-
tiBank is a set of 1200 trained visual concept detectors providing a
mid-level representation of sentiment from visual content. We use
the binary code for concept detection, from images, provided by
the authors. The SentiBank concept detector provides two pieces
of information: concepts with probabilities and features. Concepts
are adjective–noun pairs and the probability represents how likely
each concept is depicted visually in an image. Examples of some
concepts in the SentiBank ontology are: young driver, scary face,
terrible pain, etc.
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We sample one frame for every second of the video in our dataset,
resulting in 10 frames per video. We run the SentiBank concept
detector on each of these 10 frames and rank the concepts based
on the probability of their occurrence in the frame and take the
top-50 concepts. We extract 300-dimensional word embeddings
(Word2Vec [31]), for each of the 50 concepts and take an average to
obtain a single vector per frame. We repeat this process for all the
10 frames and take the average of all the vectors to obtain a single
feature vector for each video. Sentibank detectors also provide a
4096-dimensional feature for each frame and we take the average
across all the frames to obtain one 4096-dimensional feature vector
for each video. In the end, we use a 300-dimensional concept vector
and a 4096-dimensional feature vector.

In addition to SentiBank concepts, we investigate other ways to
capture emotional content in a video. Following a circumplex model
of affect (the experience of emotion) [35], we define arousal as the
dimension of affect that measures the excitement in the video, while
valence measures whether the video invokes positive or negative
emotion. We resort to an audio-visual analysis of the video to obtain
its arousal and valence scores using the method described in [18].
For each frame in the video, we compute the arousal and valence
scores using the method proposed in [18]. In order to keep a fixed
dimensionality of the feature vector, we take the first 200 frames in
the video because of the varying frame rates across the videos. We
concatenate the arousal and valence scores for the first 200 frames
in each video resulting in a 400-dimensional feature vector (200 for
arousal and 200 for valence) for a video.

5.1.4 Visual semantic features (Image captions). Visual seman-
tics are known to play an important role in image memorability
([20], [37]). We utilize the state-of-the-art research in image cap-
tioning to capture such high-level semantics of the video [22]. We
sample one frame for every second of the video in our dataset, re-
sulting in 10 frames per video. For each of these 10 frames, we run
the caption detector (code provided by the authors) and obtain a
caption for the frame. For each non-functional word in the caption,
we extract 300-dimensional word embeddings (Word2Vec [31]) and
take an average across all the words to obtain a single vector per
frame. We repeat this process for all the 10 frames and take the
average of all the vectors to obtain a single 300-dimensional feature
vector for each video.

5.2 Modelling and evaluation metric
We use the features discussed in Section 5.1 to train a Support
Vector Regression (SVR) model for the VM score prediction. The
choice of SVR is guided by the nature of the problem as well as
by the small size of the dataset. We have chosen to go with the
same regressor for all the features because our focus is mainly on
identifying which features are more important for VM prediction.
This way we ensure that the difference in performances is because
of the features themselves. Note that, in addition to the variety of
features explained in Section 5.1, we also explore a combination of
all the features by concatenating them into a single feature vector.
While performing such a concatenation, we use the low-dimension
version of the features for C3D and SentiBank features, obtained
after applying a dimension reduction method (PCA) to the original
set. In the experiments where we use PCA for C3D and SentiBank

features, we retain 95% of variance in the data while reducing the
feature dimensions. Note that we investigated other models like
LSTM, to model the sequential nature of videos. The results were
not very encouraging and this could be because of the relatively
smaller size of our dataset.

We use the grid search strategy to obtain the best hyper-parameters
for SVR in term of the Mean Squared Error (MSE) between the pre-
dicted scores and the ground-truth on the validation set. The choice
of hyper-parameters in the grid search are: kernel = {linear, RBF},
C = {0.1, 1, 10, 100, 1000} and γ = {0.01, 0.1, 1, 10, 100}.

The prediction performance is evaluated by the Spearman corre-
lation (SpCorr ), which measures the rank correlation between the
predicted memorability scores and the ground-truth scores. This
metric is chosen as (1) we focus more on the relative memorability
between videos rather than on their absolute memorability scores,
and (2) it gives an indication of how close the predicted mem-
orability scores are to the human consistency when annotating
memorability scores.

Figure 5: Spearman correlation on the validation set with
models using image captioning features trained on videos
with varying number of annotations.

5.3 Memorability prediction results
In this section, we will discuss how the models trained on differ-
ent features perform while predicting memorability scores of new
videos. Table 1 reports the prediction results obtained by the SVR
model when trained on different features, for the validation and test
sets. Two sets of results are reported: SpCorr (≥ 4 annotations) and
SpCorr (≥ 8 annotations). The former corresponds to the predic-
tion capability of the model when trained on videos with at least 4
annotations, and the latter corresponds to the results when trained
on videos with at least 8 annotations where the ground-truth is
better annotated.

As it can be seen, visual semantic features derived from image
captioning clearly offer better prediction results compared to all
other considered features. This is not surprising as they capture
visual attributes along the scene, which are known to play an impor-
tant role in humanmemory. This is also inline with a previous study
in IM [37] where image captioning-based features helped better
predict IM than the conventional CNN features. When predicting
VM on the test set, C3D features showed to be quite effective to the
task as they encode the visual spatio-temporal information of the
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Feature Feature type Dimension SpCorr (≥ 4 annotations) SpCorr (≥ 8 annotations)
validation set test set validation set test set

C3D visual spatio-temporal 4096 0.20 0.26 0.31 0.34
C3D (PCA) visual spatio-temporal 225 0.24 0.21 0.18 0.17
AudioSet audio related 128 0.23 0.22 0.21 0.24
Affect affect related 400 0.19 0.17 0.26 0.23

SentiBank concepts emotion related 300 0.16 0.13 0.15 0.17
SentiBank features emotion related 4096 0.25 0.21 0.27 0.26

SentiBank features (PCA) emotion related 225 0.22 0.21 0.22 0.23
Captions visual semantics 300 0.29 0.31 0.39 0.38

Combination (PCA) combine all features 1578 0.24 0.23 0.29 0.27
Table 1: Prediction results in terms of Spearman correlation scores on validation and test data for different features with
models trained on videos that have at least 4 (columns 4-5) or 8 (columns 6-7) annotations.

video. On the contrary, audio information captured by AudioSet
features does not seem to be enough for VM prediction. One of our
initial hypotheses was that emotion would play an important role in
VM, supported by literature from psychology [8]. However, when
observing the results in Table 1, both Affect [18] and SentiBank [5]
performed quite poorly compared to the image captioning features.
Another observation from Table 1 is that the combination of all the
features (last row in the table) does not appear in the top-3 best
performing features. One of the reasons for this could be that there
is a lot of redundance when combining all the features into a single
feature vector, or it could be that the size of the combined feature
vector is too big when compared to the size of the dataset. Thus, in
future work we could look at selectively combining the features to
investigate if that improves the performance.

As our dataset contains videos with different numbers of annota-
tions, we further investigate the effect of the number of annotations
on the prediction performance. For this purpose, we train a first
SVR model, using image captioning features, on videos with at
least 4 annotations and use this model to predict the memorability
score for videos in the validation set. We repeat this process for
different numbers of annotations per video (from 4 to 15) in the
training set. Please note that the validation set in each of the rep-
etitions is fixed and only the training set changes. We provide a
demonstration of how SpCorr varies with an increasing number of
annotations in the training set in Figure 5. As can be seen, SpCorr
first increases up to 5 annotations and then remains more or less
constant before decreasing (beyond 10 annotations). In the wake of
this observation, we also investigated the performance of all the
features when we train the regression model with videos that have
at least 8 annotations as reported in the second part of Table 1:
SpCorr ( ≥ 8 annotations).

Comparing the two sets of results in Table 1, we observe that
globally the models trained on videos with at least 8 annotations
perform better than the models trained on videos with at least
4 annotations. These results are comparable to the human con-
sistency analysis shown in Section 4.1. We finally performed an
additional 10-fold cross-validation on videos with at least 8 anno-
tations (train+validation set) using the image captioning features.

From this study, we re-confirmed that there is no overfitting issue
in our model and we observed the average value of SpCorr across
the 10 folds to be 0.33, which is close to the performance on the
test set.

6 CONCLUSIONS
In this paper, we have presented a novel protocol to collect long-
term memorability annotations for videos, which enabled us to
build a dataset to support research in this subject. We then per-
formed a range of statistical studies on this dataset to understand
important factors in the annotation process as well as how they
can affect video memorability. The main strength of our proto-
col is that it enables to measure memory performance weeks to
years after memorization without requiring a longitudinal study.
It appears from the analysis that memory of videos continues to
decrease for years, which justifies such a distant measurement, in
contrast to previous work. The counterpart is that we cannot con-
trol the memorizing process. In particular, the correctness of the
answers to the questionnaire designed to collect information about
the participants’ prior memory is not absolute. Even with additional
information about the movies (e.g. showing an excerpt/trailer), the
possibility would remain that a participant falsely answers he/she
has already seen/never seen a movie. Our current work focuses on
collecting VM annotations at a large scale using crowdsourcing,
measuring VM in a more objective manner, by controlling the mem-
orizing step. We proceed of the measurement after different periods
of retention (from a few minutes to a few days), which enables us
also to study long-term memory, although not as long as in the
present experiment. Another limitation of the presented protocol is
the limited choice of content. To design our experiment, we needed
contents broadly disseminated among the population surveyed. In
our current work, we are not limited anymore by this problem, and
decided to work on neutral videos.

We finally proposed computational models for VM prediction
where we investigated the use of various audio and visual features
for the task. For this, we observed that the visual semantic features
offer the best prediction result, which re-confirms the correlation
between the visual attributes and memorability. Although very
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promising, these results seem to be limited by the relative small
size of the dataset. Again, our current work might enable us to
reconfirm these results on a larger dataset and for more general
videos.
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