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We analytically study the influence of boundaries on distant localized patterns generated by a Turing

instability. To this end, we use the Swift-Hohenberg model with arbitrary boundary conditions. We find

that the bifurcation diagram of these localized structures generally involves four homoclinic snaking

branches, rather than two for infinite or periodic domains. Second, steady localized patterns only exist at

discrete locations, and only at the center of the domain if their size exceeds a critical value. Third,

reducing the domain size increases the pinning range.

PACS numbers: 47.54.�r, 05.65.+b, 47.11.St, 89.75.Kd

Pattern formation, especially the Turing instability, is 
one of the principal shaping mechanisms of the macro-
scopic world [1]. In this context, periodic patterns of 
infinite extent are well understood, but localized patterns 
(LP) are much harder to study. Yet, their finite character 
makes them obviously more realistic from a physical point 
of view. This has motivated a very large body of research, 
starting perhaps with the quest of solutions having their 
own ‘‘natural boundaries’’ in reaction-diffusion systems 
[2]. Subsequently, LP have been found and studied in a 
wide variety of contexts where the Turing instability comes 
into play: chemistry [3], nonlinear cavity optics [4–7], 
mechanics [8–10], fluid mechanics [11,12], vegetation 
systems [13], electroconvection [14], and biochemistry 
[15]. Clearly, the underlying dynamics is universal, and it 
is therefore appropriate to try and understand it with a 
simple model. Perhaps the simplest such model is the 
quadratic-cubic Swift-Hohenberg equation, which often 
comes as a natural asymptotic reduction of more compli-
cated models in some limit [16]. Previous studies of this 
equation in steady state have highlighted the peculiar 
bifurcation diagram associated to LP [8,17,18]. Plotting 
the size, or energy, of the LP as a function of the control 
parameter, LP are found to exist in a pinning range of 
parameters centered on the ‘‘Maxwell point.’’ On an infi-
nite domain, the diagram mainly consists of two interlaced 
snaking curves, where each fold signals the appearance of a 
new peak in the LP. The two snaking curves are in addition 
connected by ‘‘ladder’’ branches of unstable asymmetric 
solutions [10,19]. This diagram has been described analyti-
cally only recently [20], when the amplitude of the pattern 
is small. Since then, general statements could be made 
about the structure of the snaking diagram even for large 
amplitude [21]. Recently, the snaking diagram was com-
puted numerically for systems with two spatial dimensions 
[22] and was recorded experimentally both in one- and 
two-dimensional nonlinear optical cavities [7].

Despite the extensive research reviewed above, very 
little has been done in the way of a systematic investigation

of boundary effects on LP. Recently, localized convection
patterns were numerically studied for closed containers
[23]. Existing analytical results are limited either very
close to the Turing instability, i.e., to solutions that have
not yet developed into a stable LP, or to patterns that fill
most of the domain [24,25]. In the intermediate case,
nothing is known in general. Usually, when the system is
large enough, the influence of boundaries is considered
negligible, and periodic boundary conditions are assumed
for the sake of computational convenience. However, both
of these attitudes can lead one to dangerous modeling
avenues. Indeed, we will show that the presence of bounda-
ries may strongly affect LP, even when they are far from
the edges. Moreover, periodic boundary conditions pro-
duce quite distinct outcomes from what is obtained with
more general boundary conditions.
To demonstrate these claims, we analyze the Swift-

Hohenberg equation

@u

@t
¼ ruþ 3Eu2 � u3 � ð1þ @2xÞ2u; 0< x< �;

(1)

where � denotes the domain size. We make no assumption
on the boundary condition, except that u be small there. In
this sense, we consider solutions that are truly localized

within 0< x< �. If E � ffiffiffiffiffiffiffiffiffiffiffi
3=38

p
, stable small amplitude

patterns with unit wave number coexist with the stable
homogeneous state. Focusing on this region and on steady
states, we set

uðx; tÞ ¼ ��fðxÞ; r ¼ ��4; (2)

and therefore study

ð1þ @2xÞ2fþ �4fþ 3�Ef2 þ �2f3 ¼ 0: (3)

Above, � fixes the amplitude of spatial oscillations and E is
the main control parameter. LP exist in a narrow range of
parameters described by

E ¼ EMð�Þ þ �E; (4)



where EMð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3=38

p þ �2E2 þ . . . is the Maxwell point
and �E is a small deviation from it. EMð�Þ was computed
up to 4th order in [20] and, in particular, we have E2 �
0:534. As illustrated in Fig. 1, a LP is characterized by the
distances ‘1 and ‘2 to the domain boundaries or, equiv-
alently, by its center of mass R and size L. Our aim is to
relate R and L to �E, and we shall now sketch how this can
be done when � � 1. The following analysis, however, is
found to give excellent qualitative and quantitative predic-
tions, even for the moderately small value � ¼ 0:6 as-
sumed in the numerical simulations.

In order to treat the problem analytically, we need to
assume that �, ‘1, and ‘2 are allOð1=�4Þ. This ensures that
the pattern amplitude at x ¼ 0, � is comparable to the

pinning force, which is Oð��4e��=�2Þ [20]. With this as-
sumption, distinct asymptotic approximations fI, fII, fIII,
and fIV of LP solutions hold in each of regions I to IV of
Fig. 1. Once these approximations are obtained, the match-
ing conditions between them lead to the bifurcation
diagram.

In the vicinity of x ¼ ‘1, f is described by a front that
‘‘switches on’’ spatial oscillations. The asymptotic expres-
sion of this front is well known and given by the multiple-
scale expansion

fII �
XN�1

n¼0

�nfnð~x; ~XÞ þ RNð~x; ~XÞ; (5)

where ~x ¼ xþ ‘1 þ ’1, and ~X ¼ �2ðx� ‘1Þ. The leading
order term in fII is given by [20]

f0ð~x; ~XÞ ¼
ffiffiffiffiffiffiffiffiffi
19�

2

s
ei~xþ ~X=2ð1þ e

~XÞ�ð1þi�Þ=2 þ c:c:; (6)

where � ¼ 1=
ffiffiffiffiffiffiffiffi
734

p
. As ~x, ~X ! �1, (6) decreases expo-

nentially and becomesOð expð��2‘1=2ÞÞ at the left bound-
ary. On the other hand, the limit ~x, ~X ! 1 is to the center
of the LP where spatial oscillations have a uniform ampli-
tude. The approximation (6) can be improved by comput-
ing further terms f1; f2; . . . in (5), but the resulting sum
eventually diverges. By truncating it at order N where
�NfN is smallest, one obtains a remainder RN that is
exponentially small in �. It is this remainder that contains
the information relative to the interaction between the slow
and fast scales ~X and ~x, as well as the deviation �E to the
Maxwell point (see [20]). Presently, RN also contains terms
produced by the boundaries. Some of these terms are nec-
essary to achieve matching between the various approxi-
mations of f in regions I to IV. We omit the details here.

By the x ! �� x symmetry of (3), where � is a con-
stant, the down-switching front in region III is given by

fIII ¼ fIIðx̂; X̂Þ; (7)

with x̂ ¼ �� xþ ‘2 þ ’2, X̂ ¼ �2ð�� x� ‘2Þ.
Close to the left boundary, we set fI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19�=2

p �
expð��2‘1=2ÞFðx; �Þ, and since ‘1 ¼ Oð1=�4Þ, this is ex-
ponentially small in �. Hence, (3) becomes

ð1þ @2xÞ2Fþ �4F ¼ Oðe��2‘1=2Þ; (8)

which is linear to a very good approximation. Solutions of

(8) are thus exponentials of the form expðikxÞ, where k ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i�2

p
��ð1� i�2=2þ . . .Þ. Consequently,

fI / e��2‘1=2ðe�2x=2 � a1e
��2x=2Þeiðxþ’1Þ þ c:c:; (9)

where ’1 is the phase at x ¼ 0 and a1 is an integration
constant. Through these, general boundary conditions can
be imposed. For instance, f, fx ¼ 0 at the origin corre-
sponds to a1 ¼ 1 and ’1 ¼ ��=2, while f, fxx ¼ 0 is
achieved with a1 ¼ 1 and ’1 ¼ 0, �. Finally, in region IV,
we have

fIV/e��2‘2=2ðe�2ð��xÞ=2�a2e
��2ð��xÞ=2Þeið��xþ’2Þþc:c:;

(10)

so that a2 and ’2 account for the boundary conditions at
x ¼ �.
Eventually, successively matching (5), (7), (9), and (10)

yields

2�2E2fe��2ð��‘1�‘2Þ þ Re½ð1� i�Þa1�e��2‘1g ¼ �Eþ �Ec cosð‘1 þ ’1 þ �� � ln�Þ; (11)

2�2E2fe��2ð��‘1�‘2Þ þ Re½ð1� i�Þa2�e��2‘2g ¼ �Eþ �Ec cosð‘2 þ ’2 þ �� � ln�Þ; (12)

where [20],
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FIG. 1 (color online). A numerical solution of (1) for � ¼ 0:6,
� ¼ 20�, E ¼ 0:4195, and f ¼ fx ¼ 0 at x ¼ 0, �. The LP is
composed of an up-switching front at x ¼ ‘1, region II, and a
down-switching front at x ¼ �� ‘2, region III. Near the
boundaries, regions I and IV, f � 1 and distinct asymptotic
approximations can be derived. R is the center and L ¼ ��
‘1 � ‘2 is the size of the LP.



� � �0:5; �Ec � 2:439��4e��=�2 ; E2 � 0:534:

(13)

Equations (11) and (12) are the bifurcation equations
for LP in a finite domain. The boundary conditions appear
via the quadruplet fa1; a2; ’1; ’2g. We remark that ’1 and
’2 are the phases of the fast oscillation with respect to
the slow envelope on either side of the domain, and that
they are imposed by the boundary conditions. This con-
trasts with the case of an infinite domain. Another im-
portant observation to be made is that four quadruplets
fa1; a2; ’1; ’2g correspond in general to a given set of
boundary conditions. For instance, f, fx ¼ 0 at x ¼ 0, �
yields the four choices fa1; a2; ’1; ’2g ¼ f1; 1;
��=2;��=2g. Each choice produces a distinct set of
bifurcation Eqs. (11) and (12) and, hence, a distinct snak-
ing curve. On the other hand, for the special case of
periodic boundary conditions, the translational invariance
of the problem allows one to assume without loss of gen-
erality that ‘1 ¼ ‘2, a1 ¼ a2 and ’1 ¼ ’2. Hence, one of
the two Eqs. (11) and (12) is redundant and only two
snaking curves exist.

Let us now solve the bifurcation equations in the general
case. In practice, it is more intuitive to use R and L than ‘1
and ‘2. We therefore make the substitutions ‘1 ¼
R� L=2, ‘2 ¼ �� R� L=2. Solving (11) and (12) nu-
merically for a given pattern size L, we thus obtain �EðLÞ,
RðLÞ as shown in Fig. 2. The most dramatic feature is that
the position of the LP, given by R, is not free: It follows a
complicated bifurcation sequence as L is decreased from
L ¼ �, see Figs. 2(a) and 2(b). As a result, only a finite set
of locations is available, for a given pattern size L.
Moreover, above a critical value L ¼ Lc, LP can only exist
at the center of the domain. To estimate Lc, we linearize
(11) and (12) about the centered solution R ¼ �=2 and
look for the bifurcation points. It is then relatively straight-
forward to find that the rightmost bifurcation point of

Fig. 2(a) happens when

2�4E2e
��2ð��LÞ=2 � �Ec: (14)

Substituting the expression �Ec given in (13), this yields

Lc � �� 2�

�4
� 16

ln�

�2
: (15)

Note that this is much less than �, see Fig. 2. Interestingly,
the leading order approximation of Lc does not depend on
fa1; a2; ’1; ’2g and, hence, on the details of the boundary
conditions. In Fig. 2(c), the arrow indicates a secondary
bifurcation from the main snaking curve. This new stem in
the bifurcation diagram can be linked in Fig. 2(a) to the
appearance of a new position R that is different from the
middle of the domain, �=2. The quasihorizontal part of this
bifurcated stem in Fig. 2(c) is unstable up until the limit
point where the branch folds back towards the center of the
snaking region. At this point, the LP loses one peak, and
the new position R becomes stable. Similarly, each isola in
Fig. 2(a) corresponds to an isola in Fig. 2(c). This is
consistent with [21], which identified secondary and iso-
lated branches of the snaking diagram with asymmetric
states. Moreover, a close inspection of either Eqs. (11) and
(12) or Fig. 2 reveals that the successive branches of
solutions RðLÞ for fixed L are separated by approximately
�=2, i.e., a quarter of the pattern wavelength. This is
confirmed, both qualitatively and quantitatively, in Fig. 3,
where we integrated (1) numerically for a large number of
initial conditions and values of E in the pinning range. For
each run, R and L were recorded after the solution con-
verged to a stable stationary profile and plotted in Fig. 3. A
typical solution is given in Fig. 1.
Finally, let us consider the effect of reducing the domain

size. In Fig. 4, we compute the snaking curves on a domain
with size � ¼ 12� for symmetric solutions only; i.e., we
focus on ‘1 ¼ ‘2 and ’1 ¼ ’2. Only a few snaking oscil-
lations are present on each of the two curves associated to

FIG. 2 (color). Bifurcation diagrams for � ¼ 20�, � ¼ 0:6,
and f, fx ¼ 0 at x ¼ 0, �; Left: RðLÞ for ’1 ¼ ’2, (a) and ’1 ¼
�’2, (b). Red curves correspond to ’1 ¼ �=2, blue curves
correspond to ’1 ¼ ��=2. Right: �EðLÞ for ’1 ¼ ’2 ¼
��=2. The arrow indicates a bifurcation of off-centered solu-
tions.
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FIG. 3 (color online). RðLÞ by direct integration of (1), same
parameters as in Fig. 2. Most of the points are a multiple of �=2
away from the center of the domain, in agreement with analytical
predictions. Also, compare the rightmost bifurcation point with
Lc � 37, obtained from (15).



’1, ’2 ¼ �=2 and ’1, ’2 ¼ ��=2, respectively. As L
increases and the pattern progressively covers the entire
domain, the snaking curves leave the vicinity of the
Maxwell point. This agrees with previous numerical simu-
lations [24,25]. In addition, we note a similarity with the
experimental snaking diagram of [7] in 1D. The system
studied in that paper is an optical cavity, and localized
patterns appear in the intensity reflected by that cavity. The
width of the system, 80 �m, approximately corresponds to
six Turing wavelength (not to be confused with the optical
wavelength). The authors of [7] note that on the upper part
of their diagram, the localized pattern develops additional
lobes without any abrupt transition; the same is true in the
case of Fig. 4. The fact that LP are usually observed over a
much wider range of parameter than the pinning range is
sometimes attributed to the presence of a nonlocal cou-
pling [26,27]. From the present analysis, we see that spatial
confinement can have the same effect.

Conclusions.—Although we performed our calcula-
tions on a particular equation, the form of the bifurcation
Eqs. (11) and (12) should be general. Only the numerical
constants appearing in (13) are specific to (1). Indeed, in
the vicinity of a Turing bifurcation, pattern dynamics is
known to be universal and of gradient form [1]. In particu-
lar, a Maxwell point can always be defined for small
amplitude patterns. On the other hand, most of the charac-
teristic features (pinning range, snaking bifurcation dia-
gram) of LP are known to persist away from the bifurcation
point [18,21]. This is also true of systems that are clearly
nonvariational, such as in [15], provided that no Hopf
bifurcation affects the dynamics. We thus expect the con-
clusions drawn from (11) and (12) to hold for nonvaria-
tional systems too, although this is not proved [28]. The
most important effect of boundaries on distant LP is that
their center of mass can only occupy a discrete set of
locations R. These are approximately one quarter of the
Turing period apart (Fig. 2.) Moreover, regardless of the
details of the boundary conditions, LP are repelled by the
edges of the domain: If the LP size exceeds Lc, it can only
stay at the center of the domain. Stable positions thus arise
from the equilibrium between these repelling forces and
the pinning forces from the spatial structure of the pattern.

In real systems, inhomogeneities generally have a pin-
ning effect and it is sometimes questioned whether an
observed localized state is a genuine dynamical localized
structure or simply the product of an underlying inhomo-
geneity. A criterion used, then, is that a true localized
structure should be free to move. Here, however, we see
that it is actually not free to move, even on a perfectly
homogeneous background.
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thanks Jean Cardinal, Thomas Erneux, and Pascal
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